Volcanic Glass as a Proxy for Paleotopography Suggests New Features in Late-Miocene Oregon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Preparation
2.3. TC/EA Sample Analysis
Isotope Data and Interpolation
2.4. SEM Sample Analysis
2.5. Effect of Oxidation and Surface Mineralization on Water Content in Untreated Tuff
2.6. SEM Data Analysis
Effect of Oxidation and Surface Mineralization on Water Content in Untreated Tuff
3. Results
3.1. SEM Results
3.2. TC/EA Results
4. Discussion
4.1. Effects of Oxidation and Surface Mineralization on the Passivating Layer
4.2. Effect of Magmatic Water on Volcanic Glass δD
4.3. Paleoenvironmental Interpretations
4.3.1. Lapse Rates and Elevation Estimates
4.3.2. RST Stratigraphy and Paleotopography
4.3.3. Modern Analogs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Friedman, I.; Gleason, J.; Warden, A. Ancient Climate from Deuterium Content of Water in Volcanic Glass. Clim. Chang. Cont. Isot. Rec. Am. Geophys. Union (AGU) 1993, 78, 309–319. [Google Scholar] [CrossRef]
- Cassel, E.J.; Graham, S.A.; Chamberlain, C.P. Cenozoic tectonic and topographic evolution of the northern Sierra Nevada, California, through stable isotope paleoaltimetry in volcanic glass. Geology 2009, 37, 547–550. [Google Scholar] [CrossRef]
- Saylor, J.E.; Horton, B.K. Nonuniform surface uplift of the Andean plateau revealed by deuterium isotopes in Miocene volcanic glass from southern Peru. Earth Planet. Sci. Lett. 2014, 387, 120–131. [Google Scholar] [CrossRef]
- Bershaw, J.; Cassel, E.J.; Carlson, T.B.; Streig, A.R.; Streck, M.J. Volcanic glass as a proxy for Cenozoic elevation and climate in the Cascade Mountains, Oregon, USA. J. Volcanol. Geotherm. Res. 2019, 381, 157–167. [Google Scholar] [CrossRef]
- Sundell, K.E.; Saylor, J.E.; Lapen, T.J.; Horton, B.K. Implications of variable late Cenozoic surface uplift across the Peruvian central Andes. Sci. Rep. 2019, 9, 4877. [Google Scholar] [CrossRef]
- Ross, C.S.; Smith, R.L. Water and other volatiles in volcanic glasses. Am. Miner. 1955, 40, 1071–1089. [Google Scholar]
- Friedman, I.; Gleason, J.; Sheppard, R.A.; Gude, A.J., 3rd. Deuterium Fractionation as Water Diffuses into Silicic Volcanic Ash. Clim. Chang. Cont. Isot. Rec. Am. Geophys. Union (AGU) 1993, 78, 321–323. [Google Scholar] [CrossRef]
- Cassel, E.J.; Breecker, D.O. Long-term stability of hydrogen isotope ratios in hydrated volcanic glass. Geochim. Et Cosmocimica Acta 2017, 200, 67–86. [Google Scholar] [CrossRef]
- Wells Ray, E.; Snavely Parke, D. Cenozoic Evolution of the Continental Margin of Oregon and Washington; USGS Open-File Report Open-File Report; United States Geological Survey: Reston, VA, USA, 1991.
