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Abstract: The atmospheric flow field and weather processes exhibit complex and variable character-
istics at small scales, involving interactions between terrain features and atmospheric physics. To
investigate the mechanisms of these process further, this study employs a Lagrangian particle motion
model combined with a Euler background field approach to construct a small-scale atmospheric
flow field model. The model streamlines the modeling process by combining the benefits of the
Lagrangian dynamics model and the Eulerian integration scheme. To verify the effectiveness of the
Euler–Lagrange hybrid model, experiments using the Fluent wind field model were conducted for
comparison. The results show that both models have their advantages in handling terrain-induced
wind fields. The Fluent model excels in simulating the general characteristics of wind fields under
specific terrain, while the Euler–Lagrange hybrid model is better at capturing the upstream and
downstream disturbances of the terrain on the atmospheric flow field. These findings provide power-
ful tools for in-depth diagnostic analysis of atmospheric flow simulation and convective precipitation
processes. Notably, the Euler–Lagrange hybrid model demonstrates excellent computational effi-
ciency, with an average computation time of approximately 2 s per time step in a Python environment,
enabling rapid simulation of 40 time steps within approximately 90 s.

Keywords: atmospheric flow field; Euler–Lagrange hybrid model; wind fields; atmospheric physics

1. Introduction

In recent years, research on mesoscale and small-scale weather processes has received
increasing attention [1]. Due to the suddenness and rapid evolution of these processes [2],
forecasting becomes significantly challenging [3]. Particularly during the rainy season or
flood season, local atmospheric flow fields are profoundly influenced by complex terrain
factors, making them prone to triggering small-scale severe convective weather processes in
a very short time [4], leading to secondary disasters, such as heavy rain, debris flows, and
floods, resulting in casualties and property losses [5]. Therefore, the study of mesoscale and
small-scale weather processes holds notable scientific significance and practical value [6].

The study of small-scale weather processes faces multiple challenges [7], primarily
manifested in the following aspects: a. the dynamic mechanisms are extremely complex,
involving interactions of various physical processes that are difficult to accurately describe;
b. the precipitation triggering and formation mechanisms remain unclear and lack in-depth
theoretical and experimental support; c. There is a scarcity of observational data due to the
suddenness and localized nature of small-scale weather processes, greatly increasing the
difficulty of field observations and making it extremely challenging to obtain observational
data [8]. Additionally, mainstream meteorological models such as WRF [9] perform well in
simulating mesoscale weather processes but struggle to achieve dynamic accuracy for small-
scale regions [10]. Therefore, it is necessary to further implement dynamic downscaling
based on the WRF model to more accurately characterize and predict small-scale weather
processes [11].
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The mainstream dynamic atmospheric model framework, based on the Euler method [12]
and employing a terrain-following coordinate system, solves the atmospheric motion equa-
tions by constructing staggered grids to simulate atmospheric flow fields [13]. From the
Euler perspective, the modeling schemes of mesoscale meteorological models are quite
mature. However, in small-scale numerical simulations, especially under complex terrain
conditions, atmospheric motion is influenced by terrain disturbances, and the terrain-
following coordinate system may not fully capture these complex influences, leading to
inadequate accuracy of simulation results [14]. Therefore, for small-scale numerical simula-
tions, further exploration of more suitable coordinate systems and numerical methods is
needed to more accurately describe and predict meteorological phenomena under complex
terrain conditions.

In order to accurately simulate the characteristics of atmospheric flow fields under
complex terrain conditions, this study adopts a z-coordinate system to construct the at-
mospheric flow field. To simplify the numerical model, this paper abandons the purely
Euler-based simulation approach and instead adopts an Euler–Lagrange combined method
to build a small-scale atmospheric dynamics model. The core idea of this method is to treat
air masses as particle points [15] and solve the atmospheric motion equations by simulating
the movement of particle groups [16].

Specifically, in the Euler–Lagrange method, the motion state of particle groups is first
computed, and then this motion information is fed back to the atmospheric background
grid [17]. Based on the spatial force distribution characteristics of the background grid, the
motion characteristics of particles are further derived [18]. This method achieves numerical
simulation and prediction of atmospheric phenomena through the interaction between
particles and the grid.

Traditional Euler methods require the use of staggered grids to compute the state of
motion in space. In contrast, the Euler–Lagrange modeling approach utilizes the offset
relationship between discrete particles and the background grid to replace the function of
staggered grids, thereby reducing the complexity of numerical modeling and enhancing
the efficiency of model construction to a certain extent.

