Unveiling Trends and Hotspots in Air Pollution Control: A Bibliometric Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. CiteSpace
2.2. VOSviewer
2.3. Research Process
2.4. Parameter Design and Key Indicator Description
3. Results
3.1. Classification of Literature in the Field of Air Pollution Control
3.2. Network Analysis of Common Countries or Regions
3.3. Dual-Map Overlay of Disciplines and Journals in Air Pollution Control Research
3.4. Journals
3.5. Co-Citation Network Analysis of References
3.6. Keyword Co-Occurrence Network Analysis
3.6.1. Analysis of Keyword Co-Occurrence Frequencies
3.6.2. Analysis of Burst Keywords
4. Conclusions
5. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, M.; Zhang, H.; Li, H.; Zhao, Z.; Wang, K.; Zhou, Y.; Zhao, X.; Dubal, D.P. CxNy-based materials as gas sensors: Structure, performance, mechanism and perspective. Coord. Chem. Rev. 2024, 503, 215653. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H.; Cao, X.; Chen, M.; Liu, Y.; Zhou, Y.; Huang, M.; Xia, L.; Wang, Y.; Li, T.; et al. Unveiling Cutting-Edge Developments in Electrocatalytic Nitrate-to-Ammonia Conversion. Adv. Mater. 2024, 36, e2312746. [Google Scholar] [CrossRef]
- Sun, M.; Chen, M.; Cui, X.; Zhao, Z.; Wang, J.; Liang, L.; Zhou, Y. Unveiling the gas sensing potential of CxNy monolayer through ab initio screening. Surf. Interfaces 2023, 42, 103313. [Google Scholar] [CrossRef]
- Giles, L.V.; Koehle, M.S. The Health Effects of Exercising in Air Pollution. Sports Med. 2014, 44, 223–249. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.S.; Wang, H.J.; Wang, J.H.; Sun, M.Y.Z.; Hu, Y.X.; Zhao, X.; Zhou, Y.T. Efficient degradation of formaldehyde based on DFT-screened metal-doped C3N6 monolayer photocatalysts: Performance evaluation and mechanistic insights. Phys. Chem. Chem. Phys. 2023, 25, 25353–25360. [Google Scholar] [CrossRef] [PubMed]
- Chi, G.C.; Hajat, A.; Bird, C.E.; Cullen, M.R.; Griffin, B.A.; Miller, K.A.; Shih, R.A.; Stefanick, M.L.; Vedal, S.; Whitsel, E.A.; et al. Individual and Neighborhood Socioeconomic Status and the Association between Air Pollution and Cardiovascular Disease. Environ. Health Perspect. 2016, 124, 1840–1847. [Google Scholar] [CrossRef]
- Li, S.J.; Hu, S.W.; Jiang, W.; Liu, Y.; Liu, Y.P.; Zhou, Y.T.; Mo, L.Y.; Liu, J.S. Ag3VO4 Nanoparticles Decorated Bi2O2CO3 Micro-Flowers: An Efficient Visible-Light-Driven Photocatalyst for the Removal of Toxic Contaminants. Front. Chem. 2018, 6, 255. [Google Scholar] [CrossRef] [PubMed]
- Rogelj, J.; den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Chaeffer, R.S.; Ha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 °C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef]
- Arcos-Vargas, A. After the Paris Agreement. Dyna 2017, 92, 12–14. [Google Scholar] [CrossRef]
- Chen, J.; Gui, P.F.; Ding, T.; Na, S.Y.; Zhou, Y.T. Optimization of Transportation Routing Problem for Fresh Food by Improved Ant Colony Algorithm Based on Tabu Search. Sustainability 2019, 11, 6584. [Google Scholar] [CrossRef]
- Feng, Y.Y.; Ning, M.; Lei, Y.; Sun, Y.M.; Liu, W.; Wang, J.N. Defending blue sky in China: Effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017. J. Environ. Manag. 2019, 252, 109603. [Google Scholar] [CrossRef] [PubMed]
- Davuliene, L.; Jasineviciene, D.; Garbariene, I.; Andriejauskiene, J.; Ulevicius, V.; Bycenkiene, S. Long-term air pollution trend analysis in the South-eastern Baltic region, 1981–2017. Atmos. Res. 2021, 247, 105191. [Google Scholar] [CrossRef]