- Retallack, G. Cenozoic Paleoclimate on Land in North America. J. Geol. 2007, 115, 271–294. [Google Scholar] [CrossRef]
- McLean, A.; Bershaw, J. Molecules to Mountains: A Multi-Proxy Investigation into Ancient Climate and Topography of the Pacific Northwest, USA. Front. Earth Sci. 2021, 9, 624961. [Google Scholar] [CrossRef]
- Priest, G.R. Volcanic and tectonic evolution of the Cascade Volcanic Arc, central Oregon. J. Geophys. Res. 1999, 95, 583–599. [Google Scholar] [CrossRef]
- Kohn, M.J.; Miselis, J.L.; Fremd, T.J. Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon. Earth Planet Sci. Lett. 2002, 204, 151–165. [Google Scholar] [CrossRef]
- Kukla, T.; Rugenstein, J.K.C.; Ibarra, D.E.; Winnick, M.J.; Stromberg, C.A.E.; Chamberlain, C.P. Drier Winters Drove Cenozoic Open Habitat Expansion in North America. AGU Adv. 2021, 3, e2021AV000566. [Google Scholar] [CrossRef]
- Streck, M.J.; Grunder, A.L. Crystallization and welding variations in a widespread ignimbrite sheet; the Rattlesnake Tuff, eastern Oregon, USA. Bull. Volcanol. 1995, 57, 151–169. [Google Scholar] [CrossRef]
- Streck, M.J.; Grunder, A.L. Temporal and crustal effects on differentiation of tholeiite to calcalkaline and ferro-trachytic suites, High Lava Plains, Oregon, USA. Geochem. Geophys. Geosyst. 2012, 13, Q0AN02. [Google Scholar] [CrossRef]
- Streck, M.J. Volcanology and Petrology of the Rattlesnake Ash-Flow Tuff; Oregon State University: Corvallis, OR, USA, 1994; 199p, Available online: https://scholar.google.com/scholar_url?url=https://ir.library.oregonstate.edu/dspace/bitstream/1957/8357/1/Streck_Martin_J.pdf&hl=en&sa=X&ei=uv0AZLXpHY7gygSPuIegDA&scisig=AAGBfm3H7vSRTN-0S2T0R-fn9ynkadNnPA&oi=scholarr (accessed on 2 March 2023).
- Freundt, A.; Wilson, C.J.N.; Carey, S.N. Ignimbrites and Block-and-Ash Flow Deposits. In Encyclopedia of Volcanoes; Academic Press: Cambridge, MA, USA, 1999; pp. 581–599. [Google Scholar]
- Walker, G.W. Cenozoic Ash Flow Tuffs of Oregon. Ore Bin 1970, 32, 97–115. [Google Scholar]
- Greene, R.C.; Walker, G.W.; Corcoran, R.E. Geologic map of the Burns Quadrangle, Oregon; US Geological Survey: Reston, VA, USA, 1972. Available online: https://ngmdb.usgs.gov/Prodesc/proddesc_9455.htm (accessed on 2 March 2023).
- Caves, J.K.; Winnick, M.J.; Graham, S.A.; Sjostrom, D.J.; Mulch, A.; Chamberlain, C.P. Role of the westerlies in Central Asia climate over the Cenozoic. Earth Planet. Sci. Lett. 2015, 428, 33–43. [Google Scholar] [CrossRef]
- Streck, M.; Grunder, A. Compositional Gradients and Gaps in High-silica Rhyolites of the Rattlesnake TuV. J. Petrol. 1997, 38, 133–163. [Google Scholar] [CrossRef]
- Carlson, T. Volcanic Glass as a Paleoenvironmental Proxy: Comparing Preparation Methods on Ashes from the Lee of the Cascade Range in Oregon, USA. Master’s Thesis, Portland State University, Portland, OR, USA, 2018. [Google Scholar] [CrossRef]
- Bowen, G.J. Gridded Maps of the Isotopic Composition of Meteoric Waters. 2024. Available online: http://www.waterisotopes.org (accessed on 13 February 2024).
- IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. 2015. Available online: https://nucleus.iaea.org/wiser (accessed on 12 February 2024).
