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Abstract: The utilization of remote sensing soil moisture products in agricultural and hydrological
studies is on the rise. Conducting a regional applicability analysis of these soil moisture products
is essential as a preliminary step for their effective utilization. The triple collocation (TC) method
enables the estimation of the standard deviation of errors in products when true soil moisture values
are unavailable. It assesses data uncertainty and mitigates the influence of product errors on fusion,
thereby enhancing product accuracy significantly. In this study, the TC uncertainty error analysis
was employed to integrate Soil Moisture Active Passive (SMAP), the Advanced Microwave Scanning
Radiometer 2 (AMSR-2), and the European Space Agency Climate Change Initiative (ESA CCI) active
(ESA CCI A) and passive (ESA CCI P) products, with ground-based measurements serving as a
reference. Traditional evaluation metrics, such as the correlation coefficient (R), bias, root mean
square error (RMSE), and unin situed root mean square error (ubRMSE), were employed to evaluate
the accuracy of the product. The findings indicate that SMAP and ESA CCI P products demonstrate
strong spatiotemporal continuity within the research area and exhibit low uncertainty across various
land types. The products derived from the Advanced Microwave Scanning Radiometer 2 (AMSR-2)
exhibit a high level of temporal and spatial continuity; however, there is a requirement for enhancing
their accuracy. The products of ESA CCI A exhibit notable spatiotemporal disjunction, contributing
significantly to their elevated level of uncertainty. After fusion with TC analysis, the correlation
coefficient (R = 0.7) of the TC-2 product derived from the fusion of SMAP, AMSR-2, and ESA CCI
P products is significantly higher than the correlation coefficient of the TC-1 product (R = 0.65)
obtained from the fusion of SMAP, AMSR-2, and ESA CCI A products at a 95% confidence level. The
integration of data can efficiently mitigate the challenges associated with spatiotemporal gaps and
inaccuracies in products, offering a dependable foundation for the subsequent utilization of remote
sensing products.

Keywords: triple collocation; soil moisture; remote sensing; data fusion

1. Introduction

Soil moisture is a crucial factor in the surface hydrological cycle and ecosystem health,
with significant implications for meteorology, agriculture, water resource management,
and various other fields [1]. The continuous progress in remote sensing technology has
heightened the importance of global-scale soil moisture remote sensing products as essential
data sources for soil moisture research in scientific studies. Nevertheless, global-scale soil
moisture products consistently exhibit lower accuracy when compared to measurements
obtained from ground-based sources. Furthermore, the products resulting from satellite
operations often display strip-like patterns that can be attributed to variables such as
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orbit configuration and scanning methodology, resulting in incomplete coverage of global
regions. Remote sensing products are currently considered the most efficient approach for
acquiring soil moisture data over large areas and with a high temporal resolution [2].

In recent decades, the effective utilization of satellites equipped with sensors capa-
ble of detecting soil moisture has resulted in the ongoing production of soil moisture
products. For instance, the successful deployment of the AQUA satellite by NASA in
2002 [3], equipped with the passive microwave sensor Advanced Microwave Scanning
Radiometer-Earth Observing System (AMSR-E), enabled the generation of soil moisture
datasets spanning from 2002 to 2011. In 2012, the Japan Aerospace Exploration Agency
(JAXA) launched the Global Change Observation Mission 1st (GCOM-W1). The satellite,
equipped with AMSR-2, is used for water monitoring. This mission has expanded the soil
moisture observations that were initially started by AMSR-E and has been operational since
2012. In 2015, NASA initiated the Soil Moisture Active Passive (SMAP) mission [4], which
integrates L-band radar and L-band microwave radiometer technologies. Subsequently, it
has consistently shared soil moisture data products with the public. The ESA CCI product
was developed by the European Space Agency. Integrating a variety of active and passive
microwave soil moisture datasets, such as AMSR-E and SMAP, through the application of
the TC method has become a prevalent approach to generating soil moisture products [5].

Several recent studies have assessed soil moisture products obtained from SMAP,
AMSR-2, and ESA CCI, utilizing either in situ measurements or model simulation data [6].
For example, Zeng et al. [7] performed a technical evaluation of seven remote sensing
soil moisture products and one reanalysis soil moisture product. They utilized observed
data from three soil moisture monitoring networks that cover a wide range of climates
and vegetation conditions on the Qinghai–Tibet Plateau from 2002 to 2012. Cui et al. [8]
examined the performance of eight satellite-based soil moisture products by utilizing in
situ soil moisture data from two dense soil moisture networks in the United States. Al-
bergel et al. [9] assessed the reliability of three soil moisture products by employing in situ
soil moisture data from over 200 sites across Africa, Australia, Europe, and the United
States. Liu et al. [10] investigated seven categories of soil moisture remote sensing products
by utilizing in situ networks in various regions, including North America, the Qinghai–
Tibet Plateau, Western Europe, and Southeastern Australia. The results of these studies
consistently demonstrate that the SMAP soil moisture product exhibits the lowest error
rate in comparison to in situ data [11]. In contrast, the soil moisture products generated
by JAXA’s AMSR-E and AMSR-2 satellites have shown a tendency to underestimate soil
moisture levels [12]. Moreover, research indicates that the accuracy of different soil mois-
ture products can vary significantly among regions. For example, while SMOS products
exhibit satisfactory performance in continental Europe [13], they show significant noise
and deviation in the Qinghai–Tibet Plateau region [10].

