Synoptic Analysis and Subseasonal Predictability of an Early Heatwave in the Eastern Mediterranean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Methodology
2.2.1. Definition of a Heatwave
2.2.2. Excessive Heat Factor, Temperature–Humidity Index and Universal Thermal Climate Index
2.2.3. Limited-Area WRF Simulations
2.2.4. Global S2S Reforecasts
2.2.5. Predictability Statistics and Scores
3. Results
3.1. Observational Analysis
3.2. Synoptic Analysis
3.3. S2S Prediction Ability
4. Discussion and Conclusions
- Most global forecasts demonstrated the ability to predict the temperature at 850 hPa, 14 to 21 days (S2S timescale) before the event, which is in agreement with [28]. As also presented in a previous study [17], the best models were ECMWF, KMA and NCEP which showed a good prediction ability even three to four weeks before the heatwave. The lowest prediction performance for this event was shown by the HMCR model, which is likely due to the small number of vertical levels (28) employed by this model and the fact that it was not coupled to an ocean model.
- The WRF model (25 km and 5 km) has approximately the same performance as ECMWF, KMA and NCEP, but WRF, especially WRF 5 km, was more reliable (its trendline was closer and parallel to the perfect reliability line).
- Similar to the study of [24], the WRF model, in terms of AUC and reliability, performs better than NCEP, which provides the boundary conditions to the downscaling forecasts of WRF.
- There was no substantial difference in the S2S predictability of temperature at 850 hPa when WRF 25 km and WRF 5 km were compared. Therefore, there is no systematic benefit from the dynamical downscaling of the 850 hPa temperature forecasts to a higher spatial resolution (5 km × 5 km).
- The S2S prediction ability for the maximum daily 2 m temperatures was slightly better for the WRF 5 km compared to WRF 25 km. This difference was only observed in week 3 (lead time of 15–20 days) in terms of reliability, AUC and higher (and closer to ERA5) maximum temperatures at 2 m that were forecasted by WRF 5 km.
- All models underestimated the extreme high temperatures at 850 hPa and near the surface (as far as WRF is concerned), but the ACC scores for the global models showed indications of better prediction abilities for strong temperature anomalies two to three weeks before the heatwave.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Meteorological Centre | Mon | Tue | Wed | Thu | Fri | Sat | Sun | Total |
---|---|---|---|---|---|---|---|---|
ECMWF (50) | ✓ | ✓ | 100 | |||||
UKMO (3) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 21 |
CMA (3) | ✓ | ✓ | 6 | |||||
KMA (3) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 21 |
NCEP (15) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 105 |
HMCR (19) | ✓ | 19 | ||||||
AUTH-WRF (2) | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | 14 |
References
- Changnon, S.A.; Kunkel, K.E.; Reinke, B.C. Impacts and Responses to the 1995 Heat Wave: A Call to Action. Bull. Am. Meteorol. Soc. 1996, 77, 1497–1506. [Google Scholar] [CrossRef]
- Klinenberg, E. Heat Wave: A Social Autopsy of Disaster in Chicago; University of Chicago Press: Chicago, IL, USA, 2015; ISBN 978-0-226-27621-2. [Google Scholar]
- Lowe, R.; Ballester, J.; Creswick, J.; Robine, J.-M.; Herrmann, F.R.; Rodó, X. Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves and Cold Spells in Europe. Int. J. Environ. Res. Public Health 2015, 12, 1279–1294. [Google Scholar] [CrossRef] [PubMed]
- Marx, W.; Haunschild, R.; Bornmann, L. Heat Waves: A Hot Topic in Climate Change Research. Theor. Appl. Clim. 2021, 146, 781–800. [Google Scholar] [CrossRef] [PubMed]
- Perkins, S.E. A Review on the Scientific Understanding of Heatwaves—Their Measurement, Driving Mechanisms, and Changes at the Global Scale. Atmos. Res. 2015, 164–165, 242–267. [Google Scholar] [CrossRef]
- Miller, S.; Chua, K.; Coggins, J.; Mohtadi, H. Heat Waves, Climate Change, and Economic Output. J. Eur. Econ. Assoc. 2021, 19, 2658–2694. [Google Scholar] [CrossRef]
