Wide and Deep Learning Model for Satellite-Based Real-Time Aerosol Retrievals in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Training and Test Data
2.2. Himawari-8 Measurement Data and Himawari-8 AOD Product
2.3. Wide and Deep Learning Model
3. Results
3.1. Validation and Comparison of the Wide and Deep Learning Model
3.2. Application and Comparison with Other Satellite-Based Aerosol Products
3.3. Interpretability of the Wide and Deep Learning Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boucher, O.; Randall, D.; Artaxo, P.; Bretherton, C.; Feingold, G.; Forster, P.; Kerminen, V.-M.; Kondo, Y.; Liao, H.; Lohmann, U. Clouds and aerosols. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2013; pp. 571–657. [Google Scholar]
- Luo, N.; Zhang, Y.; Jiang, Y.; Zuo, C.; Chen, J.; Zhao, W.; Shi, W.; Yan, X. Unveiling global land fine-and coarse-mode aerosol dynamics from 2005 to 2020 using enhanced satellite-based inversion data. Environ. Pollut. 2024, 348, 123838. [Google Scholar] [CrossRef] [PubMed]
- Zang, Z.; Zhang, Y.; Zuo, C.; Chen, J.; He, B.; Luo, N.; Zou, J.; Zhao, W.; Shi, W.; Yan, X. Exploring Global Land Coarse-Mode Aerosol Changes from 2001–2021 Using a New Spatiotemporal Coaction Deep-Learning Model. Environ. Sci. Technol. 2023, 57, 19881–19890. [Google Scholar] [CrossRef] [PubMed]
- Al-Saadi, J.; Szykman, J.; Pierce, R.B.; Kittaka, C.; Neil, D.; Chu, D.A.; Remer, L.; Gumley, L.; Prins, E.; Weinstock, L. Improving national air quality forecasts with satellite aerosol observations. Bull. Am. Meteorol. Soc. 2005, 86, 1249–1262. [Google Scholar] [CrossRef]
- Grell, G.; Baklanov, A. Integrated modeling for forecasting weather and air quality: A call for fully coupled approaches. Atmos. Environ. 2011, 45, 6845–6851. [Google Scholar] [CrossRef]
- Zuo, C.; Chen, J.; Zhang, Y.; Jiang, Y.; Liu, M.; Liu, H.; Zhao, W.; Yan, X. Evaluation of four meteorological reanalysis datasets for satellite-based PM2. 5 retrieval over China. Atmos. Environ. 2023, 305, 119795. [Google Scholar] [CrossRef]
- Yan, X.; Shi, W.; Li, Z.; Li, Z.; Luo, N.; Zhao, W.; Wang, H.; Yu, X. Satellite-based PM2. 5 estimation using fine-mode aerosol optical thickness over China. Atmos. Environ. 2017, 170, 290–302. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Boucher, O. A satellite view of aerosols in the climate system. Nature 2002, 419, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112, D13211. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.; Bettenhausen, C.; Jeong, M.J. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. J. Geophys. Res. Atmos. 2013, 118, 7864–7872. [Google Scholar] [CrossRef]
- Yan, X.; Zang, Z.; Li, Z.; Luo, N.; Zuo, C.; Jiang, Y.; Li, D.; Guo, Y.; Zhao, W.; Shi, W. A global land aerosol fine-mode fraction dataset (2001–2020) retrieved from MODIS using hybrid physical and deep learning approaches. Earth Syst. Sci. Data Discuss. 2021, 2021, 1193–1213. [Google Scholar] [CrossRef]
- Kikuchi, M.; Murakami, H.; Suzuki, K.; Nagao, T.M.; Higurashi, A. Improved hourly estimates of aerosol optical thickness using spatiotemporal variability derived from Himawari-8 geostationary satellite. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3442–3455. [Google Scholar] [CrossRef]
- Kahn, R.A.; Gaitley, B.J.; Martonchik, J.V.; Diner, D.J.; Crean, K.A.; Holben, B. Multiangle Imaging Spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations. J. Geophys. Res. Atmos. 2005, 110, D10S04. [Google Scholar] [CrossRef]
