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Abstract: Systematic biases and coarse resolutions are major limitations of current precipitation
datasets. Many studies have been conducted for precipitation bias correction and downscaling.
However, it is still challenging for the current approaches to handle the complex features of hourly
precipitation, resulting in the incapability of reproducing small-scale features, such as extreme events.
In this study, we proposed a deep-learning model called PBT (Population-Based Training)-GRU (Gate
Recurrent Unit) based on numerical model NWP gridded forecast data and observation data and
employed machine-learning (ML) methods, such as Random Forest (RF), Support Vector Machine
(SVM), K-Nearest Neighbor (KNN), and Gradient-Boosted Decision Tree (GBDT), to correct the WRF
hourly precipitation forecasts. To select the evaluation method, we conducted a sample balance
experiment and found that when the proportion of positive and negative samples was 1:1, the Threat
Score (TS) and accuracy scores were the highest, while the Probability of Detection (POD) score was
slightly lower. The results showed that: (1) the overall errors of the PBT-GRU model were relatively
smaller, and its root mean square error (RMSE) was only 1.12 mm, which was reduced by 63.04%,
51.72%, 58.36%, 37.43%, and 26.32% compared to the RMSE of WRF, SVM, KNN, GBDT, and RF,
respectively; and (2) according to the Taylor diagram, the standard deviation (σn) and correlation
coefficient (r) of PBT-GRU were 1.02 and 0.99, respectively, while the σn and r of RF were 1.12 and 0.98,
respectively. Furthermore, the σn and r of the SVM, GBDT, and KNN models were between those of
the above models, with values of 1.24 and 0.95, 1.15 and 0.97, and 1.26 and 0.93, respectively. Based
on a comprehensive analysis of the TS, accuracy, RMSE, r and σn, the PBT-GRU model performed
the best, with a significantly better correction effect than that of the ML methods, resulting in an
overall performance ranking of PBT-GRU > RF > GBDT > SVM > KNN. This study provides a hint
of the possibility that the proposed PBT-GRU model can outperform model precipitation correction
based on a small sample of one-station data. Thus, due to its promising performance and excellent
robustness, we recommend adopting the proposed PBT-GRU model for precipitation correction in
business applications.

Keywords: deep learning; correction; precipitation forecasting; Zhengzhou

1. Introduction

With the continuous progress of mesoscale regional numerical models, numerical
weather prediction (NWP) models have gained significant prominence in the domain of
weather forecasting. However, the utilization of NWP models to forecast at finer temporal
and spatial scales is currently constrained by several factors, including the initial conditions,
boundary conditions, physical parametric schemes, and the integration of multi-source
data fusion technology. To enhance the performance of NWP models, research on correction
methods based on NWP models cannot be overlooked. A bias correction method serves as a
bridge by connecting the NWP models with the realization of higher-resolution predictions.
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By correcting biases, the models become a more reliable tool for generating accurate
predictions and supporting decision-making processes.

Significant advancements have been achieved in the field of correction method re-
search. Hamill et al. [1] employed the technique of quantile mapping to align the pre-
cipitation frequency, resulting in enhanced forecast reliability, forecasting skills, and a
reduction in the deterministic forecast bias. This approach also ensured the preservation of
the precipitation distribution’s resolution and spatial details. Wu et al. [2] observed that
the application of classical statistical methods led to a notable enhancement of the forecast
results. The frequency-matching method and scoring optimization correction method, as
proposed by Wu et al. [3], have gained significant popularity for the correction of cumula-
tive precipitation forecasts. In recent years, the emergence of artificial intelligence has led
to the successful utilization of machine-learning (ML) algorithms in various domains, such
as data mining, image recognition, and medical care. These advancements have brought
about significant transformations and disruptions in several industries. These advance-
ments also serve as a point of reference and a source of inspiration for the advancement of
weather-forecasting technology. For instance, Zaytar et al. [4] employed a multi-stacked
Long Short-Term Memory (LSTM) approach to effectively model time series data of equal
length. This methodology facilitated improved predictions of various meteorological vari-
ables, such as the wind speed, in nine different cities located in Morocco. Herman et al. [5]
conducted a study in which they utilized three distinct statistical algorithms to forecast
local extreme precipitation in the contiguous United States (CONUS). In their research, they
employed a Random Forest (RF) training model for the purpose of precipitation prediction.
Ahmed et al. [6] employed a range of ML algorithms, such as artificial neural networks
(ANNs), K-Nearest Neighbor (KNN), and Support Vector Machine (SVM), to conduct a
comparative analysis with the simulated precipitation and temperature outcomes gener-
ated by the general circulation models (GCMs). The study revealed that the K-Nearest
Neighbor and related vector machine multi-model ensemble exhibited superior skills,
whereas the ANNs demonstrated greater performance fluctuations across spatial domains.
Xu [7] highlighted the increasing utilization of DL algorithms in weather forecasting and
research in recent years. This has further emphasized their significant potential value and
promising application prospects. Sun et al. [8] made a significant discovery regarding the
application of DL algorithms in improving the accuracy of 10 m wind speed forecast results
generated by numerical models. Their findings revealed that over time, the performance
of the corrected forecasts exhibited a consistent improvement, with the effect becoming
increasingly optimal. Shi et al. [9] utilized the convolutional Long Short-Term Memory
(LSTM) model to forecast precipitation and observed that it exhibited superior performance
compared to conventional optical flow extrapolation techniques. Guo et al. [10] discovered
that DL algorithms have the capability to acquire the spatiotemporal structure and intrinsic
correlation of radar data. This ability leads to a significant enhancement in the prediction
accuracy of strong convective weather echo intensity. Teng [11] introduced a novel model
known as RET-RNN, which was developed using LSTM and demonstrated promising
results in the field of long-duration extrapolation.