Atmospheric dynamic models have extensive applications in meteorology. The Euler–
Lagrange integration scheme serves as both a diagnostic model for wind fields and a
downscaling model for atmospheric dynamics. It can be used to correct localized gridded
wind fields, thereby providing more accurate background wind data for applications
such as radar echo extrapolation and the dispersion of atmospheric pollutants, ultimately
enhancing the accuracy of forecasts. Additionally, the Euler–Lagrange integration scheme
can also serve as an alternative for small-scale meteorological models, providing theoretical
support for urban weather forecasting and early warning systems for small basin flash
floods [19]. Experiments conducted with the Euler–Lagrange integration scheme have
demonstrated its practical value in meteorological modeling.

2. Model Design

The Euler–Lagrange hybrid algorithm model utilizes two systems, motion particles,
and background grids, to describe atmospheric flow fields. As illustrated in Figure 1,
particle points are placed within the background grid. The term “grid node” in Figure 1
denotes the grid nodes used to store grid point information.

Particles are responsible for simulating atmospheric motion, while the grid is primarily
used for calculating particle forces and solving spatial gradients. The model updates the
background grid based on the virtual movement of particles, thereby providing feedback
on motion information to the grid.
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2.1. Modeling Equations

In small-scale meteorological models, air parcels are influenced by wind field distur-
bances during atmospheric motion, causing pressure fluctuations and thereby altering
their motion states. Assuming expansion or compression of the air parcel in the x-direction
within a unit time, the volume change in the air parcel is provided by [20]:

V1 = V0·
(

1 +
∂u
∂x

)
(1)

The volume change in the air parcel after expansion or compression in the x and z
directions is then provided by the following equation:

V1 = V0·
(

1 +
∂u
∂x

)
·
(

1 +
∂w
∂z

)
(2)

According to the ideal gas equation p0·V0 = p1·V1, it is evident that pressure changes
are related to volume changes. Thus, p1 = p0·V0/V1, yielding the following equation:

p1 = p0·
V0

V1
=

p0(
1 + ∂u

∂x

)
·
(

1 + ∂w
∂z

) ≈ p0

1 + ∂u
∂x + ∂w

∂z

(3)

The pressure difference before and after the change in air parcel state within a unit
time can be obtained as follows:

δp = p1 − p0 =
p0

1 + ∂u
∂x + ∂w

∂z

− p0 =
−p0·

(
∂u
∂x + ∂w

∂z

)
1 + ∂u

∂x + ∂w
∂z

≈ −p0·
(

∂u
∂x

+
∂w
∂z

)
(4)

Here, δp refers to the atmospheric pressure disturbance quantity within a unit time.
Deformation gradient (C): a physical quantity describing the tendency of deformation

of fluid elements. The calculation formula for the deformation gradient is as follows:

C = ∇·
→
V =

∂u
∂x

+
∂w
∂z

(5)



Atmosphere 2024, 15, 644 4 of 19

Deformation variable (J): a physical quantity describing the extent of deformation of
fluid elements within a time step. The calculation formula is as follows:

J = 1 + C·δt (6)

When the strain measure J > 1, it indicates air parcel expansion; when J < 1, it indicates
air parcel compression; and when J = 1, it indicates no change in air parcel volume.

Disturbance pressure (δp): atmospheric pressure fluctuations generated by the motion
of air parcels, which can also be approximated as the following:

δp = −p0·
(

∂u
∂x

+
∂w
∂z

)
·δt = −p0·C·δt = −p0·(J − 1) (7)

Atmospheric motion equation: in small-scale meteorological models, the movement
of air parcels is mainly influenced by atmospheric pressure disturbances [21]. It is assumed
that in the vertical direction, gravity is balanced by atmospheric static pressure.

du
dt

= −λ·1
ρ
·∂δp

∂x
+ Fx (8)

dw
dt

= −λ·1
ρ
·∂δp

∂z
+ g· θ′

θmean
+ Fz (9)

where λ represents the grid adaptation parameter, Fx and Fz denote the frictional resistance
of air parcels in the horizontal and vertical directions, ρ represents air density, (u, w)
represent wind speeds, θmean represents the mean potential temperature, and θ′ represents
the potential temperature perturbation.