- Hamer, P.D.; Walker, S.E.; Sousa-Santos, G.; Vogt, M.; Vo-Thanh, D.; Lopez-Aparicio, S.; Schneider, P.; Ramacher, M.O.P.; Karl, M. The urban dispersion model EPISODE v10.0-Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions. Geosci. Model Dev. 2020, 13, 4323–4353. [Google Scholar] [CrossRef]
- Liu, W.L.; Xu, Z.P.; Yang, T.N. Health Effects of Air Pollution in China. Int. J. Environ. Res. Public Health 2018, 15, 1471. [Google Scholar] [CrossRef]
- Young, O.R.; Guttman, D.; Qi, Y.; Bachus, K.; Belis, D.; Cheng, H.G.; Lin, A.; Schreifels, J.; Van Eynde, S.; Wang, Y.H.; et al. Institutionalized governance processes Comparing environmental problem solving in China and the United States. Glob. Environ. Chang. Hum. Policy Dimens. 2015, 31, 163–173. [Google Scholar] [CrossRef]
- Mao, X.Q.; Zhou, J.; Corsetti, G. How Well Have China’s Recent Five-Year Plans Been Implemented for Energy Conservation and Air Pollution Control? Environ. Sci. Technol. 2014, 48, 10036–10044. [Google Scholar] [CrossRef]
- Jeldes, N.; Ibacache-Pulgar, G.; Marchant, C.; López-Gonzales, J.L. Modeling Air Pollution Using Partially Varying Coefficient Models with Heavy Tails. Mathematics 2022, 10, 3677. [Google Scholar] [CrossRef]
- Qiu, X.Z.; Zhu, Y.; Jang, C.; Lin, C.J.; Wang, S.X.; Fu, J.; Xie, J.P.; Wang, J.D.; Ding, D.A.; Long, S.C. Development of an integrated policy making tool for assessing air quality and human health benefits of air pollution control. Front. Environ. Sci. Eng. 2015, 9, 1056–1065. [Google Scholar] [CrossRef]
- Luo, X.Z.; Abazari, R.; Tahir, M.; Fan, W.K.; Kumar, A.; Kalhorizadeh, T.; Kirillov, A.M.; Amani-Ghadim, A.R.; Chen, J.; Zhou, Y.T. Trimetallic metal-organic frameworks and derived materials for environmental remediation and electrochemical energy storage and conversion. Coord. Chem. Rev. 2022, 461, 214505. [Google Scholar] [CrossRef]
- Grace, R.K.; Manju, S. A Comprehensive Review of Wireless Sensor Networks Based Air Pollution Monitoring Systems. Wirel. Pers. Commun. 2019, 108, 2499–2515. [Google Scholar] [CrossRef]
- Gulia, S.; Tiwari, R.; Mendiratta, S.; Kaur, S.; Goyal, S.K.; Kumar, R. Review of scientific technology-based solutions for vehicular pollution control. Clean Technol. Environ. Policy 2020, 22, 1955–1966. [Google Scholar] [CrossRef]
- Chen, J.; Hu, L.; Chen, Q.; Yang, T.; Yi, C. Hotspots and trends in solar-driven interfacial evaporation technology based on bibliometric management and analysis. Surf. Interfaces 2024, 46, 104184. [Google Scholar] [CrossRef]
- Dias-Ferreira, C.; Kirkelund, G.M.; Jensen, P.E. The influence of electrodialytic remediation on dioxin (PCDD/PCDF) levels in fly ash and air pollution control residues. Chemosphere 2016, 148, 380–387. [Google Scholar] [CrossRef]
- Li, Y.; Niu, G.; Wang, X.; Tang, J.; Duan, Y. Effects of Air/H2O Discharge Plasma on Propane Combustion Enhancement Using Dielectric Barrier Discharges. Plasma Chem. Plasma Process. 2018, 38, 831–850. [Google Scholar] [CrossRef]
- Jafari, A.J.; Charkhloo, E.; Pasalari, H. Urban air pollution control policies and strategies: A systematic review. J. Environ. Health Sci. Eng. 2021, 19, 1911–1940. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.Y.; Guo, C.Y.; Wu, Y.Z.; Huang, C.; Lu, K.D.; Zhang, Y.H.; Duan, L.; Cheng, M.M.; Chai, F.H.; Mei, F.Q.; et al. Evaluating cost and benefit of air pollution control policies in China: A systematic review. J. Environ. Sci. 2023, 123, 140–155. [Google Scholar] [CrossRef]
