Smartphone-Based Color Evaluation of Passive Samplers for Gases: A Review
Abstract
:1. Introduction
2. Remarks on Terminology of Passive Sampling Devices and Conceptional Distinction of Analytical Evaluation Procedures
3. Presentation of Selected Publications
3.1. Passive Samplers of Type-1
3.2. Passive Samplers of Type-2
4. Conclusions, Critical Remarks, and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harper, M.; Purnell, C.J. Diffusive sampling—A review. Am. Ind. Hyg. Assoc. J. 1987, 48, 214–218. [Google Scholar] [CrossRef]
- Brown, H. Monitoring the ambient environment with diffusive samplers: Theory and practical considerations. J. Environ. Monit. 2000, 2, 1–9. [Google Scholar] [CrossRef]
- Klanova, J.; Kohoutek, J.; Hamplová, L.; Urbanová, P.; Holoubek, I. Passive air sampler as a tool for long-term air pollution monitoring: Part 1: Performance assessment for seasonal and spatial variations. Environ. Pollut. 2006, 144, 393–405. [Google Scholar] [CrossRef]
- Greenwood, R.; Mills, G.; Vrana, B. (Eds.) Passive sampling techniques in environmental monitoring. In Wilson & Wilson’s Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2007; Volume 48. [Google Scholar]
- Kot-Wasik, A.; Zabiegała, B.; Urbanowicz, M.; Dominiak, E.; Wasik, A.; Namieśnik, J. Advances in passive sampling in environmental studies. Anal. Chim. Acta 2007, 602, 141–163. [Google Scholar] [CrossRef]
- Seethapathy, S.; Gorecki, T.; Li, X. Passive sampling in environmental analysis. J. Chrom. A 2008, 1184, 234–253. [Google Scholar] [CrossRef]
- Pienaar, J.J.; Beukes, J.P.; van Zyl, P.G.; Lehmann, C.M.B.; Aherne, J. Passive diffusion sampling devices for monitoring ambient air concentrations. In Comprehensive Analytical Chemistry; Forbes, P.B.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2015; Volume 70. [Google Scholar] [CrossRef]
- Buzica, D.; Gerboles, M.; Amantini, L. Laboratory and Field Inter-Comparison of NO2 Diffusive Samplers; European Commission, Institute for Environment and Sustainability, Emissions and Health Unit: Ispra, Italy, 2003. [Google Scholar] [CrossRef]
- Hafkenscheid, T.; Fromage-Mariette, A.; Goelen, E.; Hangartner, M.; Pfeffer, U.; Plaisance, H.; de Santis, F.; Saunders, K.; Swaans, W.; Tang, Y.S.; et al. Review of the Application of Diffusive Samplers in the European Union for the Monitoring of Nitrogen Dioxide in Ambient Air; European Commission Joint Research Centre Institute for Environment and Sustainability: Ispra, Italy, 2009; ISBN 978-92-79-12052-7. [Google Scholar]
- US-EPA. Passive Samplers for Investigations of Air Quality: Method Description, Implementation, and Comparison to Alternative Sampling Methods. Available online: https://clu-in.org/download/issues/vi/VI-passive-samplers-600-R-14-434.pdf (accessed on 15 February 2024).
- World Meteorological Organization—Global Atmospheric Watch (GAW). Report on Passive Samplers for Atmospheric Chemistry Measurements and Their Role in GAW, Collection(s) and Series: WMO/TD-No. 829; GAW Report-No. 122. 1998. Available online: https://library.wmo.int/doc_num.php?explnum_id=9671 (accessed on 15 February 2024).