Pressure equation: The variation of pressure over time in the background grid. The
calculation formula is [22]:

dp
dt

= − p
RT

·
(

g +
dw
dt

)
·w (10)

where g represents gravity. This formula can be used to calculate the pressure changes
during the Lagrangian particle displacement process.

Temperature equation: a physical quantity describing the variation of temperature
with changes in motion state. The calculation formula is [23]:

cp·
dT
dt

= −gw − Lv·
dq
dt

(11)

where cp represents the specific heat capacity of air, cp = 1005 J/(kg·K), Lv denotes the latent
heat of water vapor, and where the standard atmospheric pressure Lv = 2260 kJ/kg. This
formula can be used to calculate the temperature changes during the Lagrangian particle
displacement process.

2.2. Calculation of Spatial Gradient Forces

In the Euler perspective, deformation of computational grid points is commonly
employed to calculate the pressure gradient forces between grids. However, in the Euler–
Lagrange model perspective, it is necessary to first calculate the deformation of Lagrangian
particles and then apply the pressure gradient forces from the Lagrangian particle deforma-
tion to the grid [24].

(I) Deformation Calculation

In the Euler perspective, meteorological models employ the finite difference method
to calculate deformation, expressed as follows:

C =
∂u
∂x

≈ 1
2
·
(

Ui+1 − Ui
∆x

+
Ui − Ui−1

∆x

)
=

Ui+1 − Ui−1

2·∆x
(12)
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In the Euler perspective, ∂/∂x can be resolved through differencing operations among
adjacent grid points i, i + 1, i − 1.

In contrast, within the Euler–Lagrange model perspective, particles inherently possess
attributes such as air pressure, temperature, and deformation. As these particles expand
or undergo compression, the resulting pressure gradient forces they generate are then fed
back to the background grid [25].

In Figure 2, particle A is positioned between grid points i and i + 1. When there is
a velocity difference between point i and point i + 1, it can be inferred that particle A
undergoes deformation. The formula for calculating the deformation gradient of particle A
is as follows [26]:

CA =
∂UA
∂x

= Ui+1·
dA,i+1

∆x
·Wi+1 + Ui·

dA,i

∆x
·Wi (13)

where Ui represents the velocity of grid point i, ∆x denotes the grid spacing, and Wi
indicates the weighting factor of grid point i on particle A. The distance between particle A
and grid point i is denoted as dA,i, with dA,i = xi − xA. In Figure 2, there are two grid points,
i and i + 1, near particle A, thus dA,i < 0 and dA,i+1 > 0.
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Figure 2. Calculation of particle deformation using grid point velocities.

By utilizing Equation (13), the deformation of particle A can be calculated, thereby
determining whether particle A is in a state of compression or expansion. Based on this
deformation state and according to Equation (7), the perturbation pressure generated by
the particle due to its compression or expansion can be computed, yielding the perturbation
pressure δpA of particle A.

(II) Calculation of Pressure Gradient Forces

In the Euler–Lagrange hybrid model, the pressure gradient forces acting on grid points
are determined by the surrounding particle pressures [27]. In Figure 3, green squares
represent the centers of grid points, while colored dots represent Lagrange particles.
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Assuming there are two particle points, A and B, near grid point i, after calculating the
deformation gradient C and perturbation pressure δp of the particle points, the perturbation
pressure of the particle points will be applied to the background grid. If particle point A is
to the right of grid point i, then the gradient force exerted by particle point A on grid point
i is represented as [28]:

FA,i = −δpA·
|d′ A,i

∣∣∣
∆x

·WA = −δpA·
d′A,i

∆x
·WA (14)
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Here, d′A,i = xA − xi represents the distance relationship; and δpA denotes the pertur-
bation pressure generated by the compression or expansion of particle A itself.

If particle point A is to the left of grid point i + 1, then the gradient force exerted by
particle point A on grid point i + 1 is represented as follows:

FA, i+1 = δpA·
|d′ A,i+1

∣∣∣
∆x

·WA = −δpA·
d′A,i+1

∆x
·WA (15)

If there are multiple particles around grid point i, then the gradient force acting on
grid point i can be represented as follows:

Fi =
n

∑
p=1

−δpp·
d′p,i

∆x
·Wp (16)

Herein, n denotes the number of particles surrounding grid point i, p represents the
p-th particle around grid point i, d′pi = xp − xi represents the distance (including sign)
between the p-th particle and grid point i, and Wp denotes the weight coefficient between
particle p and grid point i. It is necessary to ensure that the sum of the weights of the
particles around grid point i equals 1, as expressed in Equation (17):

n

∑
p=1

Wp = 1 (17)

This calculation yields the spatial acceleration of the background field.