However, unlike the consistent, continuous, and smooth temperature evolution, pre-
cipitation generally demonstrates a highly non-linear and random distribution in both
space and time. Correcting precipitation data for bias is a challenge due to its complex
characteristics. Various methods have been developed to address this issue, including
traditional quantile mapping (QM)-based bias correction and downscaling techniques, as
well as recent machine-learning-based approaches like Random Forest [12–16] and artifi-
cial neural networks [17]. In recent years, DL has made significant advancements across
various fields and outperformed traditional ML methods due to its powerful ability to
learn spatiotemporal feature representation in an end-to-end manner [18–20]. Specifically,
DL approaches utilizing convolutional neural networks (CNNs) have been applied to
correct and downscale low-spatial-resolution data [21–23], reanalysis products [24,25], and
weather forecast model outputs [26,27]. While these studies have shown many promising
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strengths and advantages compared to traditional downscaling and correction methods,
most of them struggle to capture local small-scale features, such as extreme events, in
unseen datasets. For instance, Baño-Medina et al. [24] designed different DL configurations
with varying numbers of plain CNN layers to correct and downscale daily ERA5-Interim
reanalysis data from a spatial resolution of 2◦ to 0.5◦. However, the overall performance
still fell short when compared to simple generalized linear regression models, resulting
in significant underestimation of precipitation extremes. Harris et al. [26] developed a
generative adversarial network (GAN) architecture to correct and downscale weather fore-
cast outputs and discovered that accounting for forecast errors (or biases) in a spatially
coherent manner is more challenging than addressing pure downscaling problems. Ad-
ditionally, previous studies on bias correction and downscaling have primarily focused
on the daily time scale [24–30]. It is worth noting that understanding the distribution of
hourly precipitation data within a day is more crucial than daily or monthly aggregations
when assessing the impacts and risks associated with precipitation changes induced by
global warming [31].

In this study, a combined model—PBT-GRU—based on the PBT (Population-Based
Training) optimization algorithm and the GRU (Gate Recurrent Unit) model is constructed
and trained, and a study on the correction method of the mesoscale numerical weather
prediction (NWP) model’s WRF precipitation forecast is carried out by using the model. The
objective of the proposed model is to offer significant guidance and technical assistance in
enhancing the precision of refined precipitation forecasting and expanding its applicability
in various business domains.

2. Data and Methodology
2.1. Scheme of Precipitation Correction

The correction process consists of five distinct steps. Firstly, the study area is deter-
mined and the necessary data are prepared. Secondly, the data are processed. Thirdly,
a sample database is constructed and the data are standardized. Fourthly, the training,
validation, and test datasets are divided. Finally, a DL model based on PBT and GRU is
developed to correct the deviations in the precipitation product. Various ML algorithms
are introduced and the resulting corrections are compared and evaluated. The specific
implementation plan is depicted in Figure 1.
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2.2. Study Area

The target area for this study is the city of Zhengzhou (112.70◦–114.23◦ E, 34.27◦–34.98◦ N),
which is located in northern Henan Province (Figure 2). Zhengzhou, being situated in the
middle latitudes, is prone to frequent incursions of cold air. Additionally, warm and humid
air masses can also reach the region during the summer, which often leads to the convergence
of warm and cold air masses and subsequently results in intense rainfall events. Additionally,
there are multiple indications that China’s climate is undergoing a transitional phase, which
may result in a change from low summer rainfall to increased precipitation in the northern
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regions. Therefore, the selection of Zhengzhou as the study area for this research is highly
appropriate. Undoubtedly, this study will serve as a crucial stepping stone toward enhancing
severe weather warnings and disaster prevention and mitigation capabilities in the region. It
demonstrates a forward-thinking approach with a strategic perspective, setting the stage for
future advancements in this field.
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2.3. Construction of the Sample Database

The data used in this research consisted of numerical model NWP gridded forecast
data and observation data. The observational data in this study were obtained from the
Henan Meteorological Bureau. Specifically, we utilized the hourly ground observation
data from 2014 to 2022 of Erqi Station (Station No. 57083), located in Zhengzhou, as the
sample dataset. The data used in this study were obtained from the mesoscale weather
model WRF4.0, a non-hydrostatic model jointly developed by numerous universities and
research institutions in the United States [32]. This model features a data assimilation
system capable of incorporating meteorological data and executing parallel operations.
Moreover, it integrates the latest research findings and advancements from experts and
scholars across various fields, providing a solid foundation for both scientific research and
practical applications [33]. At the same time, we utilized WRF4.0 to conduct numerical
simulations of the weather process. We then compared and analyzed the corrected results
of other ML algorithms using the high-resolution forecast results generated by the model.
The model configuration settings are listed in Table 1. First, the temporal resolution was set
at 6 h, and the horizontal resolution was set at 0.25◦ × 0.25◦. Three nested domains were
utilized, with the center of the simulation area located at (34.47◦ N, 114.21◦ E), as shown in
Figure 3. The grid sizes for the domains were set at 151 × 151, 202 × 151, and 220 × 151.
These domains had corresponding grid spacings of 27 km, 9 km, and 3 km, respectively. The
model employed 50 layers for the vertical dimension, with a top pressure level of 50 hPa.
The physical parameterization schemes used in all the model domains and experiments
were the WRF Single-Moment 6-class microphysics scheme [34], the Mellor–Yamada–Janjic
planetary boundary layer scheme [35], the rapid radiative transfer scheme (RRTM) [36]
and the unified Noah land-surface model [37,38]. All the settings mentioned above are the
optimal configurations for this simulation region, as summarized by Liu et al. [39]. Next, all
the experiments used NCEP FNL data as input conditions to help observe the changes in
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the model’s required spin-up times. The time step used for the lateral boundary condition
file was one hour. The history output files of each domain were logged hourly.

Table 1. Summary of physical parameterizations and other configurations used in simulations.