- Stevenson, K.; Bush, T.; Mooney, D. Five years of nitrogen dioxide measurements with diffusion tube samplers at over 1000 sites in the UK. Atmos. Environ. 2001, 35, 281–287. [Google Scholar] [CrossRef]
- Hagenbjörk-Gustafsson, A. Validation of Diffusive Samplers for Nitrogen Oxides and Applications in Various Environments. Doctoral Dissertation, Umeå University, Umeå, Sweden, 2014. [Google Scholar]
- Wilson, S.M.; Serre, M.L. Use of passive samplers to measure atmospheric ammonia levels in a high-density industrial hog farm area of eastern North Carolina. Atmos. Environ. 2007, 41, 6074–6086. [Google Scholar] [CrossRef]
- Adon, M.; Galy-Lacaux, C.; Yoboué, V.; Delon, C.; Lacaux, J.P.; Castera, P.; Gardrat, E.; Pienaar, J.; Al Ourabi, H.; Laouali, D.; et al. Long term measurements of sulfur dioxide, nitrogen dioxide, ammonia, nitric acid and ozone in Africa using passive samplers. Atmos. Chem. Phys. 2010, 10, 7467–7487. [Google Scholar] [CrossRef]
- Caballero, S.; Esclapez, R.; Galindo, N.; Mantilla, E.; Crespo, J. Use of a passive sampling network for the determination of urban NO2 spatiotemporal variations. Atmos. Environ. 2012, 63, 148–155. [Google Scholar] [CrossRef]
- Yao, X.H.; Zhang, L. Analysis of passive-sampler monitored atmospheric ammonia at 74 sites across southern Ontario, Canada. Biogeosciences 2013, 10, 7913–7925. [Google Scholar] [CrossRef]
- Höhne, A.; Schulte, R.A.A.; Kulicke, M.; Huynh, T.-T.; Telgmann, M.; Frenzel, W.; Held, A. Assessing the spatial distribution of NO2 and influencing factors in urban areas—Passive sampling in a citizen science project in Berlin, Germany. Atmosphere 2023, 14, 360. [Google Scholar] [CrossRef]
- Krupa, S.V.; Legge, A.H. Passive sampling of ambient, gaseous air pollutants: An assessment from an ecological perspective. Environ. Pollut. 2000, 107, 31–45. [Google Scholar] [CrossRef]
- Heal, M.R.; O’Donoghue, M.A.; Agius, R.M.; Beverland, I.J. Application of passive diffusion tubes to short-term indoor and personal exposure measurement of NO2. Environ. Int. 1999, 25, 3–8. [Google Scholar] [CrossRef]
- Yu, C.; Morandi, M.; Weisel, C. Passive dosimeters for nitrogen dioxide in personal/indoor air sampling: A review. J. Expo. Sci. Environ. Epidemiol. 2008, 18, 441–451. [Google Scholar] [CrossRef]
- Tomkins, F.C.; Goldsmith, R.L. A new personal dosimeter for the monitoring of industrial pollutants. Am. Ind. Hyg. Assoc. J. 1977, 38, 371–377. [Google Scholar] [CrossRef]
- London, J. The observed distribution of atmospheric ozone and its variations. In Ozone in the Free Atmosphere; Whitten, R.C., Prasad, S.S., Eds.; Van Nostrand Reinhold Company: New York, NY, USA, 1985; pp. 11–65. [Google Scholar]
- McBridge, S.; Edwards, J.D. Lead Acetate Test for Hydrogen Sulfide Gas, Department of Commerce, Technologic Papers of the Bureau of Standards, No. 41. 1914. Available online: https://nvlpubs.nist.gov/nistpubs/nbstechnologic/nbstechnologicpaperT41.pdf (accessed on 15 February 2024).