Scholars have utilized fusion techniques to derive regional soil moisture products
with reduced systematic errors [14], considering the diverse accuracy requirements of soil
moisture products obtained from various sensors. The TC method is currently acknowl-
edged as a stable and effective approach [15–17]. Wu et al. [18] utilized the TC method to
investigate the error characteristics of three soil moisture datasets derived from ASCAT,
AMSR-E, and ERA-Interim. Notarnicola [19] employed the TC method to examine inac-
curacies in soil moisture datasets obtained from satellite observations and ground-based
model simulations. Dorigo et al. [20] employed the TC method to evaluate the comparative
quality of various soil samples. Soil moisture products are derived from active (Advanced
Scatterometer, ASCAT) and passive (AMSR-E and SSM/I) microwave sensors.

The current research predominantly concentrates on regions such as the United States,
Europe, and Australia, with limited evaluation conducted on soil moisture products in the
northeastern provinces of China. For example, Zheng et al. [21] performed an uncertainty
analysis on SMAP, SMOS, FY-3C, and AMSR-2 products in northeastern China. The findings
suggest that the precision of SMAP products closely aligns with the designated application
accuracy at the time of product launch, with SMOS, FY-3C, and AMSR-2 following in
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descending order. The northeastern provinces of China, which are important regions for
grain production and characterized by significant topographical diversity and abundant
forestry, farmland, and grassland resources, necessitate precise monitoring of soil moisture
and validation of remote sensing data products.

The study aimed to analyze and evaluate the active and passive soil moisture products
provided by SMAP, AMSR-2, and ESA-CCI. Drawing upon the Dehui farmland pixel-scale
soil moisture observation network established at the Jingyuetan Station of the Chinese
Academy of Sciences. Subsequently, the TC method was employed to systematically assess
uncertainties in individual soil moisture products. Furthermore, the TC method was em-
ployed to integrate the soil moisture datasets from SMAP, AMSR-2, and ESA-CCI in order
to generate a holistic soil moisture product specifically tailored for the northeast region.

2. Data and Methods
2.1. Study Area

The research site is situated in the northeastern regions of China, as shown in Figure 1,
encompassing Heilongjiang, Jilin, and Liaoning provinces. This region holds importance
due to being one of the primary agricultural production zones in the country. It extends
from around 118° E to 135° E longitude and from 38° N to 55° N latitude. The total area
of these provinces amounts to 808,400 square kilometers. The climate in the region is
categorized as a temperate continental monsoon climate, which is shaped by the East Asian
monsoon during the summer months and polar cold air masses during the winter season.
The average annual temperature in the region is 3.1 °C, and it receives an average annual
precipitation of 500 mm.

Figure 1. Land use distribution map of the study area.

The region is characterized by extensive plains with significant expanses of cropland,
forest, and grassland, which collectively constitute more than 90% of the land utilization
in the area. The primary soil classifications comprise black soil, brown soil, meadow soil,
marsh soil, and permafrost. Black soil is predominantly found in central Jilin and the
western and eastern Heilongjiang regions. It is distinguished by its high organic content,
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loose texture, and exceptional moisture and nutrient retention capabilities, rendering it
highly conducive for the cultivation of crops such as corn, soybeans, and wheat. Brown soil
predominantly occurs in the low mountainous and hilly regions of the area, extending to
certain areas on the periphery of plains. Meadow soil is predominantly found in proximity
to rivers and lakeshores, particularly in low-lying regions. These areas offer favorable
conditions abundant in organic matter and moisture, facilitating the growth of rice and
other crops that demand high levels of moisture. Marsh soil is characterized by a high
content of organic matter and moisture and is typically located in low-lying wetlands and
river floodplains. Permafrost is typically found in regions of high altitude, where the soil
remains frozen for the majority of the year.

2.2. Satellite Data
2.2.1. SMAP Passive Microwave Soil Moisture Product

The Soil Moisture Active Passive (SMAP) satellite, which was launched by NASA in
January 2015, is specifically designed for the purpose of monitoring soil moisture levels.
The system was outfitted with an L-band radar operating at 1.26 GHz and an L-band
radiometer operating at 1.41 GHz. The L-band radar notably stopped operating after
11 weeks. In this study, we utilize the Enhanced SMAP Level 3 soil moisture dataset, which
features a spatial resolution of 36 km and is provided by the National Snow and Ice Data
Center (NSIDC). This product evaluates the moisture content of soil from the surface to
a depth of 0–5 cm. The data utilized in this study are sourced from the Enhanced SMAP
Level 2 semiorbit daily soil moisture dataset using the SMAP [22,23]. The dataset covers
the period from May to September between 2016 and 2018 and has been resampled to a
spatial resolution of 25 km. The data was accessed on 22 March 2024, and is accessible at:
https://nsidc.org/data/smap/smap-data.html.

2.2.2. AMSR-2 Passive Microwave Soil Moisture Product

AMSR-E represents a passive microwave sensor that is part of the Global Change
Observation Mission for Water-1 (GCOM-W1) satellite [24,25], which was deployed by
the Japan Aerospace Exploration Agency (JAXA) in May 2012. The satellite operated
from May 2002 to October 2011 and was subsequently replaced by AMSR-2. AMSR-2 is
equipped with seven central frequencies and fourteen observation channels for brightness
temperature measurements: 6.925 GHz, 7.3 GHz, 10.65 GHz, 18.7 GHz, 23.8 GHz, 36.5 GHz,
and 89.0 GHz. The AMSR-2 Level 3 soil moisture product utilized in this research is
supplied by JAXA. The dataset GCOM-W1 covers the period from May to September for
the years 2016 to 2018. It has a spatial resolution of 25 km and a temporal resolution of
daily. The information was accessed on 22 March 2024, and can be accessed at: https:
//gportal.jaxa.jp/gpr/?lang=en.