Mode configurations Option selection
Nesting ratio 1:3:3, d01 27 km; d02 9 km; d03 3 km
Vertical levels 50 levels
Microphysics WRF Single-Moment 6-class scheme

Planetary boundary layer Mellor–Yamada–Janjic scheme
Longwave radiation RRTM scheme
Shortwave radiation RRTM scheme

Land surface Noah land-surface model
Spin-up time per 6 h
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Given the extensive parameters and high computational power requirements for
training the DL model in this study, we select the radar reflectivity factor as the predictive
factor. This feature serves as an indicator of the generation and development of convection,
as it reflects the reflection of radar waves in various height layers. After the selection of
NWP gridded forecast data and observation data, a sample database was generated for the
purpose of model training. The database consisted of 54 meteorological variables that were
updated on an hourly basis. These data can be classified into eight distinct categories: air
pressure (P), visibility (VIS), wind direction (WD), wind speed (WS), air temperature (T),
relative humidity (RH), precipitation (P), and NWP (see Table 2 for detailed information).

Table 2. Categories of meteorological features.

Category Meteorological Variables

P ‘Sea-level pressure (Pa)’, ‘3 h pressure change (Pa)’, ‘24 h pressure change (Pa)’, ‘Maximum pressure (Pa)’, ‘Time of
maximum pressure’, ‘Minimum pressure (Pa)’, ‘Time of minimum pressure’, ‘Ground Pressure (Pa)’.

VIS ‘Visibility (m)’, ‘1 min average Visibility (m)’, ‘10 min average Visibility (m)’, ‘Minimum visibility (m)’, ‘Minimum
visibility occurrence time’.

WD ‘2 min average wind direction (◦)’, ‘10 min average wind direction (◦)’, ‘Maximum wind direction (◦)’, ‘Instantaneous
wind direction (◦)’.
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Table 2. Cont.

Category Meteorological Variables

WS ‘2 min average wind speed (m/s)’, ‘10 min average wind speed (m/s)’, ‘Maximum wind speed (m/s)’, ‘Instantaneous
wind speed (m/s)’.

T

‘Air temperature (◦C)’, ‘Tmax (◦C)’, ‘Occurrence time of Tmax (◦C)’, ‘Tmin (◦C)’, ‘Time of tmin (◦C)’, ‘24 h of
temperature change (◦C)’, ‘Maximum temperature in the last 24 h (◦C)’, ‘The lowest temperature in the last 24 h (◦C)’,
‘5 cm ground temperature (◦C)’, ‘10 cm ground temperature (◦C)’, ‘15 cm ground temperature (◦C)’, ‘20 cm ground
temperature (◦C)’, ‘40 cm ground temperature (◦C)’, ‘80 cm ground temperature (◦C)’, ‘160 cm ground temperature
(◦C)’, ‘320 cm ground temperature (◦C)’, ‘Ground temperature (◦C)’, ‘Maximum ground temperature (◦C)’, ‘Maximum
ground temperature occurrence time’, ‘Minimum ground temperature (◦C)’, ‘Minimum ground temperature occurrence
time’, ‘Minimum ground temperature in the last 12 h (◦C)’.

RH ‘Relative humidity (%)’, ‘Minimum relative humidity (%)’, ‘Minimum relative humidity occurrence time’, ‘Water vapor
pressure (Pa)’, ‘Dew point temperature (◦C)’.

Pre ‘Hourly precipitation (mm)’, ‘Precipitation in the last 3 h (mm)’, ‘Precipitation in the last 6 h (mm)’, ‘Precipitation in the
last 12 h (mm)’, ‘Precipitation in the last 24 h (mm)’.

NWP ‘The radar reflectivity factor’.

Due to the specific focus of this paper on the correction of hourly precipitation output
from the WRF model, we categorized the hourly rainfall into four levels based on the
operational practices. By examining the sample distribution presented in Table 3, it becomes
apparent that there exists a significant disparity in the distribution of the hourly rainfall
data. Precipitation events of weak intensity are infrequent, constituting a mere 4.74% of
the overall distribution. This matter necessitates attention in subsequent iterations of the
model training procedures.

Table 3. Sample sizes of different precipitation levels in 2014–2022.

Precipitation Levels Precipitation Intensity/mm·h−1 Number of Samples Sample Ratio/%

No precipitation [0, 0.1) 72,645 95.25
Weak precipitation [0.1, 15) 3563 4.67

Moderate precipitation [15, 30) 40 0.05
Heavy precipitation [30, ∞) 17 0.02

2.4. Data Standardization

Due to the wide range of meteorological characteristics encompassed by the input
features, each feature possesses distinct dimensions and units. Feeding these features
directly into the model introduces complexity to the data processing and may potentially
result in model crashes. To mitigate the occurrence of such issues, this study utilized
the normalization calculation equation for the purpose of normalization processing, as
suggested by Song et al. [40]. This approach uniformly rescales different data values to fit
within the standard interval of 0–1. The specific formula can be expressed as follows:

x∗ =
x − xmin

xmax − xmin
(1)

where x∗ represents the standard data, x represents the original data, xmax and xmin repre-
sent the maximum and minimum values in the original meteorological dataset. By ensuring
that the normalized meteorological sample data falls within the 0–1 standard interval, the
training efficiency of the model can be effectively improved, and an efficient calculation
process can be ensured when the data are input into the model. Further details can be
found in Table 4.
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Table 4. Normalized meteorological features.

Var1 (t − 1) · · · Var54 (t − 1) Var1 (t) · · · Var54 (t)

0.774230 · · · 0.525610 0.204615 · · · 0.204606
0.778103 · · · 0.525630 0.204626 · · · 0.204604
0.775722 · · · 0.525688 0.204639 · · · 0.204587
0.775758 · · · 0.525694 0.204653 · · · 0.204589
0.772680 · · · 0.525671 0.204642 · · · 0.204600
0.774621 · · · 0.525621 0.204606 · · · 0.204617

...
...