- Baasch, D. Die Methoden und die Meßtechnik der quantitativen SO2-Bestimmung in der Luft. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz 1973, 80, 81–87. [Google Scholar]
- Thomas, F.W.; Davidson, C.M. Monitoring sulfur dioxide with lead peroxide cylinders. J. Air Pollut. Control Assoc. 1961, 11, 24–27. [Google Scholar] [CrossRef]
- Huey, N.A. The lead dioxide estimation of sulfur dioxide pollution. J. Air Pollut. Control Assoc. 1968, 18, 610. [Google Scholar] [CrossRef]
- Verein Deutsche Ingenieure. Determination of the Immission Rate by Means of the IRMA-Method; VDI 3794, Part 1; Beuth: Berlin, Germany, 1982. [Google Scholar]
- Palmes, E.D.; Gunnison, A.F.; DiMattio, J.; Tomczyk, C. Personal sampler for nitrogen dioxide. Am. Ind. Hyg. Assoc. J. 1976, 37, 570–577. [Google Scholar] [CrossRef]
- Reiszner, K.D.; West, P.W. Collection and determination of sulfur dioxide incorporating permeation and West-Gaeke procedure. Environ. Sci. Technol. 1973, 7, 526–532. [Google Scholar] [CrossRef]
- Kring, E.V.; Lautenberger, W.J.; Baker, W.B.; Douglas, J.J.; Hoffman, R.A. A new passive colorimetric air monitoring badge system for ammonia, sulfur dioxide and nitrogen dioxide. Am. Ind. Hyg. Assoc. J. 1980, 42, 373–381. [Google Scholar] [CrossRef]
- Yanagisawa, Y.; Nishimura, H. A badge-type personal sampler for measurement of personal exposure to NO2 and NO in ambient air. Environ. Int. 1982, 8, 235–242. [Google Scholar] [CrossRef]
- Bamberger, R.L.; Esposito, G.G.; Jacobs, B.W.; Podolak, G.E.; Mazur, J.F. A new personal sampler for organic vapors. Am. Ind. Hyg. Assoc. J. 1978, 39, 701–708. [Google Scholar] [CrossRef] [PubMed]
- Delcourt, J.; Sandino, J.P. Performance assessment of a passive sampler in industrial atmospheres. Int. Arch. Occup. Environ. Health 2000, 74, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Kasper, A.; Puxbaum, H. “Badge-type” passive sampler for monitoring ambient ammonia concentrations. Fresenius’ J. Anal. Chem. 1994, 350, 448–453. [Google Scholar] [CrossRef]
- De Santis, F.; Allegrini, I.; Fazio, M.C.; Pasella, D.; Piredda, R. Development of a passive sampling technique for the determination of nitrogen dioxide and sulphur dioxide in ambient air. Anal. Chim. Acta 1979, 346, 127–134. [Google Scholar] [CrossRef]
- Zhou, J.; Smith, S. Measurement of ozone concentrations in ambient air using a badge-type passive monitor. J. Air Waste Manag. Assoc. 1997, 47, 697–703. [Google Scholar] [CrossRef]
- West, P.W. Passive sampling of ambient and work place atmospheres by means of gas permeation. In Environmental Pollutants. Environmental Science Research; Toribara, T.Y., Coleman, J.R., Dahneke, B.E., Feldman, I., Eds.; Springer: Boston, MA, USA, 1978; Volume 13. [Google Scholar] [CrossRef]
- Zhou, X.; Lee, S.; Xu, Z.; Yoon, J. Recent progress on the development of chemosensors for gases. Chem. Rev. 2015, 115, 7944–8000. [Google Scholar] [CrossRef] [PubMed]
- Azzouz, A.; Vikrant, K.; Kim, K.-H.; Ballesteros, E.; Rhadfi, T.; Malik, A.K. Advances in colorimetric and optical sensing for gaseous volatile organic compounds. TrAC Trends Anal. Chem. 2019, 118, 502–516. [Google Scholar] [CrossRef]
- Sun, L.; Rotaru, A.; Robeyns, K.; Garcia, Y. A colorimetric sensor for the highly selective, ultra-sensitive, and rapid detection of volatile organic compounds and hazardous gases. Ind. Eng. Chem. Res. 2021, 60, 8788–8798. [Google Scholar] [CrossRef]
- Kawamura, K.; Miyazawa, K.; Kent, L. The past, present and future in tube- and paper-based colorimetric gas detectors. Appl. Chem. 2021, 1, 14–40. [Google Scholar] [CrossRef]
- Silva-Neto, H.A.; Sousa, L.R.; Coltro, W.K.T. Colorimetric paper-based analytical devices. In Paper-Based Analytical Devices for Chemical Analysis and Diagnostics; de Araujo, W.R., Paixão, T.L.R.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar] [CrossRef]
- Ishiguro, G.; Kawabe, T.; Nakano, N. Development of a detection tablet for a portable NO2 monitoring system. Anal. Sci. 2006, 22, 789–791. [Google Scholar] [CrossRef] [PubMed]
- Maruo, Y.Y.; Nakamura, J. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies. Anal. Chim. Acta 2011, 702, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Conrad, S.C.; Held, A.; Frenzel, W. Simplified procedures for evaluation of passive samplers for nitrogen dioxide. Talanta Open 2022, 5, 100096. [Google Scholar] [CrossRef]
- Hill, R.H.; Fraser, D.A. Passive dosimetry using detector tubes. Am. Ind. Hyg. Assoc. J. 2008, 41, 721–729. [Google Scholar] [CrossRef] [PubMed]
- McConnaughey, P.W.; McKee, E.S.; Pritts, I.M. Passive colorimetric dosimeter tubes for ammonia, carbon monoxide, carbon dioxide, hydrogen sulfide, nitrogen dioxide and sulfur dioxide. Am. Ind. Hyg. Assoc. J. 1985, 46, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Evergreen Medical Services, Gas Monitoring Badges. Available online: https://www.evergreenmedical.com/services/environmental-monitoring/gas-monitoring-badges (accessed on 15 February 2024).