2.2.3. ESA CCI Active and Passive Microwave Soil Moisture Product

The active soil moisture product of the ESA Climate Change Initiative (CCI) is de-
rived from the integration of scatterometer soil moisture data and the fusion of active
and passive microwave soil moisture retrievals. The passive soil moisture product in-
tegrates data from various instruments, such as the Scanning Multichannel Microwave
Radiometer (SMMR), Special Sensor Microwave/Imager (SSM/I), and Tropical Rainfall
Measuring Mission. Microwave Imager (TMI), Advanced Microwave Scanning Radiometer-
EOS (AMSR-E), WindSat, Advanced Microwave Scanning Radiometer 2 (AMSR-2), Soil
Moisture and Ocean Salinity (SMOS), Soil Moisture Active Passive (SMAP), and Global
Precipitation Measurement (GPM) and Fengyun have been extensively studied in previ-
ous research [26–28]. The dataset was generated in accordance with the methodologies
outlined by Gruber et al. [29], Liu et al. [30], Wagner et al. [31], and other relevant sources.
The assimilated and merged product offers global surface soil moisture data at a spatial
resolution of 0.25 degrees and a temporal resolution of one day (reference time at UTC 0:00).
The soil moisture data in the passive product are presented in volumetric units (m3/m3).

https://nsidc.org/data/smap/smap-data.html
https://gportal.jaxa.jp/gpr/?lang=en
https://gportal.jaxa.jp/gpr/?lang=en
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The saturation percentage (%) of ESA CCI active products is transformed from soil porosity
by utilizing ESA CCI auxiliary data to determine the volumetric water content (volumetric
water content = soil saturation × soil porosity). This study utilizes the ESA CCI active (ESA
CCI A) and passive (ESA CCI P) soil moisture products from May to September, spanning
the years 2016 to 2018. Further information regarding the ESA CCI soil moisture products
can be explored in the studies by Gruber and Dorigo [29,32].

2.2.4. Satellite Data Preprocessing

Initially, this study faced challenges due to inconsistent units in the soil moisture
data. The volumetric soil water content (m3/m3) was calculated based on the saturation
percentage data (%) obtained from the active microwave soil moisture product, utilizing soil
bulk density information. This conversion was conducted to standardize all soil moisture
estimates to volumetric units of cubic meters per cubic meter per day (m3/m3/day−1).

Secondly, to address the disparities in spatial and temporal resolutions among differ-
ent soil products, a uniform methodology was implemented. This involved conducting
bilinear interpolation and resampling on all soil moisture estimates to standardize the
spatial resolution to 25 km and temporal resolution to 1 day. A weighted integration of
ascending and descending soil moisture products was also performed. This study exclu-
sively concentrates on estimating soil moisture levels over terrestrial areas. Pixels that
represent inland water bodies are designated as NaN values and consequently excluded
from subsequent analyses.

To assess remote sensing soil moisture products using ground measurement data,
a specific approach involves selecting relevant ground measurement data samples accord-
ing to the location of the product pixel. These selected samples are then arithmetically
averaged to derive the ground measurement value for that pixel.

2.3. In Situ Observation Data

The study utilizes in situ observation data obtained from the Soil Moisture Obser-
vation Network in the Dehui agricultural area, situated in Dehui County, Jilin Province,
China. The observation network in question was established by and is currently under
the management of the Jilin Satellite Remote Sensing Experimental Station, which oper-
ates under the Chinese Academy of Sciences in Changchun. The Dehui Agricultural Soil
Moisture Observation Network covers an area of 36 km by 36 km and has implemented a
comprehensive network of soil moisture observation stations. A total of 28 soil moisture
observation stations were chosen to provide a representative sample of the entire area.
The measured data spatially cover four pixels, each with a spatial resolution of 25 km,
in the remote sensing soil moisture products (Figure 2).

The validation area is located in the northern region of Changchun, China, covering
the maize cultivation zone in the eastern part of Nongan County and the western part
of Dehui County. The region encounters a temperate monsoon climate characterized by
well-defined seasons. The annual mean precipitation totals 520 mm, with the majority
falling during the summer months of July and August. The mean annual temperature
and cumulative temperature amount to 4.4 °C and 2851 °C, respectively. This region,
characterized as a typical farmland area in Northeast China, is well suited for validating
soil moisture products. The selection of this area was based on several factors. Firstly, there
is a significant need for soil moisture validation in Chinese farmland regions. Secondly,
the terrain is relatively flat, characterized by slopes ranging from 0° to 5.8° with a standard
deviation (STD) of 0.45°. The land use consists of predominantly farmland, primarily for
maize cultivation, covering over 90% of the pixel area, while water bodies occupy 0.37%.
The soil texture is relatively uniform, with clay content varying from 11.5% to 12.5% and
sand content from 51.5% to 60.6% [33].

At the observation sites, EC-5 soil moisture sensors were deployed and buried to collect
soil moisture data from May to September between 2016 and 2018. The gathered data
underwent recalibration utilizing on-site calibration coefficients, which were utilized as
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reference data to validate the microwave soil moisture [34]. To process the data containing
the SMAP pixels, the Thiessen polygon method was utilized, as depicted in Figure 2, which
illustrates the pixel coverage of the AMSR-2 and ESA CCI A and P products. This method
enabled the conversion of ground observation data to match the pixel resolution of the
target products [35].

Figure 2. Distribution map of Dehui soil moisture observation network stations.