...
...

...
...

0.777357 · · · 0.525613 0.204637 · · · 0.204681
0.776291 · · · 0.525610 0.204600 · · · 0.204626
0.776006 · · · 0.525660 0.204626 · · · 0.204571
0.777001 · · · 0.525660 0.204589 · · · 0.204606
0.774514 · · · 0.525619 0.204622 · · · 0.204639

Considering the inclusion of meteorological features such as the temperature, relative
humidity, pressure, wind speed, visibility, and precipitation in the sample database, it is im-
portant to note that these features, due to being observed simultaneously, cannot be directly
utilized for prediction purposes. In order to ensure precise predictions, it is imperative to
establish a correlation between the meteorological characteristics observed in the past and
the predictive indicators for the future. Based on the aforementioned considerations, the
normalized sample data are structured into time series data. Subsequently, the time series
data are shifted backwards, where t represents the current time. The input value is taken as
the sample observation data at time t − 1, while the output value is the precipitation data
at time t.

Based on the data presented in Table 4, all the sample data are normalized. Specif-
ically, Var1(t − 1), Var2(t − 1), . . . , and Var54(t − 1) represent the observed values of
54 meteorological variables at time t − 1, while Var1(t), Var2(t), . . . , and Var54(t) represent
the observed values of the same 54 meteorological variables at time t. This study aims
to predict future precipitation based on observations at previous times. To achieve this,
we retain Var1(t) as the predicted value for the precipitation at time t, and remove the
remaining data of Var2(t), Var3(t), . . . , and Var54(t). The performance of the predictions
is evaluated using seven statistical metrics: Probability of Detection (POD), Threat Score
(TS), Equitable Threat Score (ETS), Bias Score (BIAS), accuracy, False Alarm Rate (FAR),
and Missing Alarm Rate (MAR), which are defined as follows:

POD =
h

h + m
(2)

TS =
h

h + m + f
(3)

ETS =
h − hrandom

h + f + m +−hrandom
, hrandom = (h + f)× (h + m)/(h + m + f + c) (4)

BIAS =
h + f

h + m
(5)

Accuracy =
h + c

h + m + f + c
(6)

FAR =
f

h + f
(7)

MAR =
m

h + m
(8)

In the context of the statistical metrics used to evaluate the performance of the out-
comes, the definitions of the contingency table statistics are as follows:
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h: the number of forecasted events that match the actual events.
m: the number of actual events that were not forecasted.
f: the number of forecasted events that did not occur in reality.
c: the number of events that were neither forecasted nor occurred in reality.

These contingency table statistics are used to calculate the statistical metrics, which
provide insights into the performance of the correction model.

2.5. Training and Test Dataset

The sample dataset exhibits a significant class imbalance due to the infrequent oc-
currence of convective weather. Specifically, the number of positive samples represent-
ing convective weather with an intensity of weak precipitation (greater than or equal
to 0.1 mm/h) is considerably lower than the number of negative samples representing
convective weather without precipitation (less than 0.1 mm/h). This particular instance
serves as a quintessential illustration of the issue of sample imbalance, as discussed by
Krawczyk et al. [41]. To mitigate this concern, a down-sampling technique is utilized to
randomly eliminate the surplus samples, taking into account the ratio of positive and
negative samples in the dataset. This approach ensures a balanced distribution of positive
and negative samples [42].

During the experiment, six distinct ratios of positive and negative samples are cho-
sen, namely 3620:72,645, 1:1, 1:2, 1:3, 2:1, and 3:1. Among the samples, the number
3620 represents the actual count of positive samples, whereas 72,645 represents the actual
count of negative samples. When the PBT-GRU model is trained without any adjustments
to the sample quantity, the Probability of Detection (POD), accuracy, and Threat Score (TS)
scores are 0.6237, 0.6114, and 0.5982, respectively. Based on the distribution of positive
samples in the original dataset, we employ a random selection process to obtain negative
samples in order to maintain a balanced ratio of positive to negative samples at 1:2 and 1:3.
Subsequently, we utilize the down-sampling technique to adjust the number of negative
samples, resulting in a 2:1 and 3:1 ratio of positive to negative samples, respectively. The
PBT-GRU model is subsequently trained, and the findings from the experiments are pre-
sented in Table 5. When the ratio of positive and negative samples is balanced at 1:1, the
accuracy and True Skill (TS) of hourly precipitation exhibit their highest values. However,
the Probability of Detection (POD) score for the hourly precipitation is slightly lower. As the
ratio of positive and negative samples increases to 2:1 and 3:1, there is an observed increase
in the number of positive samples. This leads to higher Probability of Detection (POD)
scores, while the accuracy and True Skill (TS) scores show a slight decrease. Conversely,
when the ratio of positive and negative samples is 1:2 and 1:3, there is an increase in the
number of negative samples, resulting in a notable decrease in the scores for the Probability
of Detection (POD), accuracy, and TS (Threat Score). In conclusion, in order to enhance
the prediction performance, we have determined that a 1:1 ratio of positive and negative
samples is the optimal choice.

Table 5. Training results with different positive and negative samples.

Experimental Category Proportion of Positive and Negative
Samples in the Training Set Accuracy POD TS

Practical sampling test 3620:72645 0.6114 0.6237 0.5982
Resampling test 1 1:1 0.8718 0.8921 0.7766
Resampling test 2 1:2 0.7023 0.6715 0.6434
Resampling test 3 1:3 0.6938 0.6523 0.6235
Resampling test 4 2:1 0.8546 0.9468 0.7512
Resampling test 5 3:1 0.8549 0.9657 0.7567

To obtain objective and fair experimental results, we employ random deletion to
balance the number of positive and negative samples in the original dataset. This approach
can ensure that the sample size is controlled and balanced. We then divide all the positive
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and negative samples into three subsets: the experimental training dataset, validation
dataset, and test dataset. The training dataset constitutes 80% of the total samples, the
validation dataset comprises 10%, and the remaining 10% serves as the test dataset.