- Welker, J.M. Isotopic (d18O) characteristics of weekly precipitation collected across the USA: An initial analysis with application to water source studies. Hydrol. Process. 2000, 14, 1449–1464. [Google Scholar] [CrossRef]
- Bowen, G.J.; Revenaugh, J. Interpolating the isotopic composition of modern meteoric precipitation. Water Resour. Res. 2003, 39, 1299. [Google Scholar] [CrossRef]
- Kotov, A.; Smirnov, S.; Plechov, P.; Persikov, E.; Chertkova, N.; Maksimovich, I.; Karmanov, N.; Bukhtiyarov, P. Method for Determining Water Content in Natural Rhyolitic Melts by Raman Spectroscopy and Electron Microprobe Analysis. Petrology 2021, 29, 386–403. [Google Scholar] [CrossRef]
- Bershaw, J.; Penny, S.M.; Garzione, C.N. Stable isotopes of modern water across the Himalaya and east-ern Tibetan Plateau: Implications for estimates of paleoelevation and paleoclimate. J. Geophys. Res. 2012, 117. [Google Scholar] [CrossRef]
- Seligman, A.N.; Bindeman, I.N.; Watkins, J.M.; Ross, A.M. Water in volcanic glass: From volcanic degassing to secondary hydration. Geochim. Cosmochim. Acta 2016, 191, 216–238. [Google Scholar] [CrossRef]
- Befus, K.S.; Walowski, K.J.; Hervig, R.L.; Cullen, J.T. Hydrogen Isotope Composition of a Large Silicic Magma Reservoir Preserved in Quartz-Hosted Glass Inclusions of the Bishop Tuff Plinian Eruption. Geochem. Geophys. Geosyst. 2020, 21, e2020GC009358. [Google Scholar] [CrossRef]
- Giachetti, T.; Gonnermann, H.M.; Gardner, J.E.; Shea, T.; Gouldstone, A. Discriminating secondary from magmatic water in rhyolitic matrix-glass of volcanic pyroclasts using thermogravimetric analysis. Geochim. Cosmochim. Acta 2015, 148, 457–476. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Rozanski, K.; Araguás-Araguás, L.; Gonfiantini, R. Isotopic patterns in modern global precipitation. Clim. Chang. Cont. Isot. Rec. 1993, 78, 1–36. [Google Scholar]
- Waterisotopes Database. Query: Country = US, Type = River or Stream, Precipitation. Available online: http://waterisotopesDB.org (accessed on 12 January 2022).
- Greenwood, C.; Portland State University, Portland, OR, USA. Personal communication, 2024.
- Brooks, J.R.; Wigington, P.J., Jr.; Phillips, D.L.; Comeleo, R.; Coulombe, R. Willamette River Basin surface water isoscape (δ18O and δ2H): Temporal changes of source water within the river. Ecosphere 2012, 3, art39. [Google Scholar] [CrossRef]
- Poulsen, C.J.; Jeffery, M.L. Climate change imprinting on stable isotopic compositions of high-elevation meteoric water cloaks past surface elevations of major orogens. Geology 2011, 39, 595–598. [Google Scholar] [CrossRef]
- Galewsky, J. Orographic precipitation isotopic ratios in stratified atmospheric flows: Implications for paleoelevation studies. Geology 2009, 37, 791–794. [Google Scholar] [CrossRef]
- Tachera, D.K.; Lautze, N.C.; Torri, G.; Thomas, D.M. Characterization of the isotopic composition and bulk ion deposition of precipitation from Central to West Hawaii Island between 2017 and 2019. J. Hydrol. Reg. Stud. 2021, 34, 100786. [Google Scholar] [CrossRef]
- Kukla, T.; Ibarra, D.E.; Rugenstein, J.K.C.; Gooley, J.T.; Mullins, C.E.; Kramer, S.; Moragne, D.Y.; Chamberlain, C.P. High-Resolution Stable Isotope Paleotopography of the John Day Region, Oregon, United States. Front. Earth Sci. 2021, 9, 30. [Google Scholar] [CrossRef]
- Ford, M.T.; Grunder, A.L.; Duncan, R.A. Bimodal volcanism of the High Lava Plains and Northwestern Basin and Range of Oregon: Distribution and tectonic implications of age-progressive rhyolites. Geochem. Geophys. Geosyst. 2013, 14, 2836–2857. [Google Scholar] [CrossRef]
- Jordan, B.T.; Grunder, A.L.; Duncan, R.A.; Deino, A.L. Geochronology of age-progressive volcanism of the Oregon High Lava Plains: Implications for the plume interpretation of Yellowstone. J. Geophys. Res. Solid Earth 2004, 109, B10202. [Google Scholar] [CrossRef]
- Swenton, V.M.; Streck, M.J.; Miggins, D.P.; McIntosh, W.C. Filling critical gaps in the space-time record of High Lava Plains and co-Columbia River Basalt Group rhyolite volcanism. GSA Bull. 2022, 135, 1415–1428. [Google Scholar] [CrossRef]
- Hildreth, W.; Fierstein, J. The Novarupta-Katmai Eruption of 1912—Largest Eruption of the Twentieth Century: Centennial Perspectives; Professional Paper; United States Geological Survey: Reston, VA, USA, 2012.