2.4. Land Use Data

Land use information was obtained from the GlobeLand30 2020 dataset, a global land
cover dataset published by China in 2017, which has a spatial resolution of 30 m [36–38].
The GlobeLand30 dataset is based on the WGS-84 coordinate system and encompasses 10
primary land cover categories: cropland, forestland, grassland, shrubland, wetland, water
bodies, tundra, artificial surfaces, bare soil, glaciers, and permanent snow. In this study,
discussions regarding soil moisture products focus on cropland, forestland, and grassland
land use types.

3. Method
3.1. TC Method

The triple collocation (TC) method assumes the presence of three measurement sys-
tems that are spatially coincident and mutually independent. All three systems exhibit
correlation with the unknown “true value” within a linear additive error model [39,40].

SMi = αi + βit + εi (1)

where SMi denotes a random time series data of soil moisture using X, Y, and Z as triplets,
with i ∈ [X, Y, Z]; αi and βi represent the ordinary least squares intercept (additive mean
bias) and slope (multiplicative mean bias) in the dataset of soil moisture i; t signifies the
unknown true ground value of soil moisture; and ϵi stands for the zero-mean random
error in the dataset of soil moisture i. Traditionally, a recognized approach for validating
remote sensing data involves the utilization of in situ measurements for verification. In the
realm of soil moisture determination, obstacles such as instrument inaccuracies and human-
operational intervention pose challenges in accurately determining the actual soil moisture
content. Consequently, this hinders the utilization of conventional statistical approaches
for validating remote sensing soil moisture outputs. The uncertainty related to various
remote sensing soil moisture products is evaluated through the TC method.
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In mathematical terms, the TC method is formulated using both the covariance method
and the differencing method [41]. This study choose the former approach because it has
been more widely utilized in previous research. Another significant rationale for employing
the covariance method is that, in addition to estimating error variances, it also offers
an estimation of the datasets’ sensitivity to variations in soil moisture. The covariance
method involves the utilization of dataset variances (σ2

i ) and covariances (σij), which are
mathematically expressed as

σ2
i = β2

i σ2
θ + σ2

εi
(2)

σij = βiβ jσ
2
θ (3)

where i, j are elements of the sets X, Y, and Z, and i is not equal to j. The symbol σ2
θ denotes

the variance of the actual observed soil moisture data, while β2
i , σ2

θ represents the sensitivity
of dataset i to the true signal variation. In essence, a higher value of βi indicates a more
pronounced reaction of product i to variations in soil moisture levels. By employing the
covariance representation, the error variance can be determined directly as follows:

σ2
εX

= σX − σXYσXZ
σYZ

σ2
εY

= σY − σYXσYZ
σXZ

σ2
εZ

= σZ − σZXσZY
σXY

(4)

The sensitivity of soil moisture data products is assessed through the following esti-
mation method:

β2
Xσ2

θ =
σXYσXZ

σYZ

β2
Yσ2

θ =
σYXσYZ

σXZ

β2
Zσ2

θ =
σZXσZY

σXY

(5)

Hence, the standard deviation of the error can be calculated based on the error variance
mentioned above:

σεX=

√
σX − σXYσXZ

σYZ

σεY =

√
σY − σYXσYZ

σXZ

σεZ =

√
σZ − σZXσZY

σXY

(6)

The standard deviation values for the errors in three soil moisture remote sensing
datasets can be determined through the TC method. The standard deviations of these
errors form the basis for computing fusion weights.

wX =
σεY ∗ σεZ

σεX ∗ σεY + σεX ∗ σεY + σεY ∗ σεZ

wY =
σεX ∗ σεZ

σεX ∗ σεY + σεX ∗ σεZ + σεY ∗ σεZ

wZ =
σεY ∗ σεZ

σεX ∗ σεY + σεX ∗ σεZ + σεY ∗ σεZ

(7)

The fusion weights for the three soil moisture remote sensing products are computed
through the aforementioned equations. Subsequently, the linear fusion method is utilized
to combine the three soil moisture remote sensing data products.

SM f = wX ∗ SMX + wY ∗ SMY + wZ ∗ SMZ (8)
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3.2. Evaluation Metrics

The evaluation of soil moisture products derived from remote sensing involves the
utilization of essential metrics such as the correlation coefficient (R), root mean square error
(RMSE, m3/m3), unbiased root mean square error (ubRMSE, m3/m3), and bias (m3/m3).
The correlation coefficient adheres to the following relationship:

R =
∑N

i=1(SMRS(i)− E(SMRS))(SMMD(i)− E(SMMD))

(N − 1)σRSσMD
(9)

In the formula, SMRS refers to the data values of remote sensing soil moisture products,
while SMMD denotes the ground-truth measurement data values. In the analysis of time
series data, the variable N represents the total time span, whereas the variable i signifies a
specific day. The symbols σRS and σMD denote the standard deviations of soil moisture data
acquired through remote sensing and in situ measurements, respectively. The mean bias
quantifies the degree to which the measured values diverge from the mean level, offering
an intuitive illustration of the disparities between soil moisture products and in situ data.
It is formulated as follows:

Bias = E(SMRS)− E(SMMD) (10)

RMSE is employed to measure the absolute average deviation and accuracy when
comparing remote sensing soil moisture products with in situ data.