- Mitchell, D.; Heaviside, C.; Vardoulakis, S.; Huntingford, C.; Masato, G.; Guillod, B.P.; Frumhoff, P.; Bowery, A.; Wallom, D.; Allen, M. Attributing Human Mortality during Extreme Heat Waves to Anthropogenic Climate Change. Environ. Res. Lett. 2016, 11, 074006. [Google Scholar] [CrossRef]
- O’Neill, M.S.; Ebi, K.L. Temperature Extremes and Health: Impacts of Climate Variability and Change in the United States. J. Occup. Environ. Med. 2009, 51, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Christidis, N.; Mitchell, D.; Stott, P.A. Rapidly Increasing Likelihood of Exceeding 50 °C in Parts of the Mediterranean and the Middle East Due to Human Influence. NPJ Clim. Atmos. Sci. 2023, 6, 45. [Google Scholar] [CrossRef]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, 1–4. [Google Scholar] [CrossRef]
- Zittis, G.; Hadjinicolaou, P.; Klangidou, M.; Proestos, Y.; Lelieveld, J. A Multi-Model, Multi-Scenario, and Multi-Domain Analysis of Regional Climate Projections for the Mediterranean. Reg. Environ. Chang. 2019, 19, 2621–2635. [Google Scholar] [CrossRef]
- Coppola, E.; Raffaele, F.; Giorgi, F.; Giuliani, G.; Xuejie, G.; Ciarlo, J.M.; Sines, T.R.; Torres-Alavez, J.A.; Das, S.; di Sante, F.; et al. Climate Hazard Indices Projections Based on CORDEX-CORE, CMIP5 and CMIP6 Ensemble. Clim. Dyn. 2021, 57, 1293–1383. [Google Scholar] [CrossRef]
- Georgoulias, A.K.; Akritidis, D.; Kalisoras, A.; Kapsomenakis, J.; Melas, D.; Zerefos, C.S.; Zanis, P. Climate Change Projections for Greece in the 21st Century from High-Resolution EURO-CORDEX RCM Simulations. Atmos. Res. 2022, 271, 106049. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The Quiet Revolution of Numerical Weather Prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, A.; Ruti, P.M.; Rixen, M. Progress in Subseasonal to Seasonal Prediction through a Joint Weather and Climate Community Effort. NPJ Clim. Atmos. Sci. 2018, 1, 4. [Google Scholar] [CrossRef]
- Ford, T.W.; Dirmeyer, P.A.; Benson, D.O. Evaluation of Heat Wave Forecasts Seamlessly across Subseasonal Timescales. NPJ Clim. Atmos. Sci. 2018, 1, 20. [Google Scholar] [CrossRef]
- Vitart, F.; Robertson, A.W. The Sub-Seasonal to Seasonal Prediction Project (S2S) and the Prediction of Extreme Events. NPJ Clim. Atmos. Sci. 2018, 1, 3. [Google Scholar] [CrossRef]
- Koster, R.D.; Mahanama, S.P.P.; Yamada, T.J.; Balsamo, G.; Berg, A.A.; Boisserie, M.; Dirmeyer, P.A.; Doblas-Reyes, F.J.; Drewitt, G.; Gordon, C.T.; et al. The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill. J. Hydrometeorol. 2011, 12, 805–822. [Google Scholar] [CrossRef]
- Chen, M.; Wang, W.; Kumar, A. Prediction of Monthly-Mean Temperature: The Roles of Atmospheric and Land Initial Conditions and Sea Surface Temperature. J. Clim. 2010, 23, 717–725. [Google Scholar] [CrossRef]
- White, C.J.; Carlsen, H.; Robertson, A.W.; Klein, R.J.T.; Lazo, J.K.; Kumar, A.; Vitart, F.; Coughlan de Perez, E.; Ray, A.J.; Murray, V.; et al. Potential Applications of Subseasonal-to-Seasonal (S2S) Predictions. Meteorol. Appl. 2017, 24, 315–325. [Google Scholar] [CrossRef]
- Shapiro, M.; Shukla, J.; Brunet, G.; Nobre, C.; Béland, M.; Dole, R.; Trenberth, K.; Anthes, R.; Asrar, G.; Barrie, L.; et al. An Earth-System Prediction Initiative for the Twenty-First Century. Bull. Am. Meteorol. Soc. 2010, 91, 1377–1388. [Google Scholar] [CrossRef]
- Brunet, G.; Shapiro, M.; Hoskins, B.; Moncrieff, M.; Dole, R.; Kiladis, G.N.; Kirtman, B.; Lorenc, A.; Mills, B.; Morss, R.; et al. Collaboration of the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction. Bull. Am. Meteorol. Soc. 2010, 91, 1397–1406. [Google Scholar] [CrossRef]
- Ford, T.; Dirmeyer, P. Evaluation of the Ability of S2S and NMME Models to Predict Heat Waves Following Drought Events in the United States. AGU Fall Meet. Abstr. 2016, 2016, A43O-06. [Google Scholar]
- Oh, J.; Oh, J.; Huh, M. A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea. Atmosphere 2022, 13, 2086. [Google Scholar] [CrossRef]