(III) Calculation of Gradient Forces near Terrain

The Lagrange method is more flexible in handling terrain rebound.
As shown in Figure 4, the grid point (i − 1,k) represents an air grid point, while the grid

point (i,k) represents a terrain grid point with a velocity of 0. The velocity corresponding
to grid point (i,k) is denoted as ui,j. In Figure 4a, when ui−1,j > 0 and ui,j = 0, based on the
velocity difference of neighboring grid points around particle A, it can be inferred that
particle A is under compression. Similarly, in Figure 4b, when ui−1,j < 0 and ui,j = 0, based
on the velocity difference of neighboring grid points around particle A, it can be inferred
that particle A is under expansion. According to Equation (13), the deformation gradient of
particle A can be computed for both states depicted in Figure 4a,b.
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Based on the deformation gradient of particle A, the perturbed air pressure exerted
by particle A itself can be computed, enabling the calculation of the pressure gradient
forces applied by particle A on grid points (i − 1,k) and (i,k), thus updating the spatial force
relationships of the background grid. Through this approach, the pressure interactions
between particles and terrain have been effectively addressed.
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(IV) Model Computation Process

In the traditional Eulerian framework for dynamic models, staggered grids are typ-
ically employed to separately compute the pressure and vector fields. In contrast, the
Euler–Lagrange hybrid model utilizes the misalignment relationship between particles and
the background grid to replace staggered grids, thereby reducing the complexity of model
construction.

Figure 5 illustrates the computational workflow within a single time step; this includes
the following steps:

1. Calculation of particle deformation: particle coordinates are used to aggregate wind
vectors from surrounding grid points, enabling the computation of particle deforma-
tion;

2. Application of gradient forces from particle deformation to the background grid;
3. Acquisition of acceleration by background grid points, with the acceleration projected

onto particles;
4. Update of particle velocities and calculation of particle displacement over a single

time step;
5. Update of background grid velocities.
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These steps collectively complete the iterative process for a single time step.

2.3. Lagrange Method for Particle Motion Computation

From the Lagrangian perspective, particle motion is determined by its initial velocity
and the gradient forces provided by the background grid.

(I) Particle Motion

According to Newton’s equations of motion, the following equation holds true:

u1 = u0 + a·δt (18)

Here, u0 and u1 represent the velocity of the particle at the initial and final time steps
within the time interval, while the acceleration (a) is provided by the gradient forces from
the background grid.

(II) Mapping Particle Momentum to Adjacent Grid Points

After one time step, the particle’s velocity and coordinates undergo changes.
Figure 6a illustrates the mapping of particle momentum to the background grid,

thereby updating the momentum field of the background grid. Assuming there are (n)
particles near the grid point, the momentum mapped to the grid point by these particles
is [29]:

pg =
1

Wsum
·

n

∑
i=1

(mi·vi·Wi) (19)
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where Wsum represents the sum of weights, pg denotes the momentum mapped to the grid
point, mi·vi represents the momentum of the i-th particle, and Wi represents the weight
coefficient of the i-th particle relative to the grid point.
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(III) Mapping Grid Point Momentum to Particles

The equation for mapping grid point momentum to particles is [30]:

pp =
1

Wsum
·(mi−1,k·vi−1,k·Wi−1,k + mi,k·vi,k·Wi,k + mi,k−1·vi,k−1·Wi,k−1 + ...) (20)

Here, Wsum represents the sum of weights, the subscript (i, k) denotes the indices of
grid points near the particle, and ellipses indicate the traversal of grid points near the
particle. Wi,k represents the weight coefficient between the particle and its adjacent grid
points. This formulation yields the momentum mapped from grid points to the particle, as
shown in Figure 6b.

Mapping grid point mass near particles to particles is carried out using the follow-
ing equation:

mp =
1

Wsum
·(mi−1,k·Wi−1,k + mi,k·Wi,k + mi,k−1·Wi,k−1 + ...) (21)

The mapped velocity is obtained:

v =
pp

mp
(22)

2.4. Weight Calculation

The Euler–Lagrange model involves data mapping between particle clusters and grids.
In this study, tricubic spline interpolation functions are employed to compute the data
mapping relationship between particles and grid points [31].

W =
10

7πh2 ·


1 − 3

2 ·q2 + 3
4 ·q3 0 ≤ q < 1

1
4 ·(2 − q)2 1 ≤ q < 2

0 q > 2
(23)

In the equation, h is typically understood as 1.1 to 1.2 times the average grid spacing,
and q represents the relative distance between particles and grid points. For the x-direction,
the formula for calculating q is as follows:

q =
xp − xg

∆x
(24)

Similarly, the formula for calculating (q) in the z-direction is analogous.
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2.5. Boundary Conditions

In the Eulerian grid, boundary conditions are represented by boundary grids. In
contrast, the Euler–Lagrange model employs moving particles to substitute for these
boundary grids, which are referred to as “boundary particles”. The boundary particles
are in a state of uniform motion. Upon entering the computational domain, the spatial
acceleration of the boundary particles must be calculated, as shown in Figure 7. Due
to the dynamic nature of the boundary particles, their position information needs to be
reinitialized every n time steps.
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In the model, it is assumed that each terrain grid point corresponds to a virtual
“particle”, referred to as a “terrain particle”. These “terrain particles” have a constant
velocity of 0 but possess deformation values. This setup facilitates the computation of
pressure gradient forces at the interface between the air and terrain.

Through this approach, the boundary conditions of the model are established.

2.6. Model Grid Scheme

In this study, a structured grid is employed to construct the atmospheric flow field.
A Cartesian coordinate system is utilized in the 2D plane along the x and z directions,
with uniform grid spacing set as dx in the x direction and dz in the z direction. The grid
points are constructed using uniformly sized cubes. Each grid point is labeled according
to its type, such as “air” or “terrain”. Particle-based displacement and deformation are
utilized in this study to replace the functionality of staggered grids in traditional Eulerian
frameworks.

2.7. Time Step Constraint

The selection of the time step must satisfy the Courant–Friedrichs–Lewy (CFL) condi-
tion, which stipulates that the product of the time step (δt) and the characteristic velocity
(c) should not exceed the spatial step (δx). Therefore, the maximum time step is determined
as follows:

∆tmax =
lmin
vmax

(25)

Here, lmin represents the minimum grid spacing, and vmax denotes the maximum
velocity. Typically, the minimum grid spacing in meteorological models is 400 m. In
this experiment, the maximum wind vector does not exceed 10 m/s. Consequently, the
threshold for the time step can be considered as 40 s.

2.8. Model Validation Scheme

Within this experiment, the Euler–Lagrange model utilized a 2D plane modeling
in the x-z coordinate system, whereas mainstream meteorological models are typically
three-dimensional. Therefore, there are certain limitations in the comparison of flow fields.
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To facilitate experimental comparisons, the Fluent model [32] was chosen as an alter-
native approach in this study.

As a well-regarded atmospheric dynamic downscaling model, Fluent is widely em-
ployed in research pertaining to meteorological wind field downscaling [33]. It facilitates
convenient simulation of 2D atmospheric flow fields and possesses the capability to adapt
to resolutions ranging from meters to kilometers. Compared to mainstream meteorological
models like WRF, Fluent demonstrates excellent performance under complex environmen-
tal conditions, offering researchers higher precision and reliability [34]. Consequently,
scholars utilize Fluent as one of the dynamic downscaling tools for mesoscale models [35],
enabling the calculation of wind fields under complex environmental conditions [36].

Considering these features of the Fluent model, this study employs its simulated wind
field data for experimental comparison.

Due to the strengths of the Fluent model, this study uses its simulated wind field data
for the comparative experiment.

2.9. Model Configuration

The experimental design employs a 2D plane atmospheric background field in the
x-z coordinate system, establishing orthogonal grids and constructing an ideal experiment.
It investigates the suitability of the Euler–Lagrange integration scheme for simulating
atmospheric flow fields and the movement of atmospheric flow fields under complex
terrain conditions.

Typically, the horizontal resolution of small-scale meteorological models ranges from
0.4 to 1 km. Therefore, this study sets the horizontal resolution of the Euler–Lagrange model
at 800 m, vertical resolution at 400 m, and time step at 15 s. Using this configuration, this
study simulates the flow characteristics of atmospheric wind fields under virtual terrain
conditions.

The time step of the Fluent model is also set to 15 s, but Fluent allows for specifying
the number of iterations within each time step.

3. Results

This study employs the Euler–Lagrange integration scheme to model and solve the
atmospheric motion equations under small-scale conditions, exploring its applicability in
atmospheric modeling. The Fluent model is utilized to simulate wind fields under identical
terrain conditions.

3.1. Terrain Wind Characteristics

Using the terrain conditions illustrated in Figure 6, assuming u = 5 m/s and w = 0 m/s
at t = 0 s, with a time step of dt = 15 s, the atmospheric flow field evolves over time.

To validate the accuracy of the Euler–Lagrange model within a single time step, we
designed the following experimental setup:

Experiment a: we computed the results after one time step using the Euler–Lagrange model.
Experiment b: we computed the results after one time step using the Fluent model.
Experiment c: we computed the results after five iterations within one time step using

the Fluent model (dividing the time step into five intervals).
Experiment d: we calculated the difference between the results of Experiment b and

Experiment a.
Experiment e: we calculated the difference between the results of Experiment c and

Experiment a.
The experimental sequence corresponds directly to the labeling of the subfigures in

Figure 8.
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model�s principle, which simulates according to wind tunnel assumptions. In wind tun-
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Figure 8. Wind fields at t = 15 s. (a) Wind field output by the Euler–Lagrange model; (b) wind field
with 1 iteration per time step in the Fluent model; (c) wind field with 5 iterations per time step in the
Fluent model; (d) difference between the results shown in (a,b); (e) difference between the results
shown in (a,c).

In Figure 8a, the results of the Euler–Lagrange model for a single time step exhibit
characteristics of the terrain wind field that are comparable to experimental condition b,
with the perturbation intensity weaker than in experimental condition c. This suggests
the feasibility of the Euler–Lagrange model’s time-stepping scheme for simulating terrain
wind fields.

At t = 450 s, as shown in Figure 9, both models exhibit similar trend characteristics, but
there are discrepancies in the results. The Euler–Lagrange model shows a slight decrease
in wind speed in the lower and upper reaches near the terrain obstruction, which aligns
with real atmospheric conditions. In contrast, the Fluent model indicates an enhancement
in wind speed near the terrain. This discrepancy may stem from the Fluent model’s
principle, which simulates according to wind tunnel assumptions. In wind tunnels, airflow
continuously enters at a constant velocity, leading to enhanced wind speeds near terrain
obstacles due to the pushing effect of the inlet airflow.

At t = 900 s, as shown in Figure 10, the Euler–Lagrange model indicates that the
terrain-induced wind field gradually propagates in the lee of the mountain. However,
there is little change in the Fluent model results between t = 450 s and t = 900 s, and the
downstream transmission of terrain disturbances in the Fluent model is not significant.

At t = 1350 s and t = 1800 s, as shown in Figure 11, the Euler–Lagrange model indicates
oscillating airflow above the terrain, propagating downstream along the wind direction.
Due to the lack of significant changes in wind field characteristics observed in the Fluent
model at preceding and subsequent moments, related results are not further presented.
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At t = 2025 s and t = 2475 s, as shown in Figure 12, the Euler–Lagrange model indicates
continuous airflow disturbances near the terrain, with these disturbed airflows propagating
downstream along the wind direction.
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In general, terrain-induced wind fields generate oscillating airflows downstream,
commonly known as “terrain waves” [37], which gradually propagate downstream and
cause disturbances [38]. Terrain waves are a common phenomenon in mountainous airflow,
making complex terrain prone to triggering convective weather processes and even precipi-
tation [39]. During the propagation of terrain wave airflow, kinetic energy in the wind field
dissipates. The Euler–Lagrange model used in this study effectively simulates terrain wave
disturbances, consistent with the characteristics of atmospheric flow fields [40].

3.2. Simulation of Canyon Terrain Wind Fields

To further validate the adaptability of the Euler–Lagrange model to complex terrain,
the experiment constructed a canyon-like terrain.

Using the terrain conditions depicted in Figure 13, assuming uniform settings of u = 5
m/s and w = 0 m/s at t = 0 s, with a time step of dt = 15 s, flow field changes were observed
after 15 s.
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At t = 15 s, as shown in Figure 14, both models gradually adapt to the wind field under
canyon terrain conditions.
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At t = 900 s, as shown in Figure 15, the fluctuation range of the terrain-disturbed wind
field expands gradually.
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Figure 15. Canyon terrain wind field at t = 900 s. (a) Wind field output from the Euler–Lagrange
model; (b) wind field output from the Fluent model.

At t = 1800 s, as shown in Figure 16, the results from the Euler–Lagrange model
indicate that the terrain wind field disturbance gradually propagates downstream, forming
waves downstream. In comparison, the Fluent model’s wind field disturbance mainly
concentrates near the mountain and shows no significant change over time.

At t = 2250 s, as shown in Figure 17, the Euler–Lagrange model results reveal significant
“terrain waves” downstream, particularly in the canyon area between the two mountains,
with more pronounced disturbance effects propagating downstream. In contrast, the Fluent
model results indicate that after adapting to the terrain, the wind field does not exhibit
distinct temporal variations.

Comparing the two simulation approaches for atmospheric flow under canyon terrain
conditions, the Fluent model demonstrates rapid computation of complex terrain feedback
on the wind field. However, since Fluent is not inherently a meteorological model, specific
atmospheric flow characteristics at weather scales are automatically filtered during the
simulation of atmospheric flow.



Atmosphere 2024, 15, 644 15 of 19

Atmosphere 2024, 15, 644 15 of 19 
 

 

 
Figure 15. Canyon terrain wind field at t = 900 s. (a) Wind field output from the Euler–Lagrange 
model; (b) wind field output from the Fluent model. 

At t = 1800 s, as shown in Figure 16, the results from the Euler–Lagrange model indi-
cate that the terrain wind field disturbance gradually propagates downstream, forming 
waves downstream. In comparison, the Fluent model�s wind field disturbance mainly con-
centrates near the mountain and shows no significant change over time. 

 
Figure 16. Canyon terrain wind field at t = 1800 s. (a) Wind field output from the Euler–Lagrange 
model; (b) wind field output from the Fluent model. 

At t = 2250 s, as shown in Figure 17, the Euler–Lagrange model results reveal signifi-
cant “terrain waves” downstream, particularly in the canyon area between the two moun-
tains, with more pronounced disturbance effects propagating downstream. In contrast, 
the Fluent model results indicate that after adapting to the terrain, the wind field does not 
exhibit distinct temporal variations. 

Figure 16. Canyon terrain wind field at t = 1800 s. (a) Wind field output from the Euler–Lagrange
model; (b) wind field output from the Fluent model.

Atmosphere 2024, 15, 644 16 of 19 
 

 

 
Figure 17. Canyon terrain wind field at t = 2250. (a) Wind field output from the Euler–Lagrange 
model; (b) wind field output from the Fluent model. 

Comparing the two simulation approaches for atmospheric flow under canyon ter-
rain conditions, the Fluent model demonstrates rapid computation of complex terrain 
feedback on the wind field. However, since Fluent is not inherently a meteorological 
model, specific atmospheric flow characteristics at weather scales are automatically fil-
tered during the simulation of atmospheric flow. 

The Euler–Lagrange model can rapidly provide feedback when dealing with com-
plex terrain and simulate the process of terrain wave disturbance propagating downwind, 
consistent with general atmospheric dynamics. Studies indicate that [41] during the rainy 
season or flood period, canyon terrain areas are prone to triggering precipitation pro-
cesses, closely linked to terrain wave disturbances. 

3.3. Model Computational Efficiency 
To assess the model�s computation speed, this study recorded the model�s computa-

tion time. The equipment model used was the Xeon E5 2650, and the model programming 
language used was Python combined with the CuPy computing library. This paper com-
piled statistics on the number of iteration time steps and the corresponding consumed 
time. 

From Table 1, it can be observed that the model consumes an average of approxi-
mately 2 s per time step. Considering the model�s implementation in Python, there is still 
room for improvement in computational efficiency. 

Table 1. Iteration count and time consumption. 

Time Consumption Number of Iteration Time Steps 

27.96 s 10 

41.43 s 20 

89.94 s 40 

3.4. Research Limitations 
The experiments in this paper also have certain limitations, including the following 

points: 
1. Due to the difficulty in obtaining real-time data for small-scale meteorological wind 

fields and the fact that mainstream meteorological models are 3D models, while the 

Figure 17. Canyon terrain wind field at t = 2250. (a) Wind field output from the Euler–Lagrange
model; (b) wind field output from the Fluent model.

The Euler–Lagrange model can rapidly provide feedback when dealing with complex
terrain and simulate the process of terrain wave disturbance propagating downwind,
consistent with general atmospheric dynamics. Studies indicate that [41] during the rainy
season or flood period, canyon terrain areas are prone to triggering precipitation processes,
closely linked to terrain wave disturbances.

3.3. Model Computational Efficiency

To assess the model’s computation speed, this study recorded the model’s computation
time. The equipment model used was the Xeon E5 2650, and the model programming lan-
guage used was Python combined with the CuPy computing library. This paper compiled
statistics on the number of iteration time steps and the corresponding consumed time.

From Table 1, it can be observed that the model consumes an average of approximately
2 s per time step. Considering the model’s implementation in Python, there is still room for
improvement in computational efficiency.
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Table 1. Iteration count and time consumption.

Time Consumption Number of Iteration Time Steps

27.96 s 10

41.43 s 20

89.94 s 40

3.4. Research Limitations

The experiments in this paper also have certain limitations, including the follow-
ing points:

1. Due to the difficulty in obtaining real-time data for small-scale meteorological wind
fields and the fact that mainstream meteorological models are 3D models, while the
model developed in this experiment is a 2D model, this paper compared the results
by assuming virtual terrain conditions and using Fluent to simulate 2D flow fields.

2. In practical downscaling processes, typically, a mesoscale model outputs a time series
file every 3 to 5 min. Then, a downscaling model calculates the changes in atmospheric
wind fields, temperature, and other physical processes within the 3 to 5 min interval.
This process continues by reading new mesoscale data files for the next downscaling
cycle. However, in this study, to test the model’s computational effectiveness and
stability, an initial field was set, and the atmospheric state changes were estimated
iteratively. The longest duration was 2500 s. Prolonged durations accumulate too
much error, which affects the results.

3. The main purpose of the experiments in this paper is to test the applicability of
the Euler–Lagrange model under complex terrain conditions. The effectiveness of
the theory and methods used in this paper awaits further validation through more
extensive, representative, and rigorous experiments.

4. Discussion

The Euler–Lagrange integration scheme describes atmospheric motion using particle
dynamics, endowing these particles with properties such as velocity and deformation,
thereby replacing the staggered grids in traditional Eulerian models and simplifying
the complexity of model construction. This approach demonstrates a high degree of
adaptability in handling meteorological wind fields over complex terrain, making it suitable
for applications in wind field diagnostic models or atmospheric dynamic downscaling
models, thereby providing technical support for related domains.

In short-term forecasting, radar echo extrapolation relies on gridded wind field infor-
mation. However, the construction of gridded wind field vectors involves interpolation
of station data, inevitably introducing errors. Therefore, the Euler–Lagrange integration
scheme can serve as a wind field diagnostic model to dynamically correct gridded data,
thus improving the accuracy of short-term forecasts.

Similarly, in the field of atmospheric pollutant dispersion, wind field diagnostic
models are crucial for improving and enhancing simulation accuracy. The Euler–Lagrange
integration scheme also demonstrates its potential in this area.

In fields such as urban meteorological forecasting and small watershed flash flood
warnings, there is a need for small-scale dynamic models to accurately capture mete-
orological changes under complex terrain conditions, thereby improving the efficiency
of precipitation forecasts and enhancing meteorological service capabilities. The Euler–
Lagrange integration scheme can serve as one of the alternative options for these small-scale
dynamic models, contributing to the efficiency of precipitation forecasts and enhancing
meteorological service capabilities.
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5. Conclusions

This paper proposes the use of the Euler–Lagrange integration scheme to model
atmospheric dynamics in small-scale scenarios, aiming to explore its applicability under
complex terrain conditions.

The model discretizes air parcels into particles with physical properties, simulating
atmospheric motion by tracking particle movement. Particle motion information is then fed
back to the background field to update spatial force distribution. Evaluating the simulation
results, the following conclusions were drawn:

1. Employing the Euler–Lagrange integration scheme to establish an atmospheric dy-
namics model proves effective in addressing atmospheric motion processes under
small-scale, complex terrain conditions.

2. This paper innovatively uses particle representation to simulate air parcels, capturing
atmospheric motion processes. Furthermore, these particles are endowed with physi-
cal properties, such as temperature, pressure, wind speed, and deformation degree,
which play a crucial role in computing grid pressure gradient forces and simulating
atmospheric motion states.

3. Compared to traditional Euler methods, the Lagrange particle method exhibits more
pronounced perturbations under micro-terrain conditions, aligning with the flow char-
acteristics of small-scale meteorological models. Additionally, the Euler–Lagrange
method accurately simulates “terrain waves” generated by mountain airflow, demon-
strating its unique advantages in small-scale weather simulations.
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