- Shao, Y.; Liu, R.; Li, W.; Bi, J.; Ma, Z. A MISR-Based Method for the Estimation of Particle Size Distribution: Comparison with AERONET over China. Remote Sens. 2023, 3, 0032. [Google Scholar] [CrossRef]
- Yan, X.; Luo, N.; Liang, C.; Zang, Z.; Zhao, W.; Shi, W. Simplified and Fast Atmospheric Radiative Transfer model for satellite-based aerosol optical depth retrieval. Atmos. Environ. 2020, 224, 117362. [Google Scholar] [CrossRef]
- Kokhanovsky, A. Remote sensing of atmospheric aerosol using spaceborne optical observations. Earth-Sci. Rev. 2013, 116, 95–108. [Google Scholar] [CrossRef]
- Okada, Y.; Mukai, S.; Sano, I. Neural network approach for aerosol retrieval. In Proceedings of the IGARSS 2001, Scanning the Present and Resolving the Future, Proceedings, IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No. 01CH37217), Sydney, NSW, Australia, 9–13 July 2001; pp. 1716–1718. [Google Scholar]
- Sun, Y.; Hang, R.; Liu, Q.; Zhu, F.; Pei, H. Graph-regularized low-rank representation for aerosol optical depth retrieval. Int. J. Remote Sens. 2016, 37, 5749–5762. [Google Scholar] [CrossRef]
- Seidel, F.; Kokhanovsky, A.; Schaepman, M.E. Fast retrieval of aerosol optical depth and its sensitivity to surface albedo using remote sensing data. Atmos. Res. 2012, 116, 22–32. [Google Scholar] [CrossRef]
- Mei, L.; Rozanov, V.; Burrows, J.P. A fast and accurate radiative transfer model for aerosol remote sensing. J. Quant. Spectrosc. Transf. 2020, 256, 107270. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.N.T.; Mantovani, S.; Campalani, P.; Cavicchi, M.; Bottoni, M. Aerosol optical thickness retrieval from satellite observation using support vector regression. In Proceedings of the Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications: 15th Iberoamerican Congress on Pattern Recognition, CIARP 2010, Sao Paulo, Brazil, 8–11 November 2010; Proceedings 15. pp. 492–499. [Google Scholar]
- Taylor, M.; Kazadzis, S.; Tsekeri, A.; Gkikas, A.; Amiridis, V. Satellite retrieval of aerosol microphysical and optical parameters using neural networks: A new methodology applied to the Sahara desert dust peak. Atmos. Meas. Tech. 2014, 7, 3151–3175. [Google Scholar] [CrossRef]
- Fan, Y.; Sun, L. Satellite Aerosol Optical Depth Retrieval Based on Fully Connected Neural Network (FCNN) and a Combine Algorithm of Simplified Aerosol Retrieval Algorithm and Simplified and Robust Surface Reflectance Estimation (SREMARA). IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 4947–4962. [Google Scholar] [CrossRef]
- Kang, E.; Park, S.; Kim, M.; Yoo, C.; Im, J.; Song, C.-K. Direct aerosol optical depth retrievals using MODIS reflectance data and machine learning over East Asia. Atmos. Environ. 2023, 309, 119951. [Google Scholar] [CrossRef]
- Qin, W.; Wang, L.; Lin, A.; Zhang, M.; Bilal, M. Improving the estimation of daily aerosol optical depth and aerosol radiative effect using an optimized artificial neural network. Remote Sens. 2018, 10, 1022. [Google Scholar] [CrossRef]
- Lanzaco, B.L.; Olcese, L.E.; Palancar, G.G.; Toselli, B.M. An improved aerosol optical depth map based on machine-learning and MODIS data: Development and application in South America. Aerosol Air Qual. Res. 2017, 17, 1623–1636. [Google Scholar] [CrossRef]