- Thanigachalam, A.; AchutaRao, K.; Mitra, A.K.; Ashrit, R.; Gupta, A. Extended-Range Prediction of Heatwave Events over North India: Role of Atmospheric Blocking over North Atlantic. EGU Gen. Assem. Conf. Abstr. 2020, EGU2020-750. [Google Scholar] [CrossRef]
- White, R.H.; Kornhuber, K.; Martius, O.; Wirth, V. From Atmospheric Waves to Heatwaves: A Waveguide Perspective for Understanding and Predicting Concurrent, Persistent, and Extreme Extratropical Weather. Bull. Am. Meteorol. Soc. 2022, 103, E923–E935. [Google Scholar] [CrossRef]
- Kueh, M.-T.; Lin, C.-Y. The 2018 Summer Heatwaves over Northwestern Europe and Its Extended-Range Prediction. Sci. Rep. 2020, 10, 19283. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.; Mo, R.; Vitart, F. The 2021 Western North American Heatwave and Its Subseasonal Predictions. Geophys. Res. Lett. 2022, 49, e2021GL097036. [Google Scholar] [CrossRef]
- Xie, J.; Yu, J.; Chen, H.; Hsu, P.-C. Sources of Subseasonal Prediction Skill for Heatwaves over the Yangtze River Basin Revealed from Three S2S Models. Adv. Atmos. Sci. 2020, 37, 1435–1450. [Google Scholar] [CrossRef]
- Vitart, F.; Ardilouze, C.; Bonet, A.; Brookshaw, A.; Chen, M.; Codorean, C.; Déqué, M.; Ferranti, L.; Fucile, E.; Fuentes, M.; et al. The Subseasonal to Seasonal (S2S) Prediction Project Database. Bull. Am. Meteorol. Soc. 2017, 98, 163–173. [Google Scholar] [CrossRef]
- Miloshevich, G.; Cozian, B.; Abry, P.; Borgnat, P.; Bouchet, F. Probabilistic Forecasts of Extreme Heatwaves Using Convolutional Neural Networks in a Regime of Lack of Data. Phys. Rev. Fluids 2023, 8, 040501. [Google Scholar] [CrossRef]
- Weyn, J.A.; Durran, D.R.; Caruana, R. Improving Data-Driven Global Weather Prediction Using Deep Convolutional Neural Networks on a Cubed Sphere. J. Adv. Model. Earth Syst. 2020, 12, e2020MS002109. [Google Scholar] [CrossRef]
- Drouard, M.; Pérez-Aracil, J.; Barriopedro, D.; Zaninelli, P.G.; Garrido-Perez, J.M.; Fister, D.; Salcedo-Sanz, S.; García-Herrera, R. S2S Prediction of Summer Heatwaves in the Iberian Peninsula Using Convolutional Networks. EGU Gen. Assem. Conf. Abstr. 2023, EGU23-5742. [Google Scholar]
- Lowe, R.; García-Díez, M.; Ballester, J.; Creswick, J.; Robine, J.-M.; Herrmann, F.R.; Rodó, X. Evaluation of an Early-Warning System for Heat Wave-Related Mortality in Europe: Implications for Sub-Seasonal to Seasonal Forecasting and Climate Services. Int. J. Environ. Res. Public Health 2016, 13, 206. [Google Scholar] [CrossRef] [PubMed]
- Tovar-Sánchez, A.; Sánchez-Quiles, D.; Rodríguez-Romero, A. Massive Coastal Tourism Influx to the Mediterranean Sea: The Environmental Risk of Sunscreens. Sci. Total Environ. 2019, 656, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Knorr, W.; Pytharoulis, I.; Petropoulos, G.P.; Gobron, N. Combined Use of Weather Forecasting and Satellite Remote Sensing Information for Fire Risk, Fire and Fire Impact Monitoring. Comput. Ecol. Softw. 2011, 1, 112. [Google Scholar]
- Koutsias, N.; Arianoutsou, M.; Kallimanis, A.S.; Mallinis, G.; Halley, J.M.; Dimopoulos, P. Where Did the Fires Burn in Peloponnisos, Greece the Summer of 2007? Evidence for a Synergy of Fuel and Weather. Agric. For. Meteorol. 2012, 156, 41–53. [Google Scholar] [CrossRef]
- Fader, M.; Shi, S.; Von Bloh, W.; Bondeau, A.; Cramer, W. Mediterranean Irrigation under Climate Change: More Efficient Irrigation Needed to Compensate Increases in Irrigation Water Requirements. Hydrol. Earth Syst. Sci. Discuss. 2015, 12, 8459–8504. [Google Scholar] [CrossRef]
- Khodayar Pardo, S.; Paredes-Fortuny, L. Uneven Evolution of Regional European Summer Heatwaves under Climate Change. Weather. Clim. Extrem. 2024, 43, 100648. [Google Scholar] [CrossRef]
- Domeisen, D.I.V.; Eltahir, E.A.B.; Fischer, E.M.; Knutti, R.; Perkins-Kirkpatrick, S.E.; Schär, C.; Seneviratne, S.I.; Weisheimer, A.; Wernli, H. Prediction and Projection of Heatwaves. Nat. Rev. Earth Environ. 2023, 4, 36–50. [Google Scholar] [CrossRef]
- EPA. Seasonality and Climate Change. Available online: https://www.epa.gov/climate-indicators/seasonality-and-climate-change (accessed on 15 December 2023).