RMSE =

√
∑N

i=1(SMRS(i)− SMMD(i))
2

N
(11)

In time series analysis, ubRMSE is defined to improve the accuracy of RMSE estima-
tion by reducing the influence of mean bias.

ubRMSE =

√
∑N

i=1((SMRS(i)− E(SMRS))− (SMMD(i)− E(SMMD)))2

N
(12)

4. Result Analysis
4.1. Variation Trends of Soil Moisture in Different Land Use Types

In the northeastern provinces of China, from May to September each year, the soil
moisture exhibits distinct seasonal variations due to the combined effects of the rainy season
and factors such as farmland irrigation. Observing the trend of soil moisture changes from
May to September from 2016 to 2018 (Figure 3), it has been found that the overall trends
are generally similar. Consequently, the present study selected the soil moisture time series
of different land use types in 2016 for detailed analysis to investigate the impact of various
land use types on soil moisture dynamics.

In the cultivated land region of Northeast China, a comprehensive analysis of the
SMAP and ESA CCI P products from May to September (Figure 4) revealed a high level
of consistency between the two. The results of the mean value comparison (Table 1)
confirmed this trend. During the period from May to September, the maximum difference
in mean values between SMAP and ESA CCI P was 0.14 m3/m3, with a minimum of 0.
At the 95% significance level, the mean correlation coefficient reached 0.822, indicating a
significant correlation.

The standard deviation of the correlation coefficient was 0.86, suggesting a consistent
trend in their data during this period. The coefficients of variation were between 10% and
30%, indicating a moderate level of relative variability in the SMAP and ESA CCI P products
from May to September in the Northeast China region, without excessive fluctuations.
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Figure 3. Temporal trends of soil moisture in different land use types from 2016 to 2018.
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Table 1. Statistical summary of soil moisture values from April to September 2016 for different
products in various land use types.

Land Use Types Cropland Forestland GrassLand

Products Time Mean
(m3/m3)

Standard
Deviation
(m3/m3)

Coefficient
of Variation

Mean
(m3/m3)

Standard
Deviation
(m3/m3)

Coefficient
of Variation

Mean
(m3/m3)

Standard
Deviation
(m3/m3)

Coefficient
of Variation

AMSR-2
April

0.070 0.024 35% 0.056 0.010 19% 0.062 0.015 24%
SMAP 0.188 0.057 30% 0.209 0.060 28.5% 0.201 0.060 29.6%

ESACCIA / / / / / / / / /
ESACCIP 0.301 0.022 7.3% 0.383 0.035 9.2% 0.280 0.019 6.8%

AMSR-2
May

0.135 0.043 32.1% 0.101 0.028 27.7% 0.103 0.028 27.1%
SMAP 0.300 0.086 28.7% 0.280 0.050 17.8% 0.300 0.078 25.4%

ESACCIA / / / / / / / / /
ESACCIP 0.300 0.041 13.7% 0.391 0.052 13.2% 0.294 0.038 12.9%

AMSR-2
June

0.200 0.069 34.3% 0.175 0.044 25.4% 0.162 0.050 31%
SMAP 0.336 0.093 27.7% 0.299 0.061 20.4% 0.321 0.079 24.5%

ESACCIA / / / / / / / / /
ESACCIP 0.300 0.043 14.2% 0.335 0.030 9% 0.288 0.038 13.2%

AMSR-2
July

0.121 0.045 37.3% 0.133 0.039 29% 0.121 0.042 34.9%
SMAP 0.227 0.052 22.9% 0.225 0.031 13.6% 0.228 0.046 20.1%

ESACCIA 0.248 0.048 19.5% 0.240 0.137 57.3% 0.210 0.113 53.9%
ESACCIP 0.238 0.030 12.7% 0.264 0.029 11.1% 0.236 0.032 13.4%

AMSR-2
August

0.131 0.088 67.1% 0.138 0.067 48.5% 0.127 0.080 62.8%
SMAP 0.228 0.043 18.7% 0.220 0.021 9.7% 0.226 0.034 15%

ESACCIA 0.201 0.072 35.6% 0.231 0.092 39.7% 0.233 0.067 28.9%
ESACCIP 0.232 0.036 15.4% 0.242 0.037 15.5% 0.231 0.030 13%

AMSR-2
September

0.141 0.059 42.2% 0.122 0.051 42% 0.131 0.055 42.2%
SMAP 0.281 0.039 13.9% 0.254 0.031 12.1% 0.276 0.032 11.7%

ESACCIA / / / / / / / / /
ESACCIP 0.320 0.025 7.8% 0.323 0.025 7.7% 0.299 0.025 8.4%

“/” indicates missing data.

When examining the mean correlation coefficients for the period from April to Septem-
ber, the correlation coefficients for SMAP and ESA CCI P were 0.45, indicating a non-
significant correlation, which suggests significant differences in the two sets of product
data in April. In the cultivated land region of Northeast China, during the period spanning
from May to September, the mean correlation coefficients between the AMSR-2 products
and the SMAP, as well as the ESA CCI P products, were 0.83 and 0.483, respectively. Con-
versely, for the broader timeframe extending from April to September, the mean correlation
coefficients observed were 0.903 and 0.126, respectively. Meanwhile, in the cultivated
land region, the variation coefficient fluctuation range for AMSR-2 from April to Septem-
ber exceeded 30%, with a maximum of 67.1% and a minimum of 32.1%. In comparison,
the fluctuation range for the coefficient of variation for SMAP was between 13.9% and
30%, and for ESA CCI P, it was between 7.3% and 15.4%, indicating moderate fluctuation
levels. Although AMSR-2 exhibits more pronounced data variability in the cultivated land
region and its mean correlation coefficient with SMAP in the farmland region is relatively
high, this does not necessarily imply a significant correlation with SMAP data. As depicted
in Figure 3, ESA CCI A products have data for the study area in July and August each
year, whereas the coefficient of variation fluctuates significantly, reaching 57.3%, indicat-
ing substantial variability (Table 1). Given this, the data from ESA CCI A products have
some uncertainty in terms of their reference value. Consequently, no further deliberation
regarding these values is pursued in the subsequent research.