- Brahma, P.P.; Wu, D.; She, Y. Why deep learning works: A manifold disentanglement perspective. IEEE Trans. Neural Netw. Learn. Syst. 2015, 27, 1997–2008. [Google Scholar] [CrossRef] [PubMed]
- Shikhovtsev, A.Y.; Kovadlo, P.G.; Kiselev, A.V.; Eselevich, M.V.; Lukin, V.P. Application of Neural Networks to Estimation and Prediction of Seeing at the Large Solar Telescope Site. Publ. Astron. Soc. Pac. 2023, 135, 014503. [Google Scholar] [CrossRef]
- Ali, Y.; Aly, H.H. Short term wind speed forecasting using artificial and wavelet neural networks with and without wavelet filtered data based on feature selections technique. Eng. Appl. Artif. Intell. 2024, 133, 108201. [Google Scholar] [CrossRef]
- Yan, X.; Liang, C.; Jiang, Y.; Luo, N.; Zang, Z.; Li, Z. A deep learning approach to improve the retrieval of temperature and humidity profiles from a ground-based microwave radiometer. IEEE Trans. Geosci. Remote Sens. 2020, 58, 8427–8437. [Google Scholar] [CrossRef]
- Zang, Z.; Guo, Y.; Jiang, Y.; Zuo, C.; Li, D.; Shi, W.; Yan, X. Tree-based ensemble deep learning model for spatiotemporal surface ozone (O3) prediction and interpretation. Int. J. Appl. Earth Obs. Geoinf. 2021, 103, 102516. [Google Scholar] [CrossRef]
- Jiang, J.; Tao, M.; Xu, X.; Jiang, Z.; Man, W.; Wang, J.; Wang, L.; Wang, Y.; Zheng, Y.; Tao, J. A Generalized Aerosol Algorithm for Multi-Spectral Satellite Measurement With Physics-Informed Deep Learning Method. Geophys. Res. Lett. 2023, 50, e2023GL106806. [Google Scholar] [CrossRef]
- Tao, M.; Chen, J.; Xu, X.; Man, W.; Xu, L.; Wang, L.; Wang, Y.; Wang, J.; Fan, M.; Shahzad, M.I. A robust and flexible satellite aerosol retrieval algorithm for multi-angle polarimetric measurements with physics-informed deep learning method. Remote Sens. Environ. 2023, 297, 113763. [Google Scholar] [CrossRef]
- Cheng, H.-T.; Koc, L.; Harmsen, J.; Shaked, T.; Chandra, T.; Aradhye, H.; Anderson, G.; Corrado, G.; Chai, W.; Ispir, M. Wide & deep learning for recommender systems. In Proceedings of the 1st Workshop on Deep Learning for Recommender Systems, Boston, MA, USA, 15 September 2016; pp. 7–10. [Google Scholar]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Martins, V.S.; Lyapustin, A.; de Carvalho, L.A.; Barbosa, C.C.F.; Novo, E.M.L.d.M. Validation of high-resolution MAIAC aerosol product over South America. J. Geophys. Res. Atmos. 2017, 122, 7537–7559. [Google Scholar] [CrossRef]
- Superczynski, S.D.; Kondragunta, S.; Lyapustin, A.I. Evaluation of the multi-angle implementation of atmospheric correction (MAIAC) aerosol algorithm through intercomparison with VIIRS aerosol products and AERONET. J. Geophys. Res. Atmos. 2017, 122, 3005–3022. [Google Scholar] [CrossRef] [PubMed]
- Yumimoto, K.; Nagao, T.; Kikuchi, M.; Sekiyama, T.; Murakami, H.; Tanaka, T.; Ogi, A.; Irie, H.; Khatri, P.; Okumura, H.; et al. Aerosol data assimilation using data from Himawari-8, a next-generation geostationary meteorological satellite. Geophys. Res. Lett. 2016, 43, 5886–5894. [Google Scholar] [CrossRef]
- Ishida, H.; Nakajima, T.Y. Development of an unbiased cloud detection algorithm for a spaceborne multispectral imager. J. Geophys. Res. Atmos. 2009, 114, D07206. [Google Scholar] [CrossRef]