- Founda, D.; Varotsos, K.V.; Pierros, F.; Giannakopoulos, C. Observed and Projected Shifts in Hot Extremes’ Season in the Eastern Mediterranean. Glob. Planet. Chang. 2019, 175, 190–200. [Google Scholar] [CrossRef]
- Founda, D.; Giannakopoulos, C. The Exceptionally Hot Summer of 2007 in Athens, Greece—A Typical Summer in the Future Climate? Glob. Planet. Chang. 2009, 67, 227–236. [Google Scholar] [CrossRef]
- Galanaki, E.; Giannaros, C.; Kotroni, V.; Lagouvardos, K.; Papavasileiou, G. Spatio-Temporal Analysis of Heatwaves Characteristics in Greece from 1950 to 2020. Climate 2023, 11, 5. [Google Scholar] [CrossRef]
- Matzarakis, A.; Nastos, P.T. Human-Biometeorological Assessment of Heat Waves in Athens. Theor. Appl. Climatol. 2011, 105, 99–106. [Google Scholar] [CrossRef]
- Heat-Waves: Risks and Responses. Available online: https://www.who.int/publications-detail-redirect/9789289010948 (accessed on 9 August 2023).
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.-T.; Chuang, H.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; He, X.; Corcoran, J.; Qiu, S.; Wang, X. Heatwave-Induced Human Health Risk Assessment in Megacities Based on Heat Stress-Social Vulnerability-Human Exposure Framework. Landsc. Urban Plan. 2020, 203, 103907. [Google Scholar] [CrossRef]
- Napoli, C.D.; Pappenberger, F.; Cloke, H.L. Verification of Heat Stress Thresholds for a Health-Based Heat-Wave Definition. J. Appl. Meteorol. Climatol. 2019, 58, 1177–1194. [Google Scholar] [CrossRef]
- Hahn, G.L. Dynamic Responses of Cattle to Thermal Heat Loads. J. Anim. Sci. 1999, 77, 10–20. [Google Scholar] [CrossRef]
- Vitali, A.; Felici, A.; Esposito, S.; Bernabucci, U.; Bertocchi, L.; Maresca, C.; Nardone, A.; Lacetera, N. The Effect of Heat Waves on Dairy Cow Mortality. J. Dairy Sci. 2015, 98, 4572–4579. [Google Scholar] [CrossRef]
- Yılmaz, M.; Kara, Y.; Çulpan, H.C.; Can, G.; Toros, H. Detection and Regional Analysis of Heatwave Characteristics in İstanbul. Sustain. Cities Soc. 2023, 97, 104789. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Mead, N.E.; Willett, K.M.; Parker, D.E. Analysis of Heat Stress in UK Dairy Cattle and Impact on Milk Yields. Environ. Res. Lett. 2014, 9, 064006. [Google Scholar] [CrossRef]
- Russo, S.; Dosio, A.; Graversen, R.G.; Sillmann, J.; Carrao, H.; Dunbar, M.B.; Singleton, A.; Montagna, P.; Barbola, P.; Vogt, J.V. Magnitude of Extreme Heat Waves in Present Climate and Their Projection in a Warming World. J. Geophys. Res. Atmos. 2014, 119, 12500–12512. [Google Scholar] [CrossRef]
- Raymond, C.; Matthews, T.; Horton, R.M. The Emergence of Heat and Humidity Too Severe for Human Tolerance. Sci. Adv. 2020, 6, eaaw1838. [Google Scholar] [CrossRef] [PubMed]
- Schoen, C. A New Empirical Model of the Temperature–Humidity Index. J. Appl. Meteorol. Climatol. 2005, 44, 1413–1420. [Google Scholar] [CrossRef]
- Steadman, R.G. The Assessment of Sultriness. Part I: A Temperature-Humidity Index Based on Human Physiology and Clothing Science. J. Appl. Meteorol. Climatol. 1979, 18, 861–873. [Google Scholar] [CrossRef]
- Nairn, J.R.; Fawcett, R.J.B. The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity. Int. J. Environ. Res. Public Health 2015, 12, 227–253. [Google Scholar] [CrossRef]
- Karacostas, T.S.; Downing, T.E. Heat Wave Events in a Changing Climate. In Climate Change and Extreme Events: Altered Risk, Socio-Economic Impacts and Policy Responses; Institute for Environmental Studies: Amsterdam, The Netherlands, 1996; pp. 139–156. [Google Scholar]
- Tolika, K. Assessing Heat Waves over Greece Using the Excess Heat Factor (EHF). Climate 2019, 7, 9. [Google Scholar] [CrossRef]
- Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why Another Thermal Index? Int. J. Biometeorol. 2012, 56, 421–428. [Google Scholar] [CrossRef]