In the forest regions of Northeast China, the mean value of the ESA CCI P product
is significantly higher than that of the SMAP and AMSR-2 products (Table 1). The range
of standard deviation for the three groups of products—ESA CCI P, SMAP, and AMSR-
2—is between 0.01 m3/m3 and 0.067 m3/m3, which is lower than the standard deviation
found in the cultivated land and grassland regions (Table 1). This suggests that there is
a relatively low level of data variation among the three product groups in forest areas.
Further examination of Figures 5a–c and 6a–c reveals that the mean levels of forest regions
are higher than those in cultivated land and grassland regions, and the standard deviation
levels of the three soil moisture products in forest regions are generally lower than those in
cultivated land and grassland regions, signifying that soil moisture values obtained from
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monitoring forest areas are relatively stable and less affected by factors such as irrigation
and rainfall. In comparison to the cultivated land region, the coefficient of variation for
AMSR-2 in the forest region shows a significant decrease, ranging from 32.1% to 67.1%
to between 19% and 48.5%, a reduction of 28% to 40%. The soil moisture data from
AMSR-2 in the forest region exhibit a medium level of relative variability with no excessive
fluctuations. Likewise, the coefficient of variation for SMAP and ESA CCI P products in
the forest region from April to September ranges between 9.7% and 28.5% and between
7.7% and 15.5%, respectively, both remaining below 30%, which indicates that their data
are relatively consistent.

(a) Cropland

(b) Forestland

(c) Grassland

Figure 4. Time series plot of microwave soil moisture data for different land use types in 2016.

In Northeast China’s grassland region, the three products show trends similar to
those in the cultivated land region in terms of mean, standard deviation, and coefficient
of variation. However, within the forest region, the products possess distinct features,
with mean values that are significantly higher than those in cultivated and grassland
areas. At the same time, the standard deviation and coefficient of variation are relatively
lower (Figures 5–7). The mean value range for product data in the grassland region lies
between 0.062 m3/m3 and 0.321 m3/m3, while in the cultivated land region, it spans from
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0.07 m3/m3 to 0.336 m3/m3, and in the forest region, it extends from 0.056 m3/m3 to
0.391 m3/m3. These findings highlight the substantial influence of different land use types
on product data.

(a) Cropland (b) Forestland (c) Grassland

Figure 5. Soil moisture monthly mean boxplots for SMAP, AMSR-2, and ESA CCI P in cropland,
forestland, and grassland regions.

(a) Cropland (b) Forestland (c) Grassland

Figure 6. Standard deviation boxplots for SMAP, AMSR-2, and ESA CCI P soil moisture in cropland,
forestland, and grassland regions.

(a) Cropland (b) Forestland (c) Grassland

Figure 7. Coefficient of variation boxplots for SMAP, AMSR-2, and ESA CCI P soil moisture in
cropland, forestland, and grassland regions.

4.2. Uncertainty Analysis Based on the TC Method

As previously indicated in Section 3.1, this study is founded on the integration of
two datasets, namely SMAP–AMSR-2–ESA CCI A and SMAP–AMSR-2–ESA CCI P. Con-
sequently, it is imperative to establish correlations between these datasets prior to com-
mencing the uncertainty TC analysis. Table 2 presents the mean and standard deviation
of the correlation coefficients for the four soil moisture products. The table illustrates that
the correlation coefficient between SMAP and AMSR-2 products is notably high, reaching
0.446. In comparison, the correlation coefficient between the ESA CCI A and ESA CCI P
products is the lowest, measuring 0.038. The results suggest a significant level of autonomy
among the products. The standard deviations among the products are all less than 0.006,
suggesting that the TC outcomes demonstrate stability.
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Table 2. Statistical summary of correlation coefficients between soil moisture products.

Product Group Mean Standard Deviation

SMAP and ESA CCI A 0.058 0.006
SMAP and ESA CCI P 0.435 0.002

SMAP and AMSR-2 0.446 0.001
ESA CCI A and ESA CCI P 0.038 0.005

ESA CCI A and AMSR-2 0.059 0.004
ESA CCI P and AMSR-2 0.220 0.002

The spatial distribution of the standard deviation of errors for the two product combi-
nations, SMAP–AMSR-2–ESA CCI A and SMAP–AMSR-2–ESA CCI P, in the three north-
eastern provinces is illustrated in Figures 8 and 9. In the first set of graphics, Figure 8, the
standard deviation of errors in ESA CCI A products is consistently greater compared to
those in the SMAP and AMSR-2 datasets. The errors of ESA CCI A products in the three
northeastern provinces exhibit relatively high values, mostly ranging between 0.12 and
0.2 m3/m3. When considering the landform type (Figure 10), ESA CCI A demonstrates
increased errors during landform transitions. The standard deviation of errors in SMAP
products is lower compared to AMSR-2 products, typically falling below 0.08 m3/m3. While
it does not meet the official standard of 0.04 m3/m3, it demonstrates a minimal margin of
error. The error values of AMSR-2 products in the first group are predominantly distributed
around 0.12 m3/m3. The error rates in southeastern Heilongjiang and northwest Jilin are
comparatively lower than those observed in other regions. The potential explanation is
that AMSR-2 observes regions unaffected by vegetation [42]. The error in the soil moisture
value is minimal. In the subsequent set of Figure 9, the total error exhibited by the ESA
CCI P product is comparatively lower than that of the SMAP and AMSR-2 products. More-
over, the standard deviation of error within the cultivated region is less than 0.04 m3/m3.
The standard deviation of errors in the SMAP product is lower compared to that of the
AMSR-2 product. Consequently, more precise soil moisture monitoring values are achieved
in cultivated areas with reduced errors. In the second group, the standard deviation of
errors in SMAP products is predominantly distributed within the range of 0.04–0.08 m3/m3,
with a value nearing 0.12 m3/m3 in the northeastern of Heilongjiang. The standard devia-
tion of errors in the AMSR-2 product does not significantly differ from the performance in
the initial group, primarily clustered around 0.12. Moreover, the monitoring of surface soil
moisture values demonstrates greater accuracy in flat terrains.

