Predicting Summer Precipitation Anomalies in the Yunnan–Guizhou Plateau Using Spring Sea-Surface Temperature Anomalies
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
2.2.1. Network Construction
2.2.2. Model Prediction Method
- (1)
- MLR model
- (2)
- RR and LR models
2.2.3. Methods for Evaluating Predictive Skills
3. Results
3.1. Selection of Key SSTA Regions
3.2. Prediction Result Analysis
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, M.; Lin, Y.; Chan, T.O.; Yao, Y.J.; Zheng, G.; Luo, S.Z.; Zhang, L.; Liu, D.P. Geologic factors leadingly drawing the macroecological pattern of rocky desertification in southwest China. Sci. Rep. 2020, 10, 1440. [Google Scholar] [CrossRef]
- Wang, S.; Fu, Z.Y.; Chen, H.S.; Nie, Y.P.; Xu, Q.X. Mechanisms of surface and subsurface runoff generation in subtropical soil-epikarst systems: Implications of rainfall simulation experiments on karst slope. J. Hydrol. 2020, 580, 124370. [Google Scholar] [CrossRef]
- Yang, R.W.; Zhang, W.K.; Gui, S.; Tao, Y.; Cao, J. Rainy season precipitation variation in the Mekong River basin and its relationship to the Indian and East Asian summer monsoons. Clim. Dyn. 2019, 529, 5691–5708. [Google Scholar] [CrossRef]
- Zhou, L.L.; Xu, G.R.; Xiao, Y.J.; Wan, R.; Wang, J.X.; Leng, L. Vertical structures of abrupt heavy rainfall events over southwest China with complex topography detected by dual-frequency precipitation radar of global precipitation measurement satellite. Int. J. Climatol. 2022, 42, 7628–7647. [Google Scholar] [CrossRef]
- Qin, N.X.; Chen, X.; Fu, G.B.; Zhai, J.Q.; Xue, X.W. Precipitation and temperature trends for the Southwest China: 1960–2007. Hydrol. Process. 2010, 24, 3733–3744. [Google Scholar] [CrossRef]
- Shi, P.; Wu, M.; Qu, S.M.; Jiang, P.; Qiao, X.Y.; Chen, X.; Zhou, M.; Zhang, Z.C. Spatial Distribution and Temporal Trends in Precipitation Concentration Indices for the Southwest China. Water Resour. Manag. 2015, 29, 3941–3955. [Google Scholar] [CrossRef]
- Nie, Y.B.; Sun, J.Q. Causes of Interannual Variability of Summer Precipitation Intraseasonal Oscillation Intensity over Southwest China. J. Clim. 2022, 35, 3705–3723. [Google Scholar] [CrossRef]
- Lu, C.H.; Huang, D.G.; Chen, B.; Bai, Y.Y. Causes of the Interannual Variation of Summer Precipitation in Eastern Southwest China. Atmosphere 2023, 14, 1230. [Google Scholar] [CrossRef]
- Duan, W.S.; Song, L.Y.; Li, Y.; Mao, J.Y. Modulation of PDO on the predictability of the interannual variability of early summer rainfall over south China. J. Geophys. Res. Atmos. 2013, 118, 13008–13021. [Google Scholar] [CrossRef]
- Song, L.Y.; Duan, W.S.; Li, Y.; Mao, J.Y. A timescale decomposed threshold regression downscaling approach to forecasting South China early summer rainfall. Adv. Atmos. Sci. 2016, 33, 1071–1084. [Google Scholar] [CrossRef]
- Jin, Y.S.; Liu, Z.Y.; Duan, W.S. The Different Relationships between the ENSO Spring Persistence Barrier and Predictability Barrier. J. Clim. 2022, 35, 6207–6218. [Google Scholar] [CrossRef]
- Li, B.S.; Ding, R.Q.; Qin, J.H.; Zhou, L.; Hu, S.; Li, J.P. Interdecadal changes in potential predictability of the summer monsoon in East Asia and South Asia. Atmos. Sci. Lett. 2019, 20, e890. [Google Scholar] [CrossRef]
- Zhang, C. Moisture sources for precipitation in Southwest China in summer and the changes during the extreme droughts of 2006 and 2011. J. Hydrol. 2020, 591, 125333. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Feng, G.L.; Dogar, M.M.; Huang, G. The possible physical mechanism for the EAP-SR co-action. Clim. Dyn. 2018, 51, 1499–1516. [Google Scholar] [CrossRef]
- Qiao, P.J.; Liu, W.Q.; Zhang, Y.W.; Gong, Z.Q. Complex Networks Reveal Teleconnections between the Global SST and Rainfall in Southwest China. Atmosphere 2021, 12, 101. [Google Scholar] [CrossRef]