- Yan, X.; Zang, Z.; Luo, N.; Jiang, Y.; Li, Z. New interpretable deep learning model to monitor real-time PM2. 5 concentrations from satellite data. Environ. Int. 2020, 144, 106060. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Guo, Y.; Zhang, Y.; Chen, J.; Jiang, Y.; Zuo, C.; Zhao, W.; Shi, W. Combining physical mechanisms and deep learning models for hourly surface ozone retrieval in China. J. Environ. Manag. 2024, 351, 119942. [Google Scholar] [CrossRef] [PubMed]
- Guo, C.; Berkhahn, F. Entity embeddings of categorical variables. arXiv 2016, arXiv:1604.06737. [Google Scholar]
- Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456. [Google Scholar]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Qu, Y.; Cai, H.; Ren, K.; Zhang, W.; Yu, Y.; Wen, Y.; Wang, J. Product-based neural networks for user response prediction. In Proceedings of the 2016 IEEE 16th International Conference on Data Mining (ICDM), Barcelona, Spain, 12–15 December 2016; pp. 1149–1154. [Google Scholar]
- Kingma, P.D.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Loshchilov, I.; Hutter, F. Decoupled weight decay regularization. arXiv 2017, arXiv:1711.05101. [Google Scholar]
- Yang, F.; Wang, Y.; Tao, J.; Wang, Z.; Fan, M.; De Leeuw, G.; Chen, L. Preliminary investigation of a new AHI aerosol optical depth (AOD) retrieval algorithm and evaluation with multiple source AOD measurements in China. Remote Sens. 2018, 10, 748. [Google Scholar] [CrossRef]
- Lu, C.; Li, Q.; Xing, C.; Hu, Q.; Tan, W.; Lin, H.; Lin, J.; Zhang, Z.; Chang, B.; Liu, C.S. A Novel Hyperspectral Remote Sensing Technique with Hour-Hectometer Level Horizontal Distribution of Trace Gases: To Accurately Identify Emission Sources. J. Remote Sens. 2023, 3, 0098. [Google Scholar] [CrossRef]
- Yan, X.; Li, Z.; Luo, N.; Shi, W.; Zhao, W.; Yang, X.; Jin, J. A minimum albedo aerosol retrieval method for the new-generation geostationary meteorological satellite Himawari-8. Atmos. Res. 2018, 207, 14–27. [Google Scholar] [CrossRef]
- Li, D.; Qin, K.; Wu, L.; Mei, L.; de Leeuw, G.; Xue, Y.; Shi, Y.; Li, Y. Himawari-8-derived aerosol optical depth using an improved time series algorithm over eastern China. Remote Sens. 2020, 12, 978. [Google Scholar] [CrossRef]
- She, L.; Zhang, H.; Wang, W.; Wang, Y.; Shi, Y. Evaluation of the multi-angle implementation of atmospheric correction (MAIAC) aerosol algorithm for Himawari-8 data. Remote Sens. 2019, 11, 2771. [Google Scholar] [CrossRef]
- Gupta, P.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Holz, R.E.; Heidinger, A.K. Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign. Atmos. Meas. Tech. 2019, 12, 6557–6577. [Google Scholar] [CrossRef]
- Lim, H.; Choi, M.; Kim, M.; Kim, J.; Chan, P. Retrieval and validation of aerosol optical properties using Japanese next generation meteorological satellite, Himawari-8. Korean J. Remote Sens. 2016, 32, 681–691. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, W.; Fan, M.; Wei, J.; Tan, Y.; Wang, Q. Evaluation of MAIAC aerosol retrievals over China. Atmos. Environ. 2019, 202, 8–16. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, C.; Luo, N.; Zhao, W.; Shi, W.; Yan, X. Evaluation and Comparison of Himawari-8 L2 V1. 0, V2. 1 and MODIS C6. 1 aerosol products over Asia and the oceania regions. Atmos. Environ. 2020, 220, 117068. [Google Scholar] [CrossRef]
- Tao, M.; Wang, J.; Li, R.; Wang, L.; Wang, L.; Wang, Z.; Tao, J.; Che, H.; Chen, L. Performance of MODIS high-resolution MAIAC aerosol algorithm in China: Characterization and limitation. Atmos. Environ. 2019, 213, 159–169. [Google Scholar] [CrossRef]