- Hatvani-Kovacs, G.; Belusko, M.; Pockett, J.; Boland, J. Can the Excess Heat Factor Indicate Heatwave-Related Morbidity? A Case Study in Adelaide, South Australia. EcoHealth 2016, 13, 100–110. [Google Scholar] [CrossRef]
- Langlois, N.; Herbst, J.; Mason, K.; Nairn, J.; Byard, R.W. Using the Excess Heat Factor (EHF) to Predict the Risk of Heat Related Deaths. J. Forensic Leg. Med. 2013, 20, 408–411. [Google Scholar] [CrossRef] [PubMed]
- Varghese, B.M.; Hansen, A.; Nitschke, M.; Nairn, J.; Hanson-Easey, S.; Bi, P.; Pisaniello, D. Heatwave and Work-Related Injuries and Illnesses in Adelaide, Australia: A Case-Crossover Analysis Using the Excess Heat Factor (EHF) as a Universal Heatwave Index. Int. Arch. Occup. Environ. Health 2019, 92, 263–272. [Google Scholar] [CrossRef] [PubMed]
- Nairn, J.; Ostendorf, B.; Bi, P. Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index. Int. J. Environ. Res. Public Health 2018, 15, 2494. [Google Scholar] [CrossRef]
- Piticar, A.; Croitoru, A.-E.; Ciupertea, F.-A.; Harpa, G.-V. Recent Changes in Heat Waves and Cold Waves Detected Based on Excess Heat Factor and Excess Cold Factor in Romania. Int. J. Climatol. 2018, 38, 1777–1793. [Google Scholar] [CrossRef]
- Schlatter, T.W. Temperature-Humidity Index. In Climatology; Encyclopedia of Earth Science; Springer: Boston, MA, USA, 1987; pp. 837–838. [Google Scholar]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Gogoașe-Nistoran, D.-E.; Antohe, D.-M.; Opriș, I.; Ionescu, C.-S. A Method to Analyse Urban Heatwaves. Case Study—Bucharest City (Romania). E3S Web. Conf. 2021, 286, 04004. [Google Scholar] [CrossRef]
- Bröde, P.; Fiala, D.; Błażejczyk, K.; Holmér, I.; Jendritzky, G.; Kampmann, B.; Tinz, B.; Havenith, G. Deriving the Operational Procedure for the Universal Thermal Climate Index (UTCI). Int. J. Biometeorol. 2012, 56, 481–494. [Google Scholar] [CrossRef] [PubMed]
- Jendritzky, G. The Universal Thermal Climate Index for the Thermo-Physiologically Significant Assessment of the Atmospheric Environment. In Proceedings of the 3rd Symposium Urban Climatology, Davis, CA, USA, 15 August 2000; pp. 9–13. [Google Scholar]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.; et al. A Description of the Advanced Research WRF Model Version 4.1. NCAR Tech. Note 2019. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather. Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A Scale and Aerosol Aware Stochastic Convective Parameterization for Weather and Air Quality Modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative Forcing by Long-Lived Greenhouse Gases: Calculations with the AER Radiative Transfer Models. J. Geophys. Res. Atmos. 2008, 113, 1–8. [Google Scholar] [CrossRef]
- Janjić, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather. Rev. 1994, 122, 927–945. [Google Scholar] [CrossRef]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and Verification of the Unified NOAH Land Surface Model in the WRF Model. In Proceedings of the 20th Conference on Weather Analysis and Forecasting/16th Conference on Numerical Weather Prediction, Seattle, WA, USA, 14 January 2004; Volume 1115, pp. 2165–2170. [Google Scholar]
- Monin, A.S.; Obukhov, A.M. Basic Laws of Turbulent Mixing in the Surface Layer of the Atmosphere. Contrib. Geophys. Inst. Acad. Sci. USSR 1954, 151, e187. [Google Scholar]
- Miyakoda, K.; Hembree, G.D.; Strickler, R.F.; Shulman, I. Cumulative Results of Extended Forecast Experiments I. Model Performance for Winter Cases. Mon. Weather. Rev. 1972, 100, 836–855. [Google Scholar] [CrossRef]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cantabrigian, MA, USA, 2011; ISBN 978-0-12-385022-5. [Google Scholar]