(a) SMAP (b) AMSR-2 (c) ESA CCI A

Figure 8. The spatial distribution map of error values for SMAP–AMSR-2–ESA CCI A.

In the second group, in Figure 9, the ESA CCI P product overall exhibits lower errors
compared to SMAP and AMSR-2 products, with error standard deviations in cultivated



Atmosphere 2024, 15, 441 14 of 21

lands dipping below 0.04 m3/m3. The SMAP product maintains a lower error standard
deviation than that of AMSR-2, achieving more accurate soil moisture values in agricultural
areas. Within this second set, the error standard deviations for the SMAP product are
generally between 0.04 and 0.08 m3/m3, with areas in the northeastern part of Heilongjiang
approaching 0.12 m3/m3. The performance of the AMSR-2 product in this group does not
significantly deviate from the first, with most values clustered around 0.12 m3/m3, yet it
achieves more accurate soil moisture measurements in plain areas.

(a) SMAP (b) AMSR-2 (c) ESA CCI P

Figure 9. The spatial distribution map of error values for SMAP–AMSR-2–ESA CCI P.

Figure 10. Landform distribution map of the Northeast Three Provinces region.
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4.3. Analysis of Fusion Results

The fusion weight of the soil moisture product is determined based on the standard
deviation of the error, illustrated in Figures 11 and 12 for the fusion weights of the SMAP–
AMSR-2–ESA CCI A and SMAP–AMSR-2–ESA CCI P products. In Figure 11, it is evident
that the weight of the SMAP product surpasses that of the AMSR-2 and ESA CCI A products.
This observation aligns with the lower standard deviation error of SMAP, suggesting a
more significant contribution of the SMAP product within this group of fusion products.
As illustrated in Figure 11a, the weight of the SMAP product in the initial set of TC fusion
combinations exhibits higher values in the plain cultivated land area, ranging from 0.6 to
0.8. In regions beyond flat agricultural land, the weight value remains higher compared
to the AMSR-2 products and ESA CCI A products within the corresponding category. In
Figure 11b,c, it is evident that the weight value of the AMSR-2 products is marginally
greater than that of ESA CCI A within the specified study area, with variations between
0.2 and 0.5. The ESA CCI A products make the smallest contribution in terms of weight
among this group of TC fusion products, with an overall weight ranging from 0 to 0.4.
As illustrated in Figure 12, the weight values of ESA CCI P products range from 0.4 to 0.8,
with the majority clustered around 0.5, constituting more than half of the total weight and
playing a significant role in the second category of product integration. The weight values
of SMAP products range from 0.2 to 0.7, which is slightly lower than ESA CCI P and higher
than AMSR-2 products.

Combining the weights of the two groups of fusions reveals that SMAP products
exhibit a substantial weight proportion in both groups. Moreover, the error standard
deviation of SMAP products is below 0.08 m3/m3, suggesting a relatively high level of
reliability within the study area. It can serve as a point of reference for future scientific
research as well as for applications in production and daily life. The analysis results indicate
that the accuracy of the ESA CCI P product in the study area surpasses that of the ESA
CCI A product. Additionally, this product holds the highest weight ratio within the second
group of fusion products. This study posits that the reliability of the ESA CCI P product
within the research area is credible.

(a) SMAP (b) AMSR-2 (c) ESA CCI A

Figure 11. Weight values of (a) SMAP, (b) AMSR-2, and (c) ESA CCI A products based on TC.

Figure 13 displays the SMAP, AMSR-2, ESA CCI A, ESA CCI P, and TC-1 products
resulting from the integration of the initial set of products, SMAP–AMSR-2–ESA CCI A,
and the subsequent set of products in the three northeastern provinces on 17 May 2016.
The TC-2 product produced by the SMAP–AMSR-2–ESA CCI P fusion group product
is utilized, and the correlation between the TC-1 and TC-2 products is assessed using
ground-based measured data (Figure 14). The integrated TC-1 and TC-2 products have the
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capability to adjust soil moisture values that are excessively high or low, thereby enhancing
the accuracy of soil moisture monitoring outcomes.

(a) SMAP (b) AMSR-2 (c) ESA CCI P

Figure 12. Weight values of (a) SMAP, (b) AMSR-2, and (c) ESA CCI P products based on TC.

(a) SMAP (b) AMSR-2 (c) ESA CCI A

(d) ESA CCI P (e) TC-1 (f) TC-2

Figure 13. Soil moisture data products for Northeast China on 5 June 2016.