- Gupta, P.; Remer, L.A.; Levy, R.C.; Mattoo, S. Validation of MODIS 3 km land aerosol optical depth from NASA’s EOS Terra and Aqua missions. Atmos. Meas. Tech. 2018, 11, 3145–3159. [Google Scholar] [CrossRef]
- Liu, N.; Zou, B.; Feng, H.; Wang, W.; Tang, Y.; Liang, Y. Evaluation and comparison of multiangle implementation of the atmospheric correction algorithm, Dark Target, and Deep Blue aerosol products over China. Atmos. Chem. Phys. 2019, 19, 8243–8268. [Google Scholar] [CrossRef]
- Qin, W.; Liu, Y.; Wang, L.; Lin, A.; Xia, X.; Che, H.; Bilal, M.; Zhang, M. Characteristic and driving factors of aerosol optical depth over mainland China during 1980–2017. Remote Sens. 2018, 10, 1064. [Google Scholar] [CrossRef]
- Sun, E.; Xu, X.; Che, H.; Tang, Z.; Gui, K.; An, L.; Lu, C.; Shi, G. Variation in MERRA-2 aerosol optical depth and absorption aerosol optical depth over China from 1980 to 2017. J. Atmos. Sol.-Terr. Phys. 2019, 186, 8–19. [Google Scholar] [CrossRef]
- Lee, S.-S.; Sohn, B. Nighttime AOT retrieval for Asian dusts from MODIS IR measurements: An artificial neural network approach. J. Meteorol. Soc. Jpn. 2012, 90, 163–177. [Google Scholar] [CrossRef]
- Mhawish, A.; Banerjee, T.; Sorek-Hamer, M.; Lyapustin, A.; Broday, D.M.; Chatfield, R. Comparison and evaluation of MODIS Multi-angle Implementation of Atmospheric Correction (MAIAC) aerosol product over South Asia. Remote Sens. Environ. 2019, 224, 12–28. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, Q.; Wang, H.; Li, T.; Shen, H.; Zhang, L. Validation of MODIS 1-Km MAIAC Aerosol Products with AERONET in China During 2008–2016. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7610–7613. [Google Scholar]
Type | Method | Test Area | N | R2/R | RMSE | Within EE | Literature |
---|---|---|---|---|---|---|---|
Deep learning | Wide and deep learning | China | 8366 | R2 = 0.81 | 0.19 | 63% | This study |
Analytical equations | MAARM | Jing-Jin-Ji (China) | 468 | R2 ~ 0.83 | ~0.23 | ~56.7% | [50] |
Analytical equations | SFART | Jing-Jin-Ji (China) | 339 | R2 = 0.86 | 0.22 | 59% | [15] |
Analytical equations | Improved time series algorithm | China | 9049 | R ~ 0.8 | ~0.19 | ~45.7% | [51] |
LUT | MAIAC | Southeast Asia and southern China | 16,532 | R = 0.77 | 0.16 | 54.95% | [52] |
LUT | New DT AHI algorithm | Full coverage of Himawari-8 | 1982 (Beijing = 82) | R = 0.84 (R = 0.86) | 0.2 (0.3) | 54.85% (15.85%) | [53] |
LUT | DT | Asia | 21,666 | R = 0.706 | 0.21 | 49% | [54] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, N.; Zou, J.; Zang, Z.; Chen, T.; Yan, X. Wide and Deep Learning Model for Satellite-Based Real-Time Aerosol Retrievals in China. Atmosphere 2024, 15, 564. https://doi.org/10.3390/atmos15050564
Luo N, Zou J, Zang Z, Chen T, Yan X. Wide and Deep Learning Model for Satellite-Based Real-Time Aerosol Retrievals in China. Atmosphere. 2024; 15(5):564. https://doi.org/10.3390/atmos15050564
Chicago/Turabian StyleLuo, Nana, Junxiao Zou, Zhou Zang, Tianyi Chen, and Xing Yan. 2024. "Wide and Deep Learning Model for Satellite-Based Real-Time Aerosol Retrievals in China" Atmosphere 15, no. 5: 564. https://doi.org/10.3390/atmos15050564
APA StyleLuo, N., Zou, J., Zang, Z., Chen, T., & Yan, X. (2024). Wide and Deep Learning Model for Satellite-Based Real-Time Aerosol Retrievals in China. Atmosphere, 15(5), 564. https://doi.org/10.3390/atmos15050564