- Marden, J.I. Positions and QQ Plots. Stat. Sci. 2004, 19, 606–614. [Google Scholar] [CrossRef]
- Fan, J.; Upadhye, S.; Worster, A. Understanding Receiver Operating Characteristic (ROC) Curves. Can. J. Emerg. Med. 2006, 8, 19–20. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.; Murphy, A.H. The Attributes Diagram A Geometrical Framework for Assessing the Quality of Probability Forecasts. Int. J. Forecast. 1986, 2, 285–293. [Google Scholar] [CrossRef]
- Mason, I. A Model for Assessment of Weather Forecasts. Aust. Meteor. Mag. 1982, 30, 291–303. [Google Scholar]
- Jolliffe, I.T.; Stephenson, D.B. Forecast Verification: A Practitioner’s Guide in Atmospheric Science; John Wiley & Sons: Hoboken, NJ, USA, 2012; ISBN 978-1-119-96107-9. [Google Scholar]
- Ferro, C.A.T.; Stephenson, D.B. Extremal Dependence Indices: Improved Verification Measures for Deterministic Forecasts of Rare Binary Events. Weather. Forecast. 2011, 26, 699–713. [Google Scholar] [CrossRef]
- Stein, A.F.; Draxler, R.R.; Rolph, G.D.; Stunder, B.J.B.; Cohen, M.D.; Ngan, F. NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bull. Am. Meteorol. Soc. 2015, 96, 2059–2077. [Google Scholar] [CrossRef]
- Mitropoulos, D.; Pytharoulis, I.; Zanis, P.; Anagnostopoulou, C. Subseasonal-to-Seasonal Predictability Assessment of an Early Heat Wave in the Eastern Mediterranean in May 2020. Environ. Sci. Proc. 2023, 26, 42. [Google Scholar] [CrossRef]
- Tolika, K.; Maheras, P.; Pytharoulis, I.; Anagnostopoulou, C. The Anomalous Low and High Temperatures of 2012 over Greece—An Explanation from a Meteorological and Climatological Perspective. Nat. Hazards Earth Syst. Sci. 2014, 14, 501–507. [Google Scholar] [CrossRef]
- Tolika, K.; Pytharoulis, I.; Maheras, P. The Anomalous High Temperatures of November 2010 over Greece: Meteorological and Climatological Aspects. Nat. Hazards Earth Syst. Sci. 2011, 11, 2705–2714. [Google Scholar] [CrossRef]
- Brikas, D.P.; Karacostas, T.S.; Pennas, P.J.; Flocas, A.A. The Role of the Subtropical Jet Stream during Heat Wave Events over North-Central Greece. Meteorol. Atmos. Phys. 2006, 94, 219–233. [Google Scholar] [CrossRef]
- Fischer, E.M.; Seneviratne, S.I.; Vidale, P.L.; Lüthi, D.; Schär, C. Soil Moisture–Atmosphere Interactions during the 2003 European Summer Heat Wave. J. Clim. 2007, 20, 5081–5099. [Google Scholar] [CrossRef]
- Herold, N.; Kala, J.; Alexander, L.V. The Influence of Soil Moisture Deficits on Australian Heatwaves. Environ. Res. Lett. 2016, 11, 064003. [Google Scholar] [CrossRef]
- Stéfanon, M.; Drobinski, P.; D’Andrea, F.; Lebeaupin-Brossier, C.; Bastin, S. Soil Moisture-Temperature Feedbacks at Meso-Scale during Summer Heat Waves over Western Europe. Clim. Dyn. 2014, 42, 1309–1324. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Chen, L. Reduced Soil Moisture Contributes to More Intense and More Frequent Heat Waves in Northern China. Adv. Atmos. Sci. 2015, 32, 1197–1207. [Google Scholar] [CrossRef]
- Lorenz, R.; Jaeger, E.B.; Seneviratne, S.I. Persistence of Heat Waves and Its Link to Soil Moisture Memory. Geophys. Res. Lett. 2010, 37, 1–5. [Google Scholar] [CrossRef]
- Hauser, M.; Orth, R.; Seneviratne, S.I. Role of Soil Moisture versus Recent Climate Change for the 2010 Heat Wave in Western Russia. Geophys. Res. Lett. 2016, 43, 2819–2826. [Google Scholar] [CrossRef]
- Hirschi, M.; Seneviratne, S.I.; Alexandrov, V.; Boberg, F.; Boroneant, C.; Christensen, O.B.; Formayer, H.; Orlowsky, B.; Stepanek, P. Observational Evidence for Soil-Moisture Impact on Hot Extremes in Southeastern Europe. Nature Geosci. 2011, 4, 17–21. [Google Scholar] [CrossRef]
- García-Herrera, R.; Díaz, J.; Trigo, R.M.; Luterbacher, J.; Fischer, E.M. A Review of the European Summer Heat Wave of 2003. Crit. Rev. Environ. Sci. Technol. 2010, 40, 267–306. [Google Scholar] [CrossRef]