- SKC Ltd. Dorset, Passive Samplers. Available online: https://www.skcltd.com/products2/passive-samplers.html; https://www.skcinc.com/categories/color-dosimeter-tubes (accessed on 15 February 2024).
- ChemSee—Appealing Products, Inc. Toxic Gas Dosimeters. Available online: https://www.chemsee.com/commercial/toxic-gas/available-products/dosimeters/ (accessed on 15 February 2024).
- Namieśnik, J.; Zabiegała, B.; Kot-Wasik, A.; Partyka, M.; Wasik, A. Passive sampling and/or extraction techniques in environmental analysis: A review. Anal. Bioanal. Chem. 2005, 381, 279–301. [Google Scholar] [CrossRef] [PubMed]
- Cape, J.N. The use of passive diffusion tubes for measuring concentrations of nitrogen dioxide in air. Crit. Rev. Anal. Chem. 2009, 39, 289–310. [Google Scholar] [CrossRef]
- Fan, Y.; Li, J.; Guo, Y.; Xie, L.; Zhang, G. Digital image colorimetry on smartphone for chemical analysis: A review. Measurement 2021, 171, 108829. [Google Scholar] [CrossRef]
- Grudpan, K.; Kolev, S.D.; Lapanantnopakhun, S.; McKelvie, I.D.; Wongwilai, W. Applications of everyday IT and communications devices in modern analytical chemistry: A review. Talanta 2015, 136, 84–94. [Google Scholar] [CrossRef]
- Capitán-Vallvey, L.F.; López-Ruiz, N.; Martínez-Olmos, A.; Erenas, M.M.; Palma, A.J. Recent developments in computer vision-based analytical chemistry: A tutorial review. Anal. Chim. Acta 2015, 899, 23–56. [Google Scholar] [CrossRef] [PubMed]
- Pohanka, M. Small camera as a handheld colorimetric tool in the analytical chemistry. Chem. Pap. 2017, 71, 1553–1561. [Google Scholar] [CrossRef]
- Kiliç, V.; Horzum, N.; Solmaz, M.E. From sophisticated analysis to colorimetric determination: Smartphone spectrometers and colorimetry. In Color Detection; Zeng, L.-W., Cao, S.-L., Eds.; Intech Open: London, UK, 2020. [Google Scholar] [CrossRef]
- Rezazadeh, M.; Seidi, S.; Lid, M.; Pedersen-Bjergaard, S.; Yamini, Y. The modern role of smartphones in analytical chemistry. Trends Anal. Chem. 2019, 118, 548–555. [Google Scholar] [CrossRef]
- Soares, S.; Fernandes, G.M.; Rocha, F.R.P. Smartphone-based digital images in analytical chemistry: Why, when and how to use. TrAC Trends Anal. Chem. 2023, 168, 117284. [Google Scholar] [CrossRef]
- Rose, V.E.; Perkins, J.L. Passive dosimetry—State of the art review. Am. Ind. Hyg. Assoc. J. 1982, 43, 605–621. [Google Scholar] [CrossRef]
- Namiesnik, J.; Gorecki, T.; Kozlowski, E.; Torres, L.; Mathieu, J. Passive dosimeters—An approach to atmospheric pollutant analysis. Sci. Total Environ. 1984, 38, 225–258. [Google Scholar] [CrossRef]
- Hulanicki, A.; Glab, S.; Ingman, F. Chemical sensors: Definitions and classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. Chemical sensors—Survey and trends. Fresenius’ J. Anal. Chem. 1990, 337, 522–527. [Google Scholar] [CrossRef]
- Sefton, M.V.; Kostas, A.V.; Lombardi, C. Stain length passive dosimeters. Am. Ind. Hyg. Assoc. J. 1982, 43, 820–824. [Google Scholar] [CrossRef]
- Nash, D.G.; Leith, D. Use of passive diffusion tubes to monitor air pollutants. J. Air Waste Manag. Assoc. 2010, 60, 204–209. [Google Scholar] [CrossRef]
- Sen, A.; Albarella, J.D.; Carey, J.R.; Kim, P.; McNamara, W.B. Low-cost colorimetric sensor for the quantitative detection of gaseous hydrogen sulfide. Sens. Actuators B Chem. 2008, 134, 234–237. [Google Scholar] [CrossRef]