- Zhang, L.; Feng, Y.K. Bibliometrics and visualization analysis of artificial blood vessel research. Curr. Sci. 2014, 106, 816–822. [Google Scholar]
- Sharifi, A.; Simangan, D.; Kaneko, S. Three decades of research on climate change and peace: A bibliometrics analysis. Sustain. Sci. 2021, 16, 1079–1095. [Google Scholar] [CrossRef]
- Wu, D.S.; Wang, S.Y. Environment damage assessment: A literature review using social network analysis. Hum. Ecol. Risk Assess. 2018, 24, 904–924. [Google Scholar] [CrossRef]
- Schubert, A. Handbook Bibliometrics. Scientometrics 2021, 126, 5379–5385. [Google Scholar] [CrossRef]
- Chen, C. Information visualization. WIREs Comput. Stat. 2010, 2, 387–403. [Google Scholar] [CrossRef]
- Chen, C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Merigó, J.M.; Pedrycz, W.; Weber, R.; de la Sotta, C. Fifty years of Information Sciences: A bibliometric overview. Inf. Sci. 2018, 432, 245–268. [Google Scholar] [CrossRef]
- Shibata, N.; Kajikawa, Y.; Takeda, Y.; Matsushima, K. Detecting emerging research fronts based on topological measures in citation networks of scientific publications. Technovation 2008, 28, 758–775. [Google Scholar] [CrossRef]
- Xu, Y.C.; Chen, L.; Li, B.; Liu, W. Density-based modularity for evaluating community structure in bipartite networks. Inf. Sci. 2015, 317, 278–294. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 1987, 20, 53–65. [Google Scholar] [CrossRef]
- Freeman, L. A Set of Measures of Centrality Based on Betweenness. Sociometry 1977, 40, 35–41. [Google Scholar] [CrossRef]
- van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. bibliometri: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Chen, C.M.; Leydesdorff, L. Patterns of Connections and Movements in Dual-Map Overlays: A New Method of Publication Portfolio Analysis. J. Assoc. Inf. Sci. Technol. 2014, 65, 334–351. [Google Scholar] [CrossRef]
- Petrov, D.; Oborina, A.; Giupponi, L.; Stitz, T.H. Link performance model for filter bank based multicarrier systems. Eurasip J. Adv. Signal Process. 2014, 2014, 169. [Google Scholar] [CrossRef]
- Trujillo, C.M.; Long, T.M. Document co-citation analysis to enhance transdisciplinary research. Sci. Adv. 2018, 4, 1701130. [Google Scholar] [CrossRef]
- Alvarez-Taboada, F.; Tammadge, D.; Schlerf, M.; Skidmore, A. Assessing MODIS GPP in Non-Forested Biomes in Water Limited Areas Using EC Tower Data. Remote Sens. 2015, 7, 3274–3292. [Google Scholar] [CrossRef]
- Spiridonov, V.; Jakimovski, B.; Spiridonova, I.; Pereira, G. Development of air quality forecasting system in Macedonia, based on WRF-Chem model. Air Qual. Atmos. Health 2019, 12, 825–836. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, X.R.; Li, D.Y.; Zhao, M.D.; Weng, Z.X.; Zhang, L.; Xu, M. Health and economic benefits of reducing air pollution embodied in GBA’s green and low-carbon development. Urban Clim. 2023, 52, 101755. [Google Scholar] [CrossRef]
- He, J.J.; Gong, S.L.; Liu, H.L.; An, X.Q.; Yu, Y.; Zhao, S.P.; Wu, L.; Song, C.B.; Zhou, C.H.; Wang, J.; et al. Influences of Meteorological Conditions on Interannual Variations of Particulate Matter Pollution during Winter in the Beijing-Tianjin-Hebei Area. J. Meteorol. Res. 2017, 31, 1062–1069. [Google Scholar] [CrossRef]
- Song, Y.; Li, Z.; Yang, T.; Xia, Q. Does the expansion of the joint prevention and control area improve the air quality?—Evidence from China’s Jing-Jin-Ji region and surrounding areas. Sci. Total Environ. 2020, 706, 136034. [Google Scholar] [CrossRef]
