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Abstract: Sensor-based air monitoring instruments (SAMIs) can provide high-resolution air quality
data by offering a detailed mapping of areas that air quality monitoring stations (AQMSs) cannot
reach. This enhances the precision of estimating PM2.5 concentration levels for areas that have not
been directly measured, thereby enabling an accurate assessment of exposure. The study period was
from 30 September to 2 October 2019 in the Guro-gu district, Seoul, Republic of Korea. Four models
were applied to assess the suitability of the SAMIs and visualize the temporal and spatial distribution
of PM2.5. Assuming that the PM2.5 concentrations measured at a SAMI located in the center of the
Guro-gu district represent the true values, the PM2.5 concentrations estimated using QGIS spatial
interpolation techniques were compared. The SAMIs were used at seven points (S1–S7) according to
the distance. Models 3 and 4 accurately estimated the unmeasured points with higher coefficients
of determination (R2) than the other models. As the distance from the AQMS increased from S1 to
S7, the R2 between the observed and estimated values decreased from 0.89 to 0.29, respectively. The
auxiliary installation of SAMIs could resolve regional concentration imbalances, allowing for the
accurate estimation of pollutant concentrations and improved risk assessment for the population.

Keywords: PM2.5; sensor-based instruments; interpolation; spatiotemporal resolution; population
exposure

1. Introduction

Air pollution can have significant adverse effects on human health. The World Health
Organization (WHO) has reported that nine out of 10 people worldwide breathe air con-
taining high levels of pollutants, and approximately 7 million people die prematurely
every year due to air pollution [1]. Among these, fine particulate matter (PM2.5) is the
main risk factor [2]. The International Agency for Research on Cancer has designated
PM2.5 as a Group 1 human carcinogen, which can cause cancer [3]. PM2.5 adversely affects
health, causing respiratory diseases, such as asthma and chronic obstructive pulmonary
disease, cardiovascular diseases, skin diseases, and allergies [4]. Therefore, it is important
to recognize the adverse effects of atmospheric PM2.5 and develop strategies to manage
exposure in the general population.

The Korean Ministry of Environment has operated an air quality monitoring station
(AQMS) throughout the country since 1995 to determine whether national air pollution and
air quality standards have been met. In addition, Air Korea (www.airkorea.or.kr (accessed
on 1 April 2024)) provides exposure information to air pollutants by providing real-time air
quality information measured by the AQMS to the public in the form of the air quality index
through the Internet and smartphones. In previous epidemiological and risk assessment
studies, the PM2.5 concentration produced by AQMSs was used to compare mortality or
human effects in the area or analyze correlations between population and prevalence of
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asthma, cardiovascular disease, and other diseases [5–7]. These monitoring stations may
provide accurate and reliable data on air quality in a specific area [8]. However, the AQMSs
cannot accurately assess personal or population exposure owing to spatial constraints,
resulting in lower accuracy for air pollutants far from the monitoring station. Therefore,
even though AQMS provides accurate data, it cannot explain important local variations
crucial for public health protection in detail [9,10]. In addition, there is a limitation to
increasing the spatial density owing to the high cost of additional installations.

Currently, the trend to increase air quality data collection using a variety of method-
ologies other than AQMS has been growing globally. Sensor platforms for monitoring a
variety of air pollutants are accessible, and new devices in this field are constantly being
released [11]. In recent years, many studies using sensor-based air monitoring instruments
(SAMIs) have been conducted to address the spatial limitations of existing AQMSs [12–14].
SAMIs can provide high-resolution air quality data by providing a more detailed mapping
of areas that AQMSs cannot reach [15].

Owing to the nature of air pollutants, it is important to increase their spatiotemporal
resolution because the influence of pollutants varies from region to region, and their
distribution might not be uniform. This improvement in spatiotemporal resolution can
increase the accuracy of concentration estimations for unmeasured points in modeling
methods, such as Geographic Information Systems (GIS).

The objectives of this study were to enhance spatiotemporal resolution by comple-
menting the spatial constraints of AQMSs through the auxiliary installation of SAMIs
and to utilize this setup to improve the accuracy of PM2.5 concentration estimation for
unmeasured points. This enhances the precision of estimating PM2.5 concentration levels
for areas that have not been directly measured, thus enabling accurate assessments of expo-
sure. This manuscript was organized to estimate the spatiotemporal concentrations using
SAMIs and QGIS and to provide an optimal installation distance through a comparison of
applied models.

2. Materials and Methods
2.1. Target Area and Locations of SAMIs and AQMSs

The study area was the Guro-gu district, Seoul, Republic of Korea (Figure 1). It had a
population of 444,146 in January 2020, accounting for 4.2% of the population of Seoul, with
an area of 20.12 km2. Four models were applied using AQMSs and SAMIs for the temporal
and spatial visualization of PM2.5, respectively. Model 1 consisted of only an AQMS at a
single point, and Model 2 was configured by installing an AQMS in nearby areas to Model 1.
Model 3 used data from only SAMIs, and Model 4 was combined with all other models. The
first model (Model 1) consisted of one AQMS, and the second model (Model 2) consisted of
nearby air quality monitoring stations (NAQMSs), with a combination of one AQMS and
11 suburban AQMSs. The third model (Model 3) consisted of 22 SAMI locations, and near a
sensor-based air monitoring instrument consisting of 34 locations combining NAQMS and
SAMI was the fourth model (Model 4) (Figure 2). All the measurement station locations
were collected by converting the addresses into latitude and longitude coordinates.
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2.2. PM2.5 Concentration Measurement

Outdoor PM2.5 concentrations, measured at one AQMS in the Guro district and 11
nearby AQMSs, were collected from the data provided by Air Korea (www.airkorea.or.kr
(accessed on 30 September 2019)) of the Ministry of Environment, as shown in Figure 2. The
PM2.5 concentrations measured by the SAMIs were collected every minute and transmitted
to the Government Cloud (G-Cloud), which is a cloud computing service developed for the
Korean government’s public institution and launched in 2012 [16]. The collection period
for all data was real-time concentration.

The collection period of all data was a real-time concentration in 1 h units from 30
September to 2 October 2019. The principle of PM2.5 concentration measurement by SAMI
was the light scattering spectrometer, and the specification was a sensor model of SD-16C
(Dust Mon, Sentry Co., Ltd., Seoul, Republic of Korea), a flow rate of 0.5 L/min, and a
resolution of 0.1 µg/m3. The comprehensive specifications of the SAMI are shown in
Figure 3.

This instrument in SAMIs was designed to maintain a temperature of 20 ◦C and a
relative humidity of less than 70% with a pretreatment control device and an integrated
system because of measurement errors that may occur due to various environmental factors,
as shown in Figure 3. In our previous study, it was found that for the accuracy of the PM2.5
concentration, the coefficient of determination (R2) was 0.96, obtained through a co-location
test comparing the values monitored by installing a sensor-based measuring instrument in
the same location as the air pollution monitoring station [17]. Therefore, among the SAMIs
installed in Guro-gu, we considered S0, located at the central point, to be equivalent to the
AQMS, as shown in Figure 2. Compared with AQMSs, SAMIs provided slightly lower
observed values, and the data were applied without applying a separate correction factor.
For all PM2.5 concentration data, outliers were removed using the interquartile range to
increase the reliability of the values [18].
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2.3. Spatial Interpolation

An interpolation methodology using GIS was used to estimate the PM2.5 concentration
at unmeasured points. GIS provides information, such as maps, pictures, and diagrams,
through the location data of objects with geographical locations and attribute data, which
include information on the characteristics of those locations. For spatial modeling, the
outdoor daily average PM2.5 concentration was calculated and used as attribute data, and
the satellite coordinate system (WGS-84) of the location where the SAMI was installed in
each region was used as the location data. Three spatial interpolation techniques were used:
Inverse Distance Weighted (IDW), Ordinary Kriging (OK), and Universal Kriging (UK).
The IDW technique was interpolated and visualized using the open-source program QGIS
(version 3.22), and the kriging was interpolated for 1 h using the open-source program
SAGA GIS (version 7.8.2) and visualized using QGIS.

2.4. Model Evaluation via Spatial Analysis

One station (S0) was selected from among the measurement stations located at the
center of the Guro-gu district, as shown in Figure 2. Based on the AQMS points located in
the Guro-gu district, seven stations (S1–S7) were selected based on the distance to the SAMI.
The distance from station 1 to station 7 ranges from 1.4 km to 6.3 km, as shown in Figure 4.
Verification was compared to the estimated value of S0 using the four models mentioned
above. Three statistical analyses were performed to confirm the accuracy: coefficient of
determination (R2), root mean squared error (RMSE), and mean absolute error (MAE).
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3. Results
3.1. PM2.5 Concentrations According to the Models

The distribution of PM2.5 concentrations, measured according to each model, is shown
in Figure 5. As a result of analyzing the concentration of PM2.5 observed on 30 September,
Model 1 showed the lowest value among the four models at 29.6 ± 10.9 µg/m3. Average
PM2.5 concentrations in Models 3, 4, and 2 were 62.6 ± 33.6 µg/m3, 55.3 ± 27.7 µg/m3,
and 48.9 ± 19.1 µg/m3, respectively. The maximum value was 50.0 µg/m3 in Model 1
and 152.0 µg/m3 in Model 3, indicating a difference of approximately 100 µg/m3. On 1
October, Model 1 showed the lowest value at 22.8 ± 8.3 µg/m3, while Model 2 showed
the highest value at 42.7 ± 22.0 µg/m3. The median value was approximately 3–7 µg/m3

lower than the average value. The maximum value observed in Models 2 and 4, which
combined nearby measuring stations, was 122.0 µg/m3. The concentration on 2 October
was half the average concentration of that on the previous two days, and Model 1 had the
lowest reading at 9.8 ± 8.2 µg/m3. The other models exhibited values close to 19.0 µg/m3.
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3.2. Verification between Estimation and Observation

The accuracy of each model was evaluated via statistical verification by comparing
the measured values obtained from the central monitoring station in the Guro district (S0)
with the values estimated via interpolation in each model. The interpolation results for
each estimation method at 13:00 on 30 September are shown in Figure 6. Model 1 was
interpolated at a single point, resulting in R2, RMSE, and MAE values of 0.66, 45.0 µg/m3,
and 34.0 µg/m3, respectively. These values remained consistent across all the interpolation
methods. The R2 increased or remained similar as the number of measurement points
increased using the IDW technique, whereas the RMSE and MAE decreased, indicating an
improvement in the accuracy of the model. Similar to the IDW technique, the accuracy of
the model improved as the number of measurement points increased, even when the OK
technique was used for statistical validation. The R2 of Model 3 was 0.95, which was similar
to that of Model 4, which included the monitoring stations in the vicinity. Model 3 was the
most accurate in predicting S0, with an RMSE of 13.6 µg/m3 and an MAE of 8.9 µg/m3.
The UK technique showed that the R2 values for Model 1 and Model 2, considering AQMSs,
were 0.66 and 0.63, respectively. The corresponding RