Monitoring Snow Cover in Typical Forested Areas Using a Multi-Spectral Feature Fusion Approach
Abstract
:1. Introduction
2. Research Area and Data
2.1. Research Area
2.2. Data
2.2.1. Landsat 8 OLI Data
2.2.2. MODIS Products
2.2.3. IGBP Land Cover Type Data
3. Methodology
3.1. Landsat OLI Snow Cover Mapping
3.2. Snow Cover Mapping Based on Multi-Spectral Feature Fusion and Coupling
3.3. Cloud-Free Snow Cover Product Development
3.4. Accuracy Assessment
4. Results
4.1. Snow Cover Detection Based on NDFSI, NDVI, and NDSI
4.2. Results of Snow Detection
4.3. Accuracy Assessment
5. Discussion
6. Conclusions
- (1)
- NDFSI has good potential to detect snow cover in areas with forest combined with NDVI. The threshold value of NDFSI and NDVI is selected to be 0.35 and 0.25, respectively.
- (2)
- Compared with the snow cover measured by Landsat 8 OLI images, the average BIAS and FAR values of these results are 1.23 and 13.54%, which are reduced by 1.98 and 29.36%, respectively. An overall accuracy of 81.31% is reached, which is improved by 20.19%.
- (3)
- Snow monitoring based on the multi-spectral feature fusion and coupling approach has shown good snow detection performance and can effectively reduce the misjudgment rate of snow recognition in areas with forest. The snow classification scheme combining NDFSI, NDVI, and NDSI based on MODIS data used in this work is simple and very efficient in improving automatic snow cover mapping in typical forested areas of Northeast China. This makes large-scale snow detection in forested areas possible and provides support for the next step of establishing a runoff model and rationally regulating forest water resources.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hall, D.K.; Riggs, G.A. Accuracy assessment of the MODIS snow products. Hydrol. Process. 2007, 21, 1534–1547. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Zhou, Y.; Bi, X.; Sun, B.; Xiao, T.; Suo, L.; Zhang, W.; Xiao, Z.; Wang, C. The Influence of Solar Activity on Snow Cover over the Qinghai–Tibet Plateau and Its Mechanism Analysis. Atmosphere 2022, 13, 1499. [Google Scholar] [CrossRef]
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Wrzesien, M.L.; Durand, M.; Adam, J.; Lettenmaier, D.P. How much runoff originates as snow in the western United States, and how will that change in the future? Geophys. Res. Lett. 2017, 44, 6163–6172. [Google Scholar] [CrossRef]
- Bormann, K.J.; Brown, R.D.; Derksen, C.; Painter, T.H. Estimating snow-cover trends from space. Nature Clim. Chang. 2018, 8, 924–928. [Google Scholar] [CrossRef]
- Qin, Y.; Abatzoglou, J.T.; Siebert, S.; Huning, L.S.; AghaKouchak, A.; Mankin, J.S.; Hong, C.; Tong, D.; Davis, S.J.; Mueller, N.D. Agricultural risks from changing snowmelt. Nature Clim. Chang. 2020, 10, 459–465. [Google Scholar] [CrossRef]
- Foster, J.; Hall, D.; Kelly, R.; Chiu, L. Seasonal snow extent and snow mass in South America using SMMR and SSM/I passive microwave data (1979–2006). Remote Sens. Environ. 2009, 113, 291–305. [Google Scholar] [CrossRef]
- Simpson, J.; Stitt, J.; Sienko, M. Improved estimates of the areal extent of snow cover from AVHRR data. J. Hydrol. 1998, 204, 1–23. [Google Scholar] [CrossRef]
- Chang, A.; Rango, A. Algorithm Theoretical Basis Document for the AMSR-E Snow Water Equivalent Algorithm, Version 3.1; NASA Goddard Space Flight Center: Prince George’s County, MR, USA, 2000. [Google Scholar]
- Hall, D.K.; Riggs, G.A.; Salomonson, V.V.; DiGirolamo, N.E.; Bayr, K.J. MODIS snow-cover products. Remote Sens. Environ. 2002, 83, 181–194. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, P.; Zhang, L.; Yang, H.; Yang, J. Improvement of snow depth retrieval for FY3B-MWRI in China. Sci. China Earth Sci. 2014, 57, 1278–1292. [Google Scholar] [CrossRef]
- Huang, X.; Deng, J.; Ma, X.; Wang, Y.; Feng, Q.; Hao, X.; Liang, T. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China. Cryosphere 2016, 10, 2453–2463. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Liang, H.; Sun, Y.; Feng, Q.; Liang, T. Tracking snow variations in the Northern Hemisphere using multi-source remote sensing data (2000–2015). Remote Sens. 2018, 10, 136. [Google Scholar] [CrossRef]
- Gunnarsson, A.; Garðarsson, S.M.; Sveinsson, Ó.G. Icelandic snow cover characteristics derived from a gap-filled MODIS daily snow cover product. Hydrol. Earth Syst. Sci. 2019, 23, 3021–3036. [Google Scholar] [CrossRef]
- Rittger, K.; Raleigh, M.S.; Dozier, J.; Hill, A.F.; Lutz, J.A.; Painter, T.H. Canopy adjustment and improved cloud detection for remotely sensed snow cover mapping. Water Resour. Res. 2020, 56, e2019WR024914. [Google Scholar] [CrossRef]
- Metsämäki, S.J.; Anttila, S.T.; Markus, H.J.; Vepsäläinen, J.M. A feasible method for fractional snow cover mapping in boreal zone based on a reflectance model. Remote Sens. Environ. 2005, 95, 77–95. [Google Scholar] [CrossRef]
- Parajka, J.; Holko, L.; Kostka, Z.; Blöschl, G. MODIS snow cover mapping accuracy in a small mountain catchment–comparison between open and forest sites. Hydrol. Earth Syst. Sci. 2012, 16, 2365–2377. [Google Scholar] [CrossRef]
- Rittger, K.; Painter, T.H.; Dozier, J. Assessment of methods for mapping snow cover from MODIS. Adv. Water Resour. 2013, 51, 367–380. [Google Scholar] [CrossRef]
- Hall, D.K.; Foster, J.L.; Salomonson, V.V.; Klein, A.G.; Chien, J. Development of a technique to assess snow-cover mapping errors from space. IEEE Trans. Geosci. Remote Sens. 2001, 39, 432–438. [Google Scholar] [CrossRef]
- Klein, A.G.; Hall, D.K.; Riggs, G.A. Improving snow cover mapping in forests through the use of a canopy reflectance model. Hydrol. Process. 1998, 12, 1723–1744. [Google Scholar] [CrossRef]
- SAITO, A.; YAMAZAKI, T. Characteristics of spectral reflectance for vegetation ground surfaces with snow-cover; Vegetation indices and snow indices. J. Japan Soc. Hydrol. Water Resour. 1999, 12, 28–38. [Google Scholar] [CrossRef]
- Vikhamar, D.; Solberg, R. Subpixel mapping of snow cover in forests by optical remote sensing. Remote Sens. Environ. 2003, 84, 69–82. [Google Scholar] [CrossRef]
- Wang, L.; Xiao, P.; Feng, X. Retrieving snow information in typical forest zone of Tianshan mountains from multi-angle imaging spetroradiometer data. J. Remote Sens. 2012, 16, 1035–1053. [Google Scholar]
- Czyzowska-Wisniewski, E.H.; van Leeuwen, W.J.; Hirschboeck, K.K.; Marsh, S.E.; Wisniewski, W.T. Fractional snow cover estimation in complex alpine-forested environments using an artificial neural network. Remote Sens. Environ. 2015, 156, 403–417. [Google Scholar] [CrossRef]