- Dong, L.; Mitra, C.; Greer, S.; Burt, E. The Dynamical Linkage of Atmospheric Blocking to Drought, Heatwave and Urban Heat Island in Southeastern US: A Multi-Scale Case Study. Atmosphere 2018, 9, 33. [Google Scholar] [CrossRef]
- Dole, R.; Hoerling, M.; Perlwitz, J.; Eischeid, J.; Pegion, P.; Zhang, T.; Quan, X.-W.; Xu, T.; Murray, D. Was There a Basis for Anticipating the 2010 Russian Heat Wave? Geophys. Res. Lett. 2011, 38, 1–5. [Google Scholar] [CrossRef]
- Neal, E.; Huang, C.S.Y.; Nakamura, N. The 2021 Pacific Northwest Heat Wave and Associated Blocking: Meteorology and the Role of an Upstream Cyclone as a Diabatic Source of Wave Activity. Geophys. Res. Lett. 2022, 49, e2021GL097699. [Google Scholar] [CrossRef]
- Miralles, D.G.; Teuling, A.J.; van Heerwaarden, C.C.; Vilà-Guerau de Arellano, J. Mega-Heatwave Temperatures Due to Combined Soil Desiccation and Atmospheric Heat Accumulation. Nature Geosci. 2014, 7, 345–349. [Google Scholar] [CrossRef]
- Feudale, L.; Shukla, J. Role of Mediterranean SST in Enhancing the European Heat Wave of Summer 2003. Geophys. Res. Lett. 2007, 34, 1–4. [Google Scholar] [CrossRef]
- Mass, C. The Uncoordinated Giant II: Why U.S. Operational Numerical Weather Prediction Is Still Lagging and How to Fix It. Bull. Am. Meteorol. Soc. 2023, 104, E851–E871. [Google Scholar] [CrossRef]
- Marzban, C. The ROC Curve and the Area under It as Performance Measures. Weather. Forecast. 2004, 19, 1106–1114. [Google Scholar] [CrossRef]
- Murphy, J.M. The Impact of Ensemble Forecasts on Predictability. Q. J. R. Meteorol. Soc. 1988, 114, 463–493. [Google Scholar] [CrossRef]
- Kumar, A.; Chen, M. Inherent Predictability, Requirements on the Ensemble Size, and Complementarity. Mon. Weather. Rev. 2015, 143, 3192–3203. [Google Scholar] [CrossRef]
- Branković, Č.; Palmer, T.N. Atmospheric Seasonal Predictability and Estimates of Ensemble Size. Mon. Weather. Rev. 1997, 125, 859–874. [Google Scholar] [CrossRef]
- Hartmann, H.C.; Pagano, T.C.; Sorooshian, S.; Bales, R. CONFIDENCE BUILDERS: Evaluating Seasonal Climate Forecasts from User Perspectives. Bull. Am. Meteorol. Soc. 2002, 83, 683–698. [Google Scholar] [CrossRef]
Name | Centre(s) | Grid Spacing | Temporal Resolution | |
---|---|---|---|---|
WRF Forecasts | WRF | AUTH * forecasts forced by NCEP CFSv.2 |
| 12 h (00 and 12 UTC) |
S2S Forecasts and Reforecasts | S2S Database | ECMWF *, UKMO, CMA, KMA, NCEP, HMCR | Different native resolutions—archived at 1.5° (S2S database) |
|
Reanalysis | ERA5 ERA5-Land | ECMWF | 0.25° 0.1° | Hourly |
Climatic Parameters and Heat Indices | Weather Stations | NOA ** and NCDC | Pinpoint observations | Daily |
Meteorological Centre | Maximum Lead Time | Native Spatial Resolution | Model Top Level | Reforecast Period | Reforecast Ensemble Size |
---|---|---|---|---|---|
ECMWF | 46 days | 32 km~0.29° | 0.01 hPa | Past 20 years | 11 |
UKMO | 60 days | 60 km~0.54° | 85 km | 1993–2016 | 7 |
CMA | 60 days | 90 km~0.8° | 0.1 hPa | Past 15 years | 4 |
KMA | 60 days | 60 km~0.54° | 85 km | 1991–2010 | 3 |
NCEP | 44 days | 100 km~0.9° | 0.02 hPa | 1999–2010 | 4 |
HMCR | 44 days | 100 km~0.9° | 5 hPa | 1985–2010 | 10 |
WRF | |
Input Data | CFS (NCEP) 1° × 1° |
Domain 1 (Europe–N. Africa–N. Atlantic) | 25 km × 25 km |
Domain 2 (Greece) | 5 km × 5 km |
Model Top Level | 2 hPa~39 km |
Vertical Levels (Surface to model top) | 53 |
Frequency of Output Data | Three hours |
Update Frequency of Sea Surface Temperatures | Six hours from NCEP S2S forecast data |
Forecast Horizon | Until 31 May 2020 |
Physical Parameters | |
Microphysics | Thompson [75] (option 8 of WRF) |
Cumulus Convection | Grell–Freitas [76] (option 3) |