- Fàbrega, C.; Fernández, L.; Monereo, O.; Pons-Balagué, A.S.; Xuriguera, E.; Casals, O.; Waag, A.; Prades, J.D. Highly specific and wide range NO2 sensor with color readout. ACS Sens. 2017, 2, 1612–1618. [Google Scholar] [CrossRef] [PubMed]
- Greenawald, L.A.; Boss, G.R.; Snyder, J.L.; Reeder, A.; Bell, S. Development of an inexpensive RGB color sensor for the detection of hydrogen cyanide gas. ACS Sens. 2017, 2, 1458–1466. [Google Scholar] [CrossRef] [PubMed]
- Duffy, E.; Huttunen, K.; Lahnavik, R.; Smeaton, A.F.; Morrin, A. Visualising household air pollution: Colorimetric sensor arrays for monitoring volatile organic compounds indoors. PLoS ONE 2021, 16, e0258281. [Google Scholar] [CrossRef] [PubMed]
- Roales, J.; Moscoso, F.G.; Vargas, A.P.; Lopes-Costa, T.; Pedrosa, J.M. Colorimetric gas detection using molecular devices and an RGB sensor. Chemosensors 2023, 11, 92. [Google Scholar] [CrossRef]
- Cerrato-Alvarez, M.; Frutos-Puerto, S.; Miró-Rodríguez, C.; Pinilla-Gil, E. Measurement of tropospheric ozone by digital image analysis of indigotrisulfonate-impregnated passive sampling pads using a smartphone camera. Microchem. J. 2020, 154, 104535. [Google Scholar] [CrossRef]
- de França Souza, P.A.; Neto, J.L.A.; Cardoso, A.A. A simple technique based on digital images for determination of nitrogen dioxide in ambient air. Water Air Soil Pollut. 2021, 232, 72. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; He, X.; Kiwfo, K.; Held, A.; Frenzel, W. Optimization of smartphone-based evaluation of tube-type passive samplers using atmospheric nitrogen dioxide determination as an example. Talanta Open, 2024; submitted. [Google Scholar]
- Pla-Tolós, J.; Moliner-Martínez, Y.; Verdú-Andrés, J.; Casanova-Chafer, J.; Molins-Legua, C.; Campíns-Falcó, P. New optical paper sensor for in situ measurement of hydrogen sulphide in waters and atmospheres. Talanta 2016, 156–157, 79–86. [Google Scholar] [CrossRef]
- Sekine, Y.; Katori, R.; Tsuda, Y.; Kitahara, T. Colorimetric monitoring of formaldehyde in indoor environment using built-in camera on mobile phone. Environ. Technol. 2016, 37, 1647–1655. [Google Scholar] [CrossRef]
- de Barros Santos, E.; Moher, P.; Ferlin, S.; Fostier, A.H.; Mazali, I.O.; Telmer, K.; Brolo, A.K. Proof of concept for a passive sampler for monitoring of gaseous elemental mercury in artisanal gold mining. Sci. Rep. 2017, 7, 16513. [Google Scholar] [CrossRef] [PubMed]
- Salcedo, A.R.M.; Sevilla, F.B. Colorimetric determination of mercury vapor using smartphone camera-based imaging. Instrum. Sci. Technol. 2018, 46, 450–462. [Google Scholar] [CrossRef]
- Park, D.-H.; Heo, J.-M.; Jeong, W.; Yoo, Y.H.; Park, B.J.; Kim, J.-M. Smartphone-based VOC sensor using colorimetric polydiacetylenes. ACS Appl. Mater. Interfaces 2018, 10, 5014–5021. [Google Scholar] [CrossRef] [PubMed]
- Vargas, A.P.; Gámez, F.; Roales, J.; Lopes-Costa, T.; Pedrosa, J.M. A paper-based ultrasensitive optical sensor for the selective detection of H2S vapors. Chemosensors 2021, 9, 40. [Google Scholar] [CrossRef]
- Devi, P.; Singh, J.P. Highly sensitive colorimetric gas sensor based on indium oxide nanostructures for H2S detection at room temperature. IEEE Sens. J. 2021, 21, 18512–18518. [Google Scholar] [CrossRef]
- Khachornsakkul, K.; Hung, K.-H.; Chang, J.-J.; Dungchai, W.; Chen, C.-H. A rapid and highly sensitive paper-based colorimetric device for the on-site screening of ammonia gas. Analyst 2021, 146, 2919–2927. [Google Scholar] [CrossRef] [PubMed]