- Jiang, X.W.; Shu, J.C.; Wang, X.; Huang, X.M.; Wu, Q. The roles of convection over the Western Maritime Continent and the Philippine Sea in interannual variability of summer rainfall over Southwest China. J. Hydrometeorol. 2017, 18, 2043–2056. [Google Scholar] [CrossRef]
- Ha, Y.; Zhong, Z.; Hu, Y.J.; Zhu, Y.M.; Zang, Z.L.; Zhang, Y.; Yao, Y.; Sun, Y. Differences between decadal decreases of boreal summer rainfall in southeastern and southwestern China in the early 2000s. Clim. Dyn. 2019, 52, 3533–3552. [Google Scholar] [CrossRef]
- Wen, D.Y.; Zhang, J.W.; Cao, J. Impact of the Asian-Pacific Oscillation on the interannual variability of rainy season onset date in Southwest China. Clim. Dyn. 2022, 59, 701–713. [Google Scholar] [CrossRef]
- Li, J.P.; Chou, J.F. Advances in Nonlinear Atmospheric Dynamics. Chin. J. Atmos. Sci. 2003, 27, 653–673. (In Chinese) [Google Scholar]
- Fu, Z.T.; Li, Q.L.; Yuan, N.M.; Yao, Z.H. Multi-scale entropy analysis of vertical wind variation series in atmospheric boundary-layer. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 83–91. [Google Scholar] [CrossRef]
- He, W.P.; Xie, X.Q.; Mei, Y.; Wan, S.Q.; Zhao, S.S. Decreasing predictability as a precursor indicator for abrupt climate change. Clim. Dyn. 2021, 56, 3899–3908. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Hutin, C.; Feng, G.L. Methods for Improving the Prediction Skill of Summer Precipitation over East Asia-West Pacific. Weather Forecast. 2016, 31, 1381–1392. [Google Scholar] [CrossRef]
- Yu, Z.P.; Chu, P.; Schroeder, T. Predictive Skills of Seasonal to Annual Rainfall Variations in the U.S. Affiliated Pacific Islands: Canonical Correlation Analysis and Multivariate Principal Component Regression Approaches. J. Clim. 1997, 12, 2586–2599. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, W.K.; Tao, Y. Thermal Configuration of the Bay of Bengal-Tibetan Plateau Region and the May Precipitation Anomaly in Yunnan. J. Clim. 2017, 30, 9303–9319. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Dogar, M.M.; Qiao, S.B.; Hu, P.; Feng, G.L. Assessment and correction of BCC_CSM’s performance in capturing leading modes of summer precipitation over North Asia. Int. J. Climatol. 2017, 38, 2202–2214. [Google Scholar] [CrossRef]
- Ding, R.Q.; Tseng, Y.H.; Di Lorenzo, E.; Shi, L.; Li, J.P.; Yu, J.Y.; Wang, C.Z.; Sun, C.; Luo, J.J.; Ha, K.J.; et al. Multi-year El Niño events tied to the North Pacific Oscillation. Nat. Commun. 2022, 13, 3871. [Google Scholar] [CrossRef]
- Duan, W.S.; Feng, R.; Yang, L.C.; Jiang, L. A new approach to data assimilation for numerical weather forecasting and climate prediction. J. Appl. Anal. Comput. 2022, 12, 1007–1021. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Roebber, P.J. The architecture of the climate network. Physica A 2004, 333, 497–504. [Google Scholar] [CrossRef]
- Zhang, Y.W.; Fan, J.F.; Li, X.T.; Liu, W.Q.; Chen, X.S. Evolution mechanism of principal modes in climate dynamics. New J. Phys. 2020, 22, 093077. [Google Scholar] [CrossRef]
- Boers, N.; Bookhagen, B.; Barbosa, H.M.J.; Marwan, N.; Kurths, J.; Marengo, J.A. Prediction of extreme floods in the eastern Central Andes based on a complex networks approach. Nat. Commun. 2014, 5, 5199. [Google Scholar] [CrossRef]
- Wolf, F.; Ozturk, U.; Cheung, K.; Donner, R.V. Spatiotemporal patterns of synchronous heavy rainfall events in East Asia during the Baiu season. Earth Syst. Dyn. 2021, 12, 295–312. [Google Scholar] [CrossRef]
- Ling, F.H.; Luo, J.J.; Li, Y.; Tang, T.; Bai, L.; Ouyang, W.L.; Yamagata, T. Multi-task machine learning improves multi-seasonal prediction of the Indian Ocean Dipole. Nat. Commun. 2022, 13, 7681. [Google Scholar] [CrossRef]
- Chen, G.X.; Wang, W.C. Short-Term Precipitation Prediction for Contiguous United States Using Deep Learning. Geophys. Res. Lett. 2022, 49, e2022GL097904. [Google Scholar] [CrossRef]