- Carn, S.A.; Pallister, J.S.; Lara, L.; Ewert, J.W.; Watt, S.; Prata, A.J.; Thomas, R.J.; Villarosa, G. The Unexpected Awakening of Chaitén Volcano, Chile. EOS Trans. Am. Geophys. Union 2009, 90, 205–206. [Google Scholar] [CrossRef]
Sample | δDglass | δDWater | Wt. % H2O | Depositional Environment | Hydration Water | Latitude | Longitude |
---|---|---|---|---|---|---|---|
MT-13c | −169 | −140 | 5.1 | Ash Fall | Precipitation, Fluvial | 42.9839 | −118.8731 |
MT-14b * | −166 | −138 | 2.9 | Ash Flow | Precipitation, Fluvial | 43.0258 | −118.63633 |
MT-19 | −140 | −111 | 3.4 | Ash Flow | Precipitation, Fluvial | 42.8404 | −119.66862 |
MT-20 | −151 | −122 | 2.9 | Ash Flow | Precipitation, Fluvial | 42.8596 | −119.74695 |
MT-21 | −137 | −107 | 3.1 | Ash Flow | Precipitation, Fluvial | 42.7868 | −120.2242 |
MT-23 | −149 | −120 | 2.9 | Ash Flow | Precipitation, Fluvial | 43.9135 | −120.30725 |
MT-24b | −175 | −147 | 3 | Ash Flow | Precipitation, Fluvial | 43.7829 | −119.45026 |
MT-25 | −147 | −118 | 2.8 | Ash Flow | Precipitation, Fluvial | 43.7525 | −119.00905 |
MT-28a | −178 | −150 | 3.2 | Ash Fall | Precipitation, Fluvial | 43.6593 | −118.99916 |
MT-28b | −182 | −154 | 2.8 | Ash Flow | Precipitation, Fluvial | 43.6593 | −118.99916 |
MT-28bm | −182 | −154 | 2.7 | Ash Flow | Precipitation, Fluvial | 43.6593 | −118.99916 |
MT-28d | −181 | −153 | 2.7 | Ash Flow | Precipitation, Fluvial | 43.6593 | −118.99916 |
MT-28dm | −181 | −153 | 2.7 | Ash Flow | Precipitation, Fluvial | 43.6593 | −118.99916 |
RST2018_08 | −173 | −145 | 2.9 | Ash Flow | Precipitation, Fluvial | 43.7096 | −119.6356 |
RST2018_11 | −156 | −128 | 2.7 | Ash Flow | Precipitation, Fluvial | 43.0922 | −119.93541 |
RST2018_18 | −158 | −129 | 3.9 | Ash Flow | Precipitation, Fluvial | 44.4082 | −118.98748 |
M2-CVG038 | −146 | −117 | 2.9 | Ash flow | Precipitation, Fluvial | 44.5212 | −119.63343 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cohen, J.; Bershaw, J.; Hugo, R. Volcanic Glass as a Proxy for Paleotopography Suggests New Features in Late-Miocene Oregon. Atmosphere 2024, 15, 561. https://doi.org/10.3390/atmos15050561
Cohen J, Bershaw J, Hugo R. Volcanic Glass as a Proxy for Paleotopography Suggests New Features in Late-Miocene Oregon. Atmosphere. 2024; 15(5):561. https://doi.org/10.3390/atmos15050561
Chicago/Turabian StyleCohen, Julian, John Bershaw, and Richard Hugo. 2024. "Volcanic Glass as a Proxy for Paleotopography Suggests New Features in Late-Miocene Oregon" Atmosphere 15, no. 5: 561. https://doi.org/10.3390/atmos15050561
APA StyleCohen, J., Bershaw, J., & Hugo, R. (2024). Volcanic Glass as a Proxy for Paleotopography Suggests New Features in Late-Miocene Oregon. Atmosphere, 15(5), 561. https://doi.org/10.3390/atmos15050561