3. Correction Model Construction Based on PBT and GRU
3.1. Dataset Dimensionality Reduction by RF

The high dimensionality and complexity of features in ML frequently result in reduced
computational efficiency and heightened operating costs, which are detrimental to business-
oriented applications. In the context of nonlinear complex feature spaces and vast high-
dimensional data, the task of eliminating redundant and irrelevant feature values from
input features has emerged as a critical concern in the field of ML. Feature filtering and
dimensionality-reduction techniques are employed to identify and retain input features that
possess high importance and contain rich information. This process ultimately improves
the model’s ability to extract and refine relevant information. Random Forest (RF) is an ML
algorithm that utilizes bootstrapping resampling to randomly select data for constructing
resampled samples. The approach employs random splitting to construct multiple decision
trees for each sample, and it subsequently aggregates the decision trees to derive the final
prediction outcome via a voting mechanism. Random Forest (RF) is a commonly employed
technique for feature selection. It operates by assessing the importance of each feature,
ranking them based on their calculated importance, and subsequently filtering out the most
significant ones. This is particularly valuable in scenarios where a substantial number of
features are involved in classification or regression tasks. It is common for many features
to exhibit high correlation and dimensionality issues. Incorporating these features into
the model can have a significant impact on the accuracy of model training and prediction.
By utilizing the Random Forest (RF) algorithm, an importance analysis can be conducted
to determine the significance of each predictor and establish a prioritized ranking. The
fundamental principle entails the quantification of the contribution made by each feature
in every tree within the Random Forest. These values are then averaged and compared
to determine the relative contributions among the features. Typically, the Gini index or
Out-of-Bag (OOB) error rate can be employed as an evaluation metric. In this study, our
primary focus is on the utilization of the Gini index as a means of assessment, as discussed
by Breiman [43], Robin et al. [44], and McGovern et al. [45]. Here, we denote the Variable
Importance Measure (VIM) as the score reflecting the importance of the variables, while GI
represents the Gini index. Assuming there are J features, I decision trees, and C categories,
the Gini index of node q in the i-th tree is calculated as follows:

GI(i)q =
|C|

∑
c=1

∑
c′ ̸=c

P(i)
qc P(i)

qc′ = 1 −
|C|

∑
c=1

(
P(i)

qc

)2
(9)

Among them, C represents the categories, and Pqc denotes the proportion of category
c at node q. The change in the Gini index for a feature is given by:

VIM(Gini)(i)
j = ∑

q∈Q
VIM(Gini)(i)

jq (10)

Suppose there are I trees in the Random Forest (RF), then:

VIM(Gini)
j =

I

∑
i=1

VIM(Gini)(i)
j (11)

Finally, normalization is performed:

VIM(Gini)
j =

VIM(Gini)
j

∑J
j′=1 VIM(Gini)

j′

(12)
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The specific steps involved in this process are as follows. Firstly, the feature impor-
tance needs to be calculated for all the features. Subsequently, these features are ranked
in descending order based on their importance. When provided with a predetermined
threshold for the proportion of features to be rejected, this threshold can be utilized as
a criterion to eliminate excessive features by considering their importance. Repeat steps
1 and 2 on the remaining feature dataset until the desired number of features has been
selected. The feature dataset with the lowest Out-of-Bag error rate, which corresponds to
the selected feature set, should be chosen as the input for the model [43,44].

Through the implementation of RF dimensionality reduction, we have identified the
nine most significant features, which collectively account for an importance score of 0.853.
The specific findings are displayed in Figure 4 and Table 6. The results show that for
the feature of convective weather, the importance of the features ranked by the machine-
learning method is largely consistent with the subjective understanding of forecasters, for
example, the radar reflectivity factor is the most important predictive factor for judging
short-term heavy precipitation. Through the analysis of the objective ranking of these
features, some useful inspiration can also be obtained. For example, automatic observation
of the minimum visibility is an important factor in predicting precipitation. As the intensity
and duration of precipitation can significantly modulate visibility, consistent and stable
rainfall can easily trigger a long low-visibility scenario, and the sudden heavy precipitation
is an important factor inducing the sharp decrease in visibility. With the increase in rainfall,
the visibility changes from a rapid decline to a slow decline and there exists an inflection
point [46]. Therefore, the automatic observation of the minimum visibility is important.
which can be used more in business.
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Table 6. Results of feature value importance analysis.

Serial Number Feature Value Importance Cumulative Importance

1 Radar reflectivity factor 0.327 0.327
2 3 h of precipitation 0.213 0.540
3 Automatic observation of the minimum visibility 0.109 0.649
4 6 h of precipitation 0.063 0.712
5 Artificial visibility 0.043 0.755
6 12 h of precipitation 0.041 0.796
7 Automatic observed 10 min average horizontal visibility 0.026 0.822
8 Automatic observed 1 min average horizontal visibility 0.017 0.839
9 Extreme wind speed 0.014 0.853

3.2. The PBT Optimization Algorithm

The training process for ML models encompasses a multitude of parameters and
hyperparameters that exert a substantial influence on the ultimate efficacy of these models.
Traditionally, the manual adjustment of these parameters and hyperparameters has been
common practice. However, this approach is characterized by its time-consuming and
labor-intensive nature, and it does not provide a guarantee of achieving an optimal solution.
Consequently, automatic adjustment methods have emerged as the predominant approach.
Parallel search and sequence optimization are two distinct approaches utilized in the field
of automatic tuning, each comprising a variety of individual methods. In the context of
optimization algorithms, parallel search refers to the simultaneous training of multiple sets
of parameters. This approach utilizes various techniques, including random search and
grid search, to efficiently explore the parameter space. One limitation of this approach is
the inefficient utilization of optimization information across parameters. On the contrary,
sequence optimization aims to optimize the parameters by employing a series of iterative
attempts, without the inclusion of parallel operations. This methodology encompasses
various strategies, such as Bayesian optimization and manual parameter tuning. Never-
theless, it is imperative to take into account that certain parameters, such as the degree
of exploration and the learning rate, experience continuous fluctuations throughout the
training process of the model. The conventional approach involves initially establishing
predetermined values and subsequently modifying them in response to various scenarios.
Unfortunately, this approach frequently does not result in the optimal parameter value.
In conclusion, the careful selection and optimization of parameters and hyperparameters
play a crucial role in determining the overall performance of ML and DL models. While
conventional manual adjustment techniques are laborious and time-consuming, automatic
tuning methods provide more efficient solutions, albeit with inherent limitations.