- Davenport, F.V.; Diffenbaugh, N.S. Using Machine Learning to Analyze Physical Causes of Climate Change: A Case Study of U.S. Midwest Extreme Precipitation. Geophys. Res. Lett. 2021, 48, e2021GL093787. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.L.; Wu, X.S.; Xu, C.Y.; Guo, S.L.; Chen, X.H.; Zhang, Z.X. Robust Meteorological Drought Prediction Using Antecedent SST Fluctuations and Machine Learning. Water Resour. Res. 2021, 57, e2020WR029413. [Google Scholar] [CrossRef]
- Fan, J.F.; Meng, J.; Ludescher, J.; Li, Z.Y.; Surovyatkina, E.; Chen, X.S.; Kurths, J.; Schellnhuber, H.J. Network-Based Approach and Climate Change Benefits for Forecasting the Amount of Indian Monsoon Rainfall. J. Clim. 2022, 35, 1009–1020. [Google Scholar]
- CMA Climate Change Centre. Blue Book on Climate Change in China (2022); Science Press: Beijing, China, 2022. [Google Scholar]
- Pang, Y.S.; Zhou, B.; Zhu, C.W.; Qin, N.S.; Yang, Y. Multifactor Descending Dimension Method of Objective Forecast for Summer Precipitation in Southwest China. Chin. J. Atmos. Sci. 2021, 45, 471–486. (In Chinese) [Google Scholar]
- Peña, M.; Vázquez-Patiño, A.; Zhiña, D.; Montenegro, M.; Avilés, A. Improved Rainfall Prediction through Nonlinear Autoregressive Network with Exogenous Variables: A Case Study in Andes High Mountain Region. Adv. Meteorol. 2020, 2020, 1828319. [Google Scholar] [CrossRef]
- Tibshirani, R. Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B Methodol. 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Bai, H.M.; Gong, Z.Q.; Sun, G.Q.; Li, L. Data-Driven Artificial Intelligence Model of Meteorological Elements Influence on Vegetation Coverage in North China. Remote Sens. 2022, 14, 1307. [Google Scholar] [CrossRef]
- Zheng, R.; Liu, J.H.M.; Ma, Z.F. Application of an interannual increment method for summer precipitation forecast in Southwest China. Acta Meteorol. Sin. 2019, 77, 489–496. [Google Scholar]
- Li, T.; Qiao, C.W.; Wang, L.A.; Chen, J.; Ren, Y.J. An Algorithm for Precipitation Correction in Flood Season Based on Dendritic Neural Network. Front. Plant Sci. 2022, 13, 862558. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Lu, C.H.; Xu, H.M.; Cheng, B.Y. Anomalies of sea surface temperature in Pacific-Indian Ocean and effects on drought/flood in summer over eastern of Southwest China. J. Trop. Meteorol. 2012, 28, 145–156. [Google Scholar]
- Qiao, P.J.; Gong, Z.Q.; Liu, W.Q.; Zhang, Y.W.; Feng, G.L.; Dong, W.J. Extreme rainfall synchronization network between Southwest China and Asia-Pacific region. Clim. Dyn. 2021, 57, 3207–3221. [Google Scholar] [CrossRef]
- Mujumdar, M.; Sooraj, K.P.; Krishnan, R.; Preethi, B.; Joshi, M.K.; Varikoden, H.; Singh, B.B.; Rajeevan, M. Anomalous convective activity over sub-tropical east Pacific during 2015 and associated boreal summer monsoon teleconnections. Clim. Dyn. 2017, 48, 4081–4091. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuo, Y.; Qiao, P.; Liu, W.; Li, Q. Predicting Summer Precipitation Anomalies in the Yunnan–Guizhou Plateau Using Spring Sea-Surface Temperature Anomalies. Atmosphere 2024, 15, 453. https://doi.org/10.3390/atmos15040453
Tuo Y, Qiao P, Liu W, Li Q. Predicting Summer Precipitation Anomalies in the Yunnan–Guizhou Plateau Using Spring Sea-Surface Temperature Anomalies. Atmosphere. 2024; 15(4):453. https://doi.org/10.3390/atmos15040453
Chicago/Turabian StyleTuo, Ya, Panjie Qiao, Wenqi Liu, and Qingquan Li. 2024. "Predicting Summer Precipitation Anomalies in the Yunnan–Guizhou Plateau Using Spring Sea-Surface Temperature Anomalies" Atmosphere 15, no. 4: 453. https://doi.org/10.3390/atmos15040453
APA StyleTuo, Y., Qiao, P., Liu, W., & Li, Q. (2024). Predicting Summer Precipitation Anomalies in the Yunnan–Guizhou Plateau Using Spring Sea-Surface Temperature Anomalies. Atmosphere, 15(4), 453. https://doi.org/10.3390/atmos15040453