- Lin, W.F.; Lin, K.; Du, L.Z.; Du, J.H. Can regional joint prevention and control of atmospheric reduce border pollution? Evidence from China’s 12th Five-Year Plan on air pollution. J. Environ. Manag. 2023, 342, 118342. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Gao, A.; Li, S.; Liu, Y.; Zhao, W.; Wang, P.; Zhang, H. Regional joint PM2.5-O3 control policy benefits further air quality improvement and human health protection in Beijing-Tianjin-Hebei and its surrounding areas. J. Environ. Sci. 2023, 130, 75–84. [Google Scholar] [CrossRef]
- Yang, Y.D.; Chen, Z.Q.; Sun, X.D.; Yao, S.; Zhang, X.Y.; Liu, W.Q. Li4SiO4 adsorbent derived from industrial biomass fly ash for high-temperature CO2 capture. Fuel 2023, 337, 126853. [Google Scholar] [CrossRef]
- Chen, Z.L.; Chang, W.; Jiang, X.G.; Lu, S.Y.; Buekens, A.; Yan, J.H. Leaching Behavior of Circulating Fluidised Bed MSWI Air Pollution Control Residue in Washing Process. Energies 2016, 9, 743. [Google Scholar] [CrossRef]
- Yang, Z.Z.; Tian, S.C.; Ji, R.; Liu, L.L.; Wang, X.D.; Zhang, Z.T. Effect of water-washing on the co-removal of chlorine and heavy metals in air pollution control residue from MSW incineration. Waste Manag. 2017, 68, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Zheng, Y.; Yu, Q.; Jiao, B.Q.; Li, D.W. Optimization for enhanced electrokinetic treatment of air pollution control residues using response surface methodology focusing on heavy metals leaching risk and extractability. Process Saf. Environ. Prot. 2022, 159, 534–546. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Qian, L.P.; Fang, Y.; Wang, A.G.; Dai, J.G. A multiscale study on gel composition of hybrid alkali-activated materials partially utilizing air pollution control residue as an activator. Cem. Concr. Compos. 2023, 136, 104856. [Google Scholar] [CrossRef]
- Ling, X.; Schollbach, K.; Chen, Y.X.; Brouwers, H.J.H. The effect of nano-silica and silica fume on the sodium carbonate-activated slag system containing air pollution control residues. Waste Manag. 2024, 176, 52–63. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.J.; Huang, L.; Liao, H.; Li, J.Y.; Hu, J.L. Impacts of Regional Transport on Particulate Matter Pollution in China: A Review of Methods and Results. Curr. Pollut. Rep. 2017, 3, 182–191. [Google Scholar] [CrossRef]
- Ge, B.Z.; Wang, Z.F.; Lin, W.L.; Xu, X.B.; Li, J.; Ji, D.S.; Ma, Z.Q. Air pollution over the North China Plain and its implication of regional transport: A new sight from the observed evidences. Environ. Pollut. 2018, 234, 29–38. [Google Scholar] [CrossRef]
- Huang, X.; Ding, A.J.; Wang, Z.L.; Ding, K.; Gao, J.; Chai, F.H.; Fu, C.B. Amplified transboundary transport of haze by aerosol-boundary layer interaction in China. Nat. Geosci. 2020, 13, 428. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, X.M.; Mills, F.P.; Pezzey, J.C.V. Rethinking the role of occupant behavior in building energy performance: A review. Energy Build. 2018, 172, 279–294. [Google Scholar] [CrossRef]
- Guan, Z.Z.; Chen, D.Z.; Astrup, T.F. Influences of ammonia contamination on leaching from air-pollution-control residues. Waste Manag. Res. 2014, 32, 1169–1177. [Google Scholar] [CrossRef]
- Zhu, Y.M.; Zhang, H.; Fan, S.S.; Wang, S.J.; Xia, Y.; Shao, L.M.; He, P.J. In-situ determination of metallic variation and multi-association in single particles by combining synchrotron microprobe, sequential chemical extraction and multivariate statistical analysis. J. Hazard. Mater. 2014, 276, 241–252. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.N.; Niu, J.Z.; Yu, X.X.; Berndtsson, R.; Wu, S.S.; Xie, S.Y. Maize residue effects on PM2.5, PM10, and dust emission from agricultural land. Soil Tillage Res. 2021, 205, 104738. [Google Scholar] [CrossRef]