The Population-Based Training (PBT) method has been shown to be effective in au-
tomating and optimizing hyperparameters [47]. Figure 5 presents a visual representation of
the main differences among the PBT, sequence optimization, and parallel search methods.
(A) Sequential optimization necessitates the completion of multiple training runs, which
may include early stopping. Afterward, fresh hyperparameters are chosen, and the model is
retrained from the beginning utilizing the newly selected hyperparameters. The aforemen-
tioned process is inherently sequential, leading to prolonged durations for hyperparameter
optimization. However, it utilizes minimal computational resources. (B) In contrast, the
parallel random/grid search of hyperparameters entails the simultaneous training of mul-
tiple models with varying weight initializations and hyperparameters. The objective is
to identify the most optimized model among the available options. This approach entails
the need for a solitary training session; however, it demands the utilization of additional
computational resources to simultaneously train multiple models. The PBT algorithm
integrates the advantages of sequence optimization and parallel search. Initially, the PBT
algorithm employs a random initialization process to generate multiple models. During
the training process, checkpoints are automatically generated at regular intervals. Each
model autonomously adapts its behavior in response to the performance of other models.
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If a model exhibits encouraging outcomes, the training process persists. Conversely, in the
event that a model’s performance is deemed unsatisfactory, its parameters are substituted
with those derived from a model that exhibits superior performance. Additionally, in order
to further explore the parameter space, random disturbances are introduced during the
training process. Checkpoints are established through manual configuration, whereas
disturbances are induced by introducing noise. In summary, the PBT method combines
the advantages of the sequence optimization and parallel search methods, facilitating the
efficient and effective adjustment and optimization of hyperparameters. The PBT algorithm
demonstrates dynamic adaptation to enhance the overall training outcomes by employing
checkpoint generation, model evaluation, and parameter replacement techniques [47].
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3.3. Construction of the Model

This paper introduces the development of a DL model called PBT-GRU. The PBT-GRU
uses the sequence data from ground observations and numerical model grid points as input.
Firstly, to optimize the efficiency, preprocessing techniques such as data normalization
and cleaning are employed on the initial meteorological data. After completing the above
operations, dimensionality reduction of the initial dataset is performed using the Random
Forest algorithm. Secondly, two GRU layers are used to extract the time-varying features of
the sequence data, in which the first GRU layer, containing 128 neurons, is set to return the
complete sequence, and the second GRU layer, containing 64 neurons, is set not to return
the complete sequence, and the activation function of the two GRU layers is ReLU. Finally,
the predicted precipitation size is obtained from the output of the two dense layers. The
PBT-GRU model contains two GRU layers and two fully connected layers, and through the
stacking of these layers and the processing of the activation function, the model can learn
the features of the input data and output the prediction results (as illustrated in Figure 6).
Interpolation is necessary to obtain the meteorological element values of the forecast station,
as the forecast station and model grid points are not located at the same point. This is
because the grid point element values near the forecast station need to be interpolated.
Given the potential error introduced by interpolation, we employ bilinear interpolation as a
means to mitigate the influence of this error. This approach allows us to generate a sample
database for training the model. In order to ensure the comparability of different models,
both the PBT-GRU model and other ML models undergo a reconstruction of the sample
dataset. By taking into account the evolutionary patterns and characteristics of weather
systems, the incorporation of this factor allows the model to capture the fundamental
causal connections between precipitation and other forecast attributes in the long-term
series. The proposed PBT-GRU model effectively combines the benefits of Population-Based
Training and the GRU architecture. Through the implementation of efficient preprocessing
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techniques and the incorporation of NWP gridded forecast data and observation data, the
model significantly improves its predictive capabilities by accurately capturing the complex
interplay between precipitation and other features.
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The model training process employs the early stop strategy, with the iteration period
(Epoch) set to 300. If the loss does not decrease for more than 10 epochs, the operation
is automatically terminated. A batch size of 16 is used. The loss function selected for
minimization during training is the mean squared error (MSE). The formula is as follows:

MSE =
1
m

m

∑
i=1

(
y′

i − yi
)2 (13)

where m represents the training sample size, yi represents the actual value, and y′
i rep-

resents the predicted value. Statistical measures, including the correlation coefficient
(r), standard deviation (σn), and root mean square error (RMSE), are used to assess the
model performance.

3.4. Experimental Setup

To evaluate the efficacy of the different models, we utilized a range of methods,
including Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbor (KNN),
Gradient-Boosting Decision Tree (GBDT), and PBT-GRU. The objective was to enhance the
accuracy of the precipitation forecasts generated by the WRF model. These refined outputs
were subsequently compared with the original predictions from the WRF model for the
purpose of comparison. The input dataset utilized in our study encompassed historical
data from the years 2014 to 2022. In our approach, we considered an optimal ratio of 1:1 for
positive to negative samples. Given that we had 3620 positive samples, we set an equal
number of negative samples, yielding a total of 7240 samples. We segmented this dataset as
follows: 80% (that is, 5792 samples) served as our training dataset. The remaining dataset
was equally split into two subsets: 10% (or 724 samples) formed our validation dataset,
while another 10% were used for the test dataset. We selected nine features identified
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through the RF screening. It is important to note that the distribution for the training,
validation, and test datasets remained consistent across the different models.