- Wang, X.; Wang, J.; Li, H.; Hao, X. Combination of NDSI and NDFSI for snow cover mapping in a mountainous and forested region. J. Remote Sens. 2017, 21, 310–317. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Zhang, G.; Che, T.; Yan, W.; Ye, M.; Ma, N. Ground-based evaluation of MODIS snow cover product V6 across China: Implications for the selection of NDSI threshold. Sci. Total Environ. 2019, 651, 2712–2726. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, F.; Zhang, G.; Yan, W.; Li, S. Enhanced scaling effects significantly lower the ability of MODIS normalized difference snow index to estimate fractional and binary snow cover on the Tibetan plateau. J. Hydrol. 2021, 592, 125795. [Google Scholar] [CrossRef]
- Wu, Y.; Duguay, C.R.; Xu, L. Assessment of machine learning classifiers for global lake ice cover mapping from MODIS TOA reflectance data. Remote Sens. Environ. 2021, 253, 112206. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, F.; Kan, X.; Cao, H. Xinjiang fractional snow cover estimation based on multi-scale feature fusion network. Comput. Eng. 2022, 48, 288–295. [Google Scholar]
- Luo, J.; Dong, C.; Lin, K.; Chen, X.; Zhao, L.; Menzel, L. Mapping snow cover in forests using optical remote sensing, machine learning and time-lapse photography. Remote Sens. Environ. 2022, 275, 113017. [Google Scholar] [CrossRef]
- Li, X.; Cheng, G.; Jin, H.; Kang, E.; Che, T.; Jin, R.; Wu, L.; Nan, Z.; Wang, J.; Shen, Y. Cryospheric change in China. Glob. Planet. Chang. 2008, 62, 210–218. [Google Scholar] [CrossRef]
- Liang, L.; Li, L.; Liu, Q. Precipitation variability in Northeast China from 1961 to 2008. J. Hydrol. 2011, 404, 67–76. [Google Scholar] [CrossRef]
- Che, T.; Dai, L.; Zheng, X.; Li, X.; Zhao, K. Estimation of snow depth from passive microwave brightness temperature data in forest regions of northeast China. Remote Sens. Environ. 2016, 183, 334–349. [Google Scholar] [CrossRef]
- Hall, D.; Riggs, G.; Solomonson, V.; SIPS, N. MODIS/Terra Snow Cover Daily L3 Global 500 m SIN Grid; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2016. [Google Scholar]
- He, Y.; Bo, Y. A consistency analysis of MODIS MCD12Q1 and MERIS Globcover land cover datasets over China. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–6. [Google Scholar]
- Dozier, J. Spectral signature of alpine snow cover from the Landsat Thematic Mapper. Remote Sens. Environ. 1989, 28, 9–22. [Google Scholar] [CrossRef]
- Musselman, K.; Molotch, N.P.; Brooks, P.D. Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest. Hydrol. Process. 2008, 22, 2767–2776. [Google Scholar] [CrossRef]
- Lv, Z.; Pomeroy, J.W. Detecting intercepted snow on mountain needleleaf forest canopies using satellite remote sensing. Remote Sens. Environ. 2019, 231, 111222. [Google Scholar] [CrossRef]
- John, A.; Cannistra, A.F.; Yang, K.; Tan, A.; Shean, D.; Hille Ris Lambers, J.; Cristea, N. High-Resolution Snow-Covered Area Mapping in Forested Mountain Ecosystems Using PlanetScope Imagery. Remote Sens. 2022, 14, 3409. [Google Scholar] [CrossRef]
- Karnieli, A.; Agam, N.; Pinker, R.T.; Anderson, M.; Imhoff, M.L.; Gutman, G.G.; Natalya, P.; Alexander, G. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. J. Clim. 2010, 23, 618–633. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Wang, J.; Zhou, M.; Liang, T. AMSR2 snow depth downscaling algorithm based on a multifactor approach over the Tibetan Plateau, China. Remote Sens. Environ. 2019, 231, 111268. [Google Scholar] [CrossRef]
- Wang, J.; Huang, X.; Wang, Y.; Liang, T. Retrieving Snow Depth Information From AMSR2 Data for Qinghai–Tibet Plateau. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sen. 2020, 13, 752–768. [Google Scholar] [CrossRef]