- Engel, L.; Benito-Altamirano, I.; Tarantik, K.R.; Pannek, C.; Dold, M.; Prades, J.G.; Wöllenstein, J. Printed sensor labels for colorimetric detection of ammonia, formaldehyde and hydrogen sulfide from the ambient air. Sens. Actuators B Chem. 2021, 330, 129281. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, J.; Zhang, L.; Nie, W.; Liu, J.; Yang, J.; Li, Y. Copper (II)-azo complex modified hydrogel: A sensitive colorimetric sensor for visual detection of H2S gas. Sens. Actuators B Chem. 2023, 376, 132968. [Google Scholar] [CrossRef]
- Choi, H.; Seo, J.H.; Weon, S. Visualizing indoor ozone exposures via o-dianisidine based colorimetric passive sampler. J. Hazard. Mater. 2023, 460, 132510. [Google Scholar] [CrossRef]
- De Craemer, S.; Vercauteren, J.; Fierens, F.; Lefebvre, W.; Meysman, F.J.R. Using large-scale NO2 data from citizen science for air-quality compliance and policy support. Environ. Sci. Technol. 2020, 54, 11070–11078. [Google Scholar] [CrossRef]
- Shi, C. Smartphone-Basierte und Kolorimetrische Auswertung von Passivsammlern für die Bestimmung von Stickstoffdioxid. Bachelor’s Thesis, Technische Universität Berlin, Berlin, Germany, 2022. [Google Scholar]
- He, X. Smartphone-Basierte Auswertung von Passivsammlern für die Bestimmung von Stickstoffdioxid und Anwendung der Methode zu Ermittlung der NO2-Belastung in Berlin. Master’s Thesis, Technische Universität Berlin, Berlin, Germany, 2024. [Google Scholar]
Year | Analyte Gas | Sorbent Fabrication | Sampler Geometry | Reagent | Detection Condition | Photographing Condition | Evaluation Software | Color System | Working Range | LOD | Application | Ref. |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Type-1 | ||||||||||||
2020 | Ozone | pre-immobilized coloring reagent on sorbent | commercial passive samplers (Owaga badge) | Indigo | direct detection of fading of blue color | photo box | Corel DRAW X5 and Matlab software (version R2015a) | RGB | 11–109 μg m−3 (exposure time not given) | 3.3 μg m−3 | Suburban environment | [72] |
2021 | Nitrogen dioxide | immobilized trapping reagent into sorbent pad | lab-made passive sampler (tube type) | Griess-Saltzman reagent | adding Griess-Saltzman gel | photo box | ImageJ (version 1.52e) | RGB | not given | 32 µg m−3 (24-h exposure) | No real sample analysis | [73] |
2023 | Nitrogen dioxide | immobilized trapping reagent into sorbent pad | lab-made passive sampler (Palmes tube) | Griess-Saltzman reagent | adding pre-mix reagents (Griess-Saltzman) | without a photo box (ambient light) | ImageJ (version 1.53a) | RGB | 10–120 µg m−3 (14 days exposure) | 5 µg m−3 (14 days exposure) | Urban environment | [74] |
Type-2 | ||||||||||||
2016 | Hydrogen sulphide | pre-immobilized coloring reagent on sorbent | no sampler holder | N, N-Dimethyl-p-phenylenediamine, and Fe (III) | direct detection of methylene blue product | photo box | GIMP software (version 2.8) | CMYK | 5–50 ppm (30 min exposure) | 0.12 ppm (30 min exposure) | Sewage treatment plant | [75] |
2016 | Formaldehyde | pre-immobilized coloring reagent agar sorbent | no sampler holder | 4-Amino-3-hydrazino-5-mercapto-1,2,4-triazole, ZnO, KIO4 | direct detection of color change | without a photo box (ambient light) | Adobe photoshop (not given) | RGB | 20–85 µg m−3 (24-h exposure) | 11 µg m−3 (24-h exposure) | Indoor air (formaldehyde emission flux) | [76] |