4. Results and Discussion
4.1. Comparison with Other ML Methods

To investigate the performance of the PBT-GRU model, we used scattered density plots
to compare its performance with the other five models: RF, SVM, KNN, GBDT and WRF.
The results are shown in Figure 7. It can be see that the SVM and KNN methods resulted
in subpar precipitation corrections, as evidenced by their relatively high RMSE values of
2.32 mm and 2.69 mm, respectively. Compared to the WRF model, these figures represent
reductions of 23.43% and 11.22%. Additionally, the correlation coefficients between the
corrected and actual precipitation were low due to the more dispersed distributions. On
the contrary, RF and GBDT methods demonstrated superior performance in precipitation
correction. They achieved smaller RMSE values between the corrected and actual rainfall,
reaching 1.52 mm and 1.79 mm, respectively, representing reductions of 49.83% and 40.92%
when compared with the WRF model. These methods also exhibited stronger correlations,
indicated by the higher correlation coefficients, suggesting concentrated distributions of
corrected rainfall and actual precipitation errors. However, despite the promising results
obtained by the RF and GBDT methods, the PBT-GRU model proposed in this study
outperformed them. The distribution of the corrected and actual precipitation using the
PBT-GRU method was notably more concentrated on the 1:1 line, leading to the smallest
overall error. Specifically, the RMSE value for the PBT-GRU model was merely 1.12 mm,
marking reductions of 63.04%, 51.72%, 58.36%, 37.43%, and 26.32% in comparison to
the WRF, SVM, KNN, GBDT, and RF models, respectively. Furthermore, it reached an
impressive correlation coefficient of approximately 99% between the corrected precipitation
and the actual data. Based on this evidence, it is clear that the PBT-GRU model substantially
surpasses traditional ML algorithms such as SVM, KNN, GBDT, and RF in the context of
precipitation correction.
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Figure 7. Scattered density plots of the observed and ML corrected precipitation ((a): KNN, (b): RF,
(c): GBDT, (d): SVM, (e): PBT-GRU, and (f): WRF-predicted precipitation).

To further investigate the performance of the PBT-GRU model, we compared it with
the other five models using the cumulative distribution probability scatter plots and Taylor
plots, and the results are shown in Figure 8. From the data provided in the figure, it is
evident that the PBT-GRU model outperformed the other models significantly. It exhibited
a standard deviation of 1.02 and a correlation coefficient of 0.99. Following closely behind as
the second most accurate model is the RF model, boasting a standard deviation of 1.12 and
a correlation coefficient of 0.97. The WRF model demonstrated the weakest performance,
with a standard deviation and correlation coefficient of 1.30 and 0.85, respectively. The
accuracy metrics of the SVM, GBDT, and KNN models fell between those of the superior
(PBT-GRU and RF) and inferior (WRF) models. Specifically, their standard deviations and
correlation coefficients were recorded as follows: SVM—1.24 and 0.91; GBDT—1.15 and
0.94; KNN—1.26 and 0.87. In conclusion, the PBT-GRU model held a distinct advantage
due to its ability to effectively extract the development characteristics of convective weather,
thereby achieving superior precipitation correction.
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4.2. Individual Case Forecast Evaluation
4.2.1. Spatial Distribution

In July 2021, seven individual convective weather events occurred in the Zhengzhou
area, characterized by thunderstorms and short-term heavy precipitation, In order to assess
and analyze the accuracy of the various models, we chose the forecast results of these cases
for evaluation. The TS (Figure 9) and RMSE (Figure 10) distribution of precipitation of the
6 models at 12 stations in Zhengzhou show that the correction effect of the PBT-GRU model
is better than the other ML models. At most stations, the TS of the precipitation forecast
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by WRF is between 40% and 55%, and RMSE value is mostly between 1 mm and 1.3 mm.
After the PBT-GRU and other models are corrected, the forecast accuracy of the corrected
precipitation is greatly improved. As can be seen from Figures 9 and 10, the TS of PBT-GRU
is as high as 80%, and the RMSE is as low as 0.6 mm. The TSs of the RF, SVM, GBDT,
and KNN models fall between the PBT-GRU and WRF forecasts. The performances of the
corrected precipitation are not as good as the PBT-GRU, with their TS and RMSE recorded
as follows: RF: 70–78% and 0.70 mm–0.80 mm, SVM: 60–70% and 0.78 mm–0.95 mm; GBDT:
65–74% and 0.75 mm–0.90 mm, KNN: 55–65% and 0.85 mm–1.00 mm. From the above
analysis, it can be concluded that the PBT-GRU model performs the best, followed by RF,
GBDT, SVM, and KNN.
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in Zhengzhou).

In order to evaluate the variability of the errors across the different models, boxplots
were utilized as a convenient method to summarize the data from all 12 stations. As
depicted in Figure 11, the PBT-GRU model exhibited more accurate results compared to
the other models. Its difference between the observed precipitation and the predicted
precipitation was minimal, resulting in the highest TS value of 0.82 and the lowest RMSE
value of 0.43 mm (Figure 10). These values were significantly superior to those of the other
models. For the RF and GBDT models, the difference between the observed precipitation
and the predicted precipitation was not significant and both showed better performance
than the KNN and SVM models. Overall, the PBT-GRU model showed the best perfor-
mance, with higher accuracy for all stations, and the KNN and SVM models illustrated the
lowest performance among the other models and approaches. However, it was difficult to
evaluate the model’s stability due to the few individual cases.