To assess the correlation between product data and ground monitoring data, the ground
monitoring data obtained from the Dehui Farmland Soil Moisture Observation Network



Atmosphere 2024, 15, 441 17 of 21

were utilized for validation purposes. The Dehui farmland soil moisture observation site
exhibits consistent vegetation coverage, primarily consisting of corn crops, with minimal
variation in elevation and spanning an area of 36 km × 36 km. The area can serve as a testing
site for passive microwave remote sensing soil moisture products [33]. Simultaneously,
for the purpose of enhancing analysis and processing efficiency, the spatial resolution of the
aforementioned soil moisture products has been harmonized and standardized to 25 km.
Based on the pixel positions of the observation network encompassed by the soil moisture
products in the study area, the study calculated the daily average values of the station
falling within the pixel and the corresponding position data of the product.

Figure 14 depicts a scatter plot illustrating the comparison between soil moisture
products and ground-measured data. In Figure 14e,f, TC-1 and TC-2 demonstrate a good
fit with the measured data and exhibit superior characteristics compared to the SMAP,
AMSR-2, ESA CCI A, and ESA CCI P products.

(a) SMAP (b) AMSR-2 (c) ESA CCI A

(d) ESA CCI P (e) TC-1 (f) TC-2

Figure 14. A comparative analysis of remote sensing soil moisture products and ground-based
measurements.

As indicated in Table 3, the correlation coefficient (R = 0.44) between the ESA CCI P
product and the ground-measured data is relatively high. Additionally, the bias (0.033), root
mean square error (RMSE = 0.093), and unbiased root mean square error (ubRMSE = 0.087)
are all comparatively low. These results suggest that the ESA CCI P product data are
more precise within the specified study area. While the correlation coefficient between
the ESA CCI A product and the ground-measured data stands at R = 0.5, the root mean
square error (RMSE) is 0.15, and the unbiased root mean square error (ubRMSE) is 0.14.
These values suggest that the ESA CCI A product exhibits a notable level of uncertainty.
The correlation coefficient (R) of the SMAP product is 0.43, indicating a 2% decrease
compared to the ESA CCI P product. The RMSE of 0.083 and ubRMSE of 0.08 for the
SMAP product are both lower than the corresponding values for the ESA CCI P product.
This suggests that the SMAP product yields more reliable results for monitoring soil
moisture in the study area. The correlation coefficient (R = 0.17) between the AMSR-2
product and the ground-measured data suggests that there is room for improvement in the
application accuracy of the AMSR-2 product within the study area. The TC-1 product is
derived from the integration of SMAP, AMSR-2, and ESA CCI A products. The correlation
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coefficient with ground-measured data is R = 0.65, indicating a 51% increase compared to
SMAP, AMSR-2, and ESA CCI A, and a 282% increase compared to ESA CCI P. The TC-
2 product is derived from the integration of SMAP, AMSR-2, and ESA CCI P products,
with respective contributions of 23%, 48%, and 29%. The correlation coefficient with the
ground-measured data is R = 0.7, surpassing that of SMAP, AMSR-2, ESA CCI A, and ESA
CCI P. The improvements were 63%, 311%, 40%, and 59%, respectively, suggesting that
fusion techniques can significantly enhance the accuracy of the product. Furthermore,
the correlation coefficient between the TC-2 product and the ground-measured data is 7.7%
greater than that of the TC-1 product. The potential explanation for this lies in the enhanced
precision of soil moisture monitoring in the study area by the ESA CCI P product compared
to the ESA CCI A product, which exhibits a high incidence of missing values in the same
region. Consequently, the fused TC-1 product’s accuracy is compromised relative to the
TC-2 product.

Table 3. The validation results for soil moisture products.

SM Products R ∗ Bias (m3/m3) RMSE (m3/m3)
ubRMSE
(m3/m3)

SMAP 0.43 0.02 0.083 0.08
AMSR-2 0.17 0.15 0.18 0.09

ESA CCI A 0.50 −0.055 0.15 0.14
ESA CCI P 0.44 0.033 0.093 0.087

TC-1 0.65 0.024 0.056 0.051
TC-2 0.7 0.043 0.064 0.047

“*” indicates significance at the 95% confidence level.

5. Conclusions

This study employs the triple collocation (TC) method to assess the standard deviation
of errors in remote sensing soil moisture products and to investigate the uncertainty
associated with these products. The fusion weights obtained from the error standard
deviation are utilized for data fusion. Ground-measured data served as the reference
point for assessing the precision of remote sensing soil moisture products and fusion
products. This evaluation was conducted through the application of conventional statistical
assessment metrics, such as the correlation coefficient, average deviation, root mean square
error (RMSE), and unbiased root mean square error (ubRMSE). The results indicate that,
(1) Among various land use types, ESA CCI P demonstrates a relatively high average value
with moderate fluctuations. The sequence of mean values is as follows: ESA CCI P, SMAP,
AMSR-2, and ESA CCI A. It is noteworthy that there is a higher level of uncertainty in the
study area for ESA CCI A data, potentially attributed to the higher incidence of missing
data in the study area within ESA CCI A products. (2) The fusion of thermal and optical
remote sensing data results in a soil moisture product that exhibits enhanced accuracy.
A statistically significant correlation with the ground-measured data was observed at a
confidence level of 95%. The correlation coefficient between the TC-1 product derived
from the integration of SMAP, AMSR-2, and ESA CCI A products and the ground-based
measurements is 0.65. Similarly, the correlation coefficient between the TC-2 product
obtained through the fusion of SMAP, AMSR-2, and ESA CCI P products and the ground-
based measurements is also 0.65. The correlation coefficient is 0.7, and the TC-2 products
exhibit a 7.7% increase compared to the TC-1 products. The findings indicate that the
amalgamated product enhances the precision of ground soil moisture data detection and
offers a more precise benchmark for monitoring soil moisture in the research area.
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