Shortwave/Longwave Radiation | Rapid Radiative Transfer Model for GCMs (RRTMG) [77] (option 4) |
Planetary Boundary Layer | Mellor–Yamada–Janjic [78] (option 2) |
Land Surface | Noah Land Surface Model [79] (option 2) |
Surface Layer | Eta [78,80] (option 2) |
Athens * | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
EHF (Station) > 0 °C2 | 136.7 °C2 | |||||||||||||
EHF (ERA5) > 0 °C2 | 114.8 °C2 | |||||||||||||
EHF (ERA5-Land) > 0 °C2 | 99 °C2 | |||||||||||||
THI (ERA5) > 70 °F | 75.4 °F | |||||||||||||
UTCI (ERA5) > 32 °C | 41.7 °C | |||||||||||||
T2max > T2max95 (Station) | Above Thres | 37.8 °C | ||||||||||||
T2max > T2max95 (ERA5) | Below Thres | 39.7 °C | ||||||||||||
T2max > T2max95 (ERA5-L.) | Max. Value | 34.5 °C | ||||||||||||
Thessaloniki * | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
EHF (Station) > 0 °C2 | 62.7 °C2 | |||||||||||||
EHF (ERA5) > 0 °C2 | 62.3 °C2 | |||||||||||||
EHF (ERA5-Land) > 0 °C2 | 64.1 °C2 | |||||||||||||
THI (ERA5) > 70 °F | 78.4 °F | |||||||||||||
UTCI (ERA5) > 32 °C | 36.6 °C | |||||||||||||
T2max > T2max95 (Station) | 36 °C | |||||||||||||
T2max > T2max95 (ERA5) | 33.1 °C | |||||||||||||
T2max > T2max95 (ERA5-L.) | 31.8 °C | |||||||||||||
Heraklion * | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 |
EHF (Station) > 0 °C2 | 126.3 °C2 | |||||||||||||
EHF (ERA5) > 0 °C2 | 146 °C2 | |||||||||||||
EHF (ERA5-Land) > 0 °C2 | 147 °C2 | |||||||||||||
THI (ERA5) > 70 °F | 76.8 °F | |||||||||||||
UTCI (ERA5) > 32 °C | 42 °C | |||||||||||||
T2max > T2max95 (Station) | 38.5 °C | |||||||||||||
T2max > T2max95 (ERA5) | 39.2 °C | |||||||||||||
T2max > T2max95 (ERA5-L.) | 38.1 °C |
9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | |
ECMWF Unperturbed | 0.39 | −0.15 | 0.44 | −0.51 | 0.49 | 0.70 | |||||||||||||||
ECMWF Perturbed | 0.23 | 0.53 | −0.30 | 0.72 | 0.69 | 0.78 | |||||||||||||||
UKMO Unperturbed | 0.33 | 0.30 | 0.84 | ||||||||||||||||||
UKMO Perturbed | 0.10 | 0.10 | 0.59 | ||||||||||||||||||
CMA Unperturbed | 0.78 | −0.21 | −0.85 | −0.86 | −0.88 | ||||||||||||||||
CMA Perturbed | −0.25 | −0.80 | −0.10 | 0.00 | −0.30 | ||||||||||||||||
KMA Unperturbed | −0.71 | −0.21 | 0.72 | ||||||||||||||||||
KMA Perturbed | 0.49 | −0.30 | 0.32 | ||||||||||||||||||
NCEP Unperturbed | 0.40 | −0.48 | 0.30 | 0.56 | −0.32 | −0.45 | 0.32 | 0.57 | −0.51 | 0.31 | −0.66 | −0.40 | −0.17 | −0.10 | −0.40 | 0.10 | −0.26 | 0.82 | 0.81 | 0.32 | 0.14 |
NCEP Perturbed | −0.21 | 0.40 | −0.48 | 0.33 | 0.83 | 0.52 | −0.85 | 0.23 | −0.76 | 0.80 | 0.32 | −0.21 | −0.75 | −0.21 | −0.04 | 0.58 | 0.81 | 0.83 | 0.60 | 0.70 | 0.68 |
HMCR Unperturbed | −0.58 | 0.00 | 0.14 | ||||||||||||||||||
HMCR Perturbed | −0.30 | 0.09 | −0.17 | ||||||||||||||||||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mitropoulos, D.; Pytharoulis, I.; Zanis, P.; Anagnostopoulou, C. Synoptic Analysis and Subseasonal Predictability of an Early Heatwave in the Eastern Mediterranean. Atmosphere 2024, 15, 442. https://doi.org/10.3390/atmos15040442
Mitropoulos D, Pytharoulis I, Zanis P, Anagnostopoulou C. Synoptic Analysis and Subseasonal Predictability of an Early Heatwave in the Eastern Mediterranean. Atmosphere. 2024; 15(4):442. https://doi.org/10.3390/atmos15040442
Chicago/Turabian StyleMitropoulos, Dimitris, Ioannis Pytharoulis, Prodromos Zanis, and Christina Anagnostopoulou. 2024. "Synoptic Analysis and Subseasonal Predictability of an Early Heatwave in the Eastern Mediterranean" Atmosphere 15, no. 4: 442. https://doi.org/10.3390/atmos15040442
APA StyleMitropoulos, D., Pytharoulis, I., Zanis, P., & Anagnostopoulou, C. (2024). Synoptic Analysis and Subseasonal Predictability of an Early Heatwave in the Eastern Mediterranean. Atmosphere, 15(4), 442. https://doi.org/10.3390/atmos15040442