2017 | Mercury vapor | pre-impregnated Corning porous Vycor glass reagent on sorbent | no sampler holder | Nanogold | direct detection of color change | not given | not given | RGB | uptake 0.06–0.6 μg | not given | Personal sampling of miners | [77] |
2018 | Mercury vapor | pre-immobilized cuprous iodide/polystyrene composite on sorbent | no sampler holder | Cuprous iodide/poly-styrene composite | direct detection of color change | photo box | ImageJ (version 1.49 hr) | RGB | 61–270 μg m−3 (30 min exposure) | 16 μg m−3 (30 min exposure) | No application reported | [78] |
2018 | VOC | pre-immobilized reagent on sorbent | cap of vial | Polydiacetylenes | direct detection of color change | not given | Adobe photoshop/Android Studio app (not given). | RGB | not given | not given | Identification of VOC | [79] |
2021 | Hydrogen sulphide | pre-immobilized reagent on sorbent | encapsulated between two glass plates | Arene-derivative dye | direct detection of color change | without a photo box (ambient light) | Adobe photoshop (version CS6) | CIELAB, RGB, HSB and CMYK | 0–1.5 ppm (15 min exposure) | not given | No application reported | [80] |
2021 | Hydrogen sulphide | pre-immobilized coloring reagent on the surface of the glass substrate | no sampler holder | Indium oxide nanostructure | direct detection of color change | photo box | Colorimetric Detector application (not given) | Optical darkness ratio | not given | 10 ppm (30 sec exposure) | No application reported | [81] |
2021 | Ammonia | pre-immobilized reagent on paper sorbent | not given | Methyl orange | direct detection of color change | photo box | ColorAssist app (version 2.1, FTLapps) | HIS | 6.0–54.0 ppb (3 min exposure) | 2 ppb (exposure time not given) | Chicken farm | [82] |
2021 | Ammonia, formaldehyde, hydrogen sulfide | pre-immobilized (screen-printing) reagent on polymer-coated paper | no sampler holder | Bromocresol green, fluorescent dye (primary amine), cupper azo complex | direct detection of color change | photo box | Time-lapse app (not given) | RGB | not given | not given | No application reported | [83] |
2023 | Hydrogen sulphide | pre-immobilized reagent on agarose hydrogel | The cap of a centrifuge tube | Copper (II)-azo complex | direct detection of color change | not given | ColorAssist app (not given) | RGB | 1–50 ppb (10 min exposure) | 43.34 ppb (10 min exposure) | Exhaled breath | [84] |
2023 | Ozone | pre-immobilized reagent on polydimethyl siloxane sheet | no sampler holder | o-Dianisidine | direct detection of color change | photo box | ImageJ (not given) | RGB | 0–200 ppb (8 h exposure) | 1.79 ppb (8 h exposure) | Printing store, rubber molding press factory, residential house | [85] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiwfo, K.; Grudpan, K.; Held, A.; Frenzel, W. Smartphone-Based Color Evaluation of Passive Samplers for Gases: A Review. Atmosphere 2024, 15, 451. https://doi.org/10.3390/atmos15040451
Kiwfo K, Grudpan K, Held A, Frenzel W. Smartphone-Based Color Evaluation of Passive Samplers for Gases: A Review. Atmosphere. 2024; 15(4):451. https://doi.org/10.3390/atmos15040451
Chicago/Turabian StyleKiwfo, Kanokwan, Kate Grudpan, Andreas Held, and Wolfgang Frenzel. 2024. "Smartphone-Based Color Evaluation of Passive Samplers for Gases: A Review" Atmosphere 15, no. 4: 451. https://doi.org/10.3390/atmos15040451
APA StyleKiwfo, K., Grudpan, K., Held, A., & Frenzel, W. (2024). Smartphone-Based Color Evaluation of Passive Samplers for Gases: A Review. Atmosphere, 15(4), 451. https://doi.org/10.3390/atmos15040451