- Rafaj, P.; Amann, M. Decomposing Air Pollutant Emissions in Asia: Determinants and Projections. Energies 2018, 11, 1299. [Google Scholar] [CrossRef]
- Song, Y.; Chang, D.; Cui, L.Z. The Evolutionary Game of Cooperative Air Pollution Management under Complex Networks. Sustainability 2023, 15, 246. [Google Scholar] [CrossRef]
- Zhu, T.; Tang, M.J.; Gao, M.; Bi, X.H.; Cao, J.J.; Che, H.Z.; Chen, J.M.; Ding, A.J.; Fu, P.Q.; Gao, J.; et al. Recent Progress in Atmospheric Chemistry Research in China: Establishing a Theoretical Framework for the “Air Pollution Complex”. Adv. Atmos. Sci. 2023, 40, 1339–1361. [Google Scholar] [CrossRef]
- Qi, L.Q.; Wang, X.; Wang, W.; Li, J.X.; Huang, Y. Mercury removal from coal combustion flue gas by pyrite-modified fly ash adsorbent. Environ. Sci. Pollut. Res. 2022, 29, 39228–39238. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.C.; Kim, J.Y.; Yoon, S.K.; Choi, N.J. Fabrication of low-cost and high-performance coal fly ash nanofibrous membranes via electrospinning for the control of harmful substances. Fuel 2019, 237, 236–244. [Google Scholar] [CrossRef]
- Ayub, K.S.; Abbas, Z.; Zaman, W.Q.; Rauf, S.; Arshad, M.; Ali, M.; Miran, W.; Mushtaq, U.; Khalid, H.; Yang, J. Nonthermal plasma catalysis using ferrites as an efficient catalyst for toluene degradation. Res. Chem. Intermed. 2023, 49, 2399–2415. [Google Scholar] [CrossRef]
- Chen, S.H.; Cheng, M.M.; Guo, Z.; Xu, W.; Du, X.H.; Li, Y. Enhanced atmospheric ammonia (NH3) pollution in China from 2008 to 2016: Evidence from a combination of observations and emissions. Environ. Pollut. 2020, 263, 114421. [Google Scholar] [CrossRef]
- Li, J.Y.; Bi, C.K. Visual analysis of air pollution spatio-temporal patterns. Vis. Comput. 2023, 39, 3715–3726. [Google Scholar] [CrossRef]
- Zareba, M.; Dlugosz, H.; Danek, T.; Weglinska, E. Big-Data-Driven Machine Learning for Enhancing Spatiotemporal Air Pollution Pattern Analysis. Atmosphere 2023, 14, 760. [Google Scholar] [CrossRef]
- Wang, X.P.; Shao, T.Q.; Qin, J.Y.; Li, Y.L.; Long, X.; Jiang, D.B.; Ding, J.G. Promotion Effect of Micro-Hole in Dielectric on Ozone Generation of Dielectric Barrier Discharge. Ozone-Sci. Eng. 2024, 46, 1–10. [Google Scholar] [CrossRef]
- Vedrenne, M.; Borge, R.; Lumbreras, J.; Conlan, B.; Rodríguez, M.E.; de Andrés, J.M.; de la Paz, D.; Pérez, J.; Narros, A. An integrated assessment of two decades of air pollution policy making in Spain: Impacts, costs and improvements. Sci. Total Environ. 2015, 527, 351–361. [Google Scholar] [CrossRef] [PubMed]
- Ti, C.; Han, X.; Chang, S.X.; Peng, L.; Xia, L.; Yan, X. Mitigation of agricultural NH3 emissions reduces PM2.5 pollution in China: A finer scale analysis. J. Clean. Prod. 2022, 350, 131507. [Google Scholar] [CrossRef]
- Li, M.Q.; Hou, Z.G.; Dai, Y.; Song, Z.C.; Xiong, Z.L. Capture of NH3 using air plasmas to form NH4NO3 for N recycling: Impact factors and mechanisms. J. Clean. Prod. 2023, 428, 139434. [Google Scholar] [CrossRef]
- Xiong, B.; Wang, R.M. Effect of Environmental Regulation on Industrial Solid Waste Pollution in China: From the Perspective of Formal Environmental Regulation and Informal Environmental Regulation. Int. J. Environ. Res. Public Health 2020, 17, 7798. [Google Scholar] [CrossRef] [PubMed]
- Potocki, M.; Dixon, D.A.; Kurbatov, A.V.; Casassa, G.; Zamora, R.; Handley, M.J.; Introne, D.; Grigholm, B.; Korotkikh, E.V.; Birkel, S.D.; et al. Trace metal emission history captured in a Chilean ice core. Atmos. Environ. 2022, 276, 119002. [Google Scholar] [CrossRef]
- Cai, L.Z.; Guo, L. Environmental Decentralization, Environmental Regulation and Environmental Pollution: Evidence from China. Pol. J. Environ. Stud. 2023, 32, 2053–2068. [Google Scholar] [CrossRef]
Country | Frequency | BC | Country | Frequency | BC |
---|---|---|---|---|---|
China | 1880 | 0.32 | Japan | 106 | 0.13 |
USA | 586 | 0.30 | Canada | 105 | 0.24 |
England | 157 | 0.19 | Germany | 93 | 0.15 |
Taiwan | 124 | 0.08 | South Korea | 90 | 0.11 |
India | 121 | 0.09 | Spain | 81 | 0.12 |
Journals | Publication Numbers | Rate% |
---|---|---|
Science of the Total Environment | 368 | 11.627% |
Journal of Cleaner Production | 236 | 7.456% |
Atmospheric Environment | 221 | 6.982% |
Environmental Science and Pollution Research | 151 | 4.770% |
Atmospheric Chemistry and Physics | 138 | 4.360% |
Environmental Pollution | 92 | 2.906% |
International Journal of Environmental Research and Public Health | 71 | 2.243% |
Sustainability | 66 | 2.085% |
Environmental Science & Technology | 65 | 2.053% |
Atmosphere | 64 | 2.022% |
Cluster No. | Size | Silhouette | Mean (Year) | Cluster LLR |
---|---|---|---|---|
#0 | 38 | 0.964 | 2019 | Ozone |
#1 | 35 | 0.95 | 2013 | PM2.5 concentrations |
#2 | 32 | 0.973 | 2020 | Diesel exhaust |
#3 | 28 | 0.983 | 2017 | Wrf–cmaq model |
#4 | 25 | 0.956 | 2014 | Mercury |
#5 | 22 | 0.938 | 2015 | Imed |
#6 | 18 | 0.879 | 2017 | Aod |
#7 | 16 | 0.94 | 2015 | Health benefits |
#8 | 15 | 0.96 | 2018 | Merra-2 |
#9 | 13 | 0.976 | 2017 | Meteorological conditions |
NO | Keywords | Frequency | Centrality |
---|---|---|---|
1 | air pollution | 860 | 0.13 |
2 | emission | 373 | 0.11 |
3 | air pollution control | 343 | 0.29 |
4 | impact | 330 | 0.11 |
5 | particulate matter | 325 | 0.17 |
6 | PM2.5 | 270 | 0.23 |
7 | air quality | 239 | 0.18 |
8 | ozone | 236 | 0.11 |
9 | source apportionment | 211 | 0.13 |
10 | model | 185 | 0.11 |
Keywords | Year | Strength | Begin | End | 2000–2023 |
---|---|---|---|---|---|
Emission | 2003 | 12.16 | 2003 | 2015 | |
Chemistry | 2003 | 9.31 | 2003 | 2015 | |
Speciation | 2014 | 7.94 | 2014 | 2019 | |
Dielectric barrier discharge | 2014 | 6.89 | 2014 | 2019 | |
Fly ash | 2013 | 14.52 | 2013 | 2018 | |
Dibenzo-p-dioxin | 2014 | 6.55 | 2014 | 2019 | |
Nonthermal plasma | 2015 | 6.63 | 2015 | 2019 | |
NH3 | 2022 | 7.57 | 2022 | 2023 | |
Environmental regulation | 2022 | 7.33 | 2022 | 2023 | |
Anthropogenic emission | 2019 | 8.4 | 2022 | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Chen, Q.; Hu, L.; Yang, T.; Yi, C.; Zhou, Y. Unveiling Trends and Hotspots in Air Pollution Control: A Bibliometric Analysis. Atmosphere 2024, 15, 630. https://doi.org/10.3390/atmos15060630
Chen J, Chen Q, Hu L, Yang T, Yi C, Zhou Y. Unveiling Trends and Hotspots in Air Pollution Control: A Bibliometric Analysis. Atmosphere. 2024; 15(6):630. https://doi.org/10.3390/atmos15060630
Chicago/Turabian StyleChen, Jing, Qinghai Chen, Lin Hu, Tingting Yang, Chuangjian Yi, and Yingtang Zhou. 2024. "Unveiling Trends and Hotspots in Air Pollution Control: A Bibliometric Analysis" Atmosphere 15, no. 6: 630. https://doi.org/10.3390/atmos15060630
APA StyleChen, J., Chen, Q., Hu, L., Yang, T., Yi, C., & Zhou, Y. (2024). Unveiling Trends and Hotspots in Air Pollution Control: A Bibliometric Analysis. Atmosphere, 15(6), 630. https://doi.org/10.3390/atmos15060630