4.2.2. Temporal Variations

Figure 12 depicts the corrections in the diurnal variations offered by the diverse
models in July 2021, and it also shows the diurnal fluctuation in precipitation in the initial
WRF forecast. The precipitation forecast by the original WRF weather prediction model
exhibits noticeable inaccuracies. As can be seen from the figure, the WRF’s precipitation
forecast displays a distinct diurnal variation trait, characterized by substantial discrepancies
between the early morning and afternoon hours, namely between 9:00 am and 13:00 pm
(Figure 12f). This indicates that the WRF’s precipitation forecast tends to be inaccurate and
displays significant errors in the diurnal variation.
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After the WRF’s precipitation forecast underwent correction, the diurnal variation
error was considerably lessened (Figure 12a–e). Initially, the mean precipitation corrected
through the PBT-GRU model aligns well with the actual average precipitation trajectory,
with a minimal error and being devoid of diurnal variation (Figure 12e). This suggests
that the adjusted and actual distributions of precipitation are in agreement. However, the
correction performed between 9:00 am and 13:00 pm during January 2021 did not yield
satisfactory results. This could be attributed to the inadequate generalization abilities of
the training model and the excessive volatility of the actual precipitation at these specific
times. Based on the above comparative analysis, it can be inferred that the PBT-GRU model
outperforms the other models.

4.3. Stability Analysis of the Proposed Models

The preceding results presented the visualized outcomes of the various correction
methods, which may not fully prove the stability of the different approaches. To further
evaluate the stability of the various ML models, we compared their performance on strong
convective weather forecasting during the flood season (April–September) from 2020 to
2022 by using six evaluation metrics: RMSE, FAR, MAR, POD, TS, and accuracy. The
specific results are presented in Figure 13. This comprehensive analysis provides a more
accurate assessment of the stability of the different models.
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The RMSE values of the five ML models were lower than that of the WRF model, with
the PBT-GRU model having the smallest RMSE of 1.12 mm. This represented a 63.04%
reduction in the RMSE compared to the output precipitation of the WRF model. From the
perspective of solving regression problems, the model effectively corrected the deviation
in precipitation predicted by the numerical forecast model. In comparison to the other
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ML algorithms, the accuracy of the PBT-GRU model showed a significant improvement,
demonstrating the stability of DL methods for nonlinear problems such as precipitation,
often achieving superior application results.

The FAR and MAR are two important indicators for evaluating precipitation forecast-
ing accuracy, reflecting the false and missing alarm rates, respectively. As shown in the
figure, the FAR of the PBT-GRU model was higher than that of all the other models, while
its MAR was lower than that of all the other models. This situation might be due to the
fact that while the PBT-GRU model effectively fits precipitation, it also has side effects,
leading to precipitation forecasts in the absence of actual precipitation. The FAR and MAR
values obtained by the other four ML algorithms were lower than those of the WRF model,
indicating that these ML methods can reduce the false and missing rates of the WRF model
precipitation forecasts to a certain extent.

Finally, the POD, TS and accuracy scores of the five ML models were significantly
higher than those of the WRF model, with the PBT-GRU model achieving the best perfor-
mance among all the models. These results indicate that the PBT-GRU model exhibits an
ideal performance in correcting precipitation forecasts from the WRF model, outperforming
other ML methods in terms of the precipitation correction.

5. Summary

In this study, we constructed a DL model based on PBT and GRU (PBT-GRU) for
correcting the precipitation deviation predicted by the WRF model. Subsequently, we
employed ML algorithms such as RF, SVM, KNN, and GBDT to compare with the corrected
results of the PBT-GRU model. The main conclusions drawn from this research are as
follows:

(1) The sample balancing experiment results revealed that when the ratio of positive
and negative samples was 1:1, both the accuracy and TS scores reached their highest
values, while the POD score was slightly lower. As the number of positive samples
increased, the POD score improved, yet the accuracy and TS scores slightly decreased.
Conversely, when the number of negative samples increased, all three scores, namely
the POD, accuracy, and TS, experienced a significant decline with the increase in
negative samples.

(2) To optimize the model’s performance, we utilized RF to evaluate the significance of
various forecast features. As a result, nine key features were identified and selected,
including radar reflectivity factor, 3 h precipitation, automatic observation of min-
imum visibility, 6 h precipitation, artificial visibility, 12 h precipitation, automatic
observation of 10 min average visibility, automatic observation of 1 min average
visibility, and maximum wind speed. By incorporating these features, the model’s
input size was significantly reduced, leading to improved computational efficiency.

(3) Combining the advantages of PBT and GRU, a DL model named PBT-GRU was
constructed, which took the forecast features in the first 72 h as input features, fully
considering the evolution law and characteristics of the weather system. The experi-
mental results showed that the RMSE of the PBT-GRU was only 1.12 mm, which was
reduced by 51.72%, 58.36%, 37.43% and 26.32% compared with SVM, KNN, GBDT
and RF, respectively. The σn and r of the PBT-GRU, RF, SVM, GBDT and KNN were
1.02 and 0.99, 1.12 and 0.98, 1.24 and 0.95, 1.15 and 0.97, 1.26 and 0.93, respectively.
According to the comprehensive analysis of the accuracy, TS, RMSE, σn and r, the
PBT-GRU model performed the most ideally, and its correction effect was significantly
better than that of the ML methods. This model can be applied to forecast applications
in private industry, providing a platform and technical support for future weather
forecasting and early warning services.

This study provides a hint of the possibility that the proposed PBT-GRU model
can outperform model precipitation correction based on a small sample of one-station
data. However, the memory overhead required in the training process has increased
significantly with the improvement of the model resolution and the expansion of the
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sample data in other regions, and it has posed a new challenge to the validity of the
algorithm and the generalization ability of the model. Therefore, there is an urgent need to
develop new methods to address this set of issues. Much work remains to be performed
to interpret the deep-learning models and forecast results, especially interpretive studies
using visualization techniques for deep learning. Only then can we further improve the
credibility of the deep-learning methods, increase forecasters’ trust in the product, and
expand the scope of its applications.
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