- Dong, J.; Ek, M.; Hall, D.; Peters-Lidard, C.; Cosgrove, B.; Miller, J.; Riggs, G.; Xia, Y. Using air temperature to quantitatively predict the MODIS fractional snow cover retrieval errors over the continental United States. J. Hydrometeorol. 2014, 15, 551–562. [Google Scholar] [CrossRef]
- Piazzi, G.; Tanis, C.M.; Kuter, S.; Simsek, B.; Puca, S.; Toniazzo, A.; Takala, M.; Akyürek, Z.; Gabellani, S.; Arslan, A.N. Cross-country assessment of H-SAF snow products by Sentinel-2 imagery validated against in-situ observations and webcam photography. Geosciences 2019, 9, 129. [Google Scholar] [CrossRef]
- Dickerson-Lange, S.E.; Lutz, J.A.; Martin, K.A.; Raleigh, M.S.; Gersonde, R.; Lundquist, J.D. Evaluating observational methods to quantify snow duration under diverse forest canopies. Water Resour. Res. 2015, 51, 1203–1224. [Google Scholar] [CrossRef]
- Hall, D.K.; Riggs, G.A.; Foster, J.L.; Kumar, S.V. Development and evaluation of a cloud-gap-filled MODIS daily snow-cover product. Remote Sens. Environ. 2010, 114, 496–503. [Google Scholar] [CrossRef]
- Parajka, J.; Pepe, M.; Rampini, A.; Rossi, S.; Blöschl, G. A regional snow-line method for estimating snow cover from MODIS during cloud cover. J. Hydrol. 2010, 381, 203–212. [Google Scholar] [CrossRef]
- Huang, X.; Hao, X.; Feng, Q.; Wang, W.; Liang, T. A new MODIS daily cloud free snow cover mapping algorithm on the Tibetan Plateau. Sci. Cold Arid Reg. 2014, 6, 0116–0123. [Google Scholar]
Number | Path | Row | Acquisition Date | Cloud Cover (%) |
---|---|---|---|---|
S1 | 122 | 24 | 16 March 2018 | 0.55 |
S2 | 117 | 27 | 28 October 2014 | 5.17 |
S3 | 116 | 30 | 16 March 2016 | 1.61 |
S4 | 118 | 31 | 12 January 2017 | 3.68 |
S5 | 116 | 28 | 22 March 2018 | 3.98 |
Tested Image: Snow | Tested Image: Snow-Free | |
---|---|---|
Landsat 8 OLI: snow | a | b |
Landsat 8 OLI: snow-free | c | d |
Cloud-Free Snow Cover Product | Algorithm for This Study | ||||
---|---|---|---|---|---|
Landsat 8 OLI | Snow | Snow-Free | Snow | Snow-Free | |
S1 | Snow | 18843 | 3799 | 8841 | 13801 |
Snow-free | 54855 | 72655 | 12670 | 114840 | |
S3 | Snow | 18947 | 2330 | 10876 | 10401 |
Snow-free | 66612 | 46180 | 13146 | 99646 | |
S4 | Snow | 21021 | 3820 | 17677 | 7176 |
Snow-free | 46266 | 63653 | 23558 | 86349 | |
S5 | Snow | 10903 | 4986 | 8204 | 9987 |
Snow-free | 34253 | 90668 | 13635 | 108984 |
Cloud-Free Snow Cover Product/Algorithm for This Study | |||
---|---|---|---|
OA (%) | BIAS | FAR (%) | |
S1 | 61.94/82.37 | 3.25/0.95 | 43.02/9.94 |
S3 | 48.58/82.44 | 4.02/1.12 | 59.06/11.66 |
S4 | 62.83/77.19 | 2.71/1.66 | 42.10/21.43 |
S5 | 72.13/83.22 | 2.84/1.20 | 27.42/11.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, J. Monitoring Snow Cover in Typical Forested Areas Using a Multi-Spectral Feature Fusion Approach. Atmosphere 2024, 15, 513. https://doi.org/10.3390/atmos15040513
Wang Y, Wang J. Monitoring Snow Cover in Typical Forested Areas Using a Multi-Spectral Feature Fusion Approach. Atmosphere. 2024; 15(4):513. https://doi.org/10.3390/atmos15040513
Chicago/Turabian StyleWang, Yunlong, and Jianshun Wang. 2024. "Monitoring Snow Cover in Typical Forested Areas Using a Multi-Spectral Feature Fusion Approach" Atmosphere 15, no. 4: 513. https://doi.org/10.3390/atmos15040513
APA StyleWang, Y., & Wang, J. (2024). Monitoring Snow Cover in Typical Forested Areas Using a Multi-Spectral Feature Fusion Approach. Atmosphere, 15(4), 513. https://doi.org/10.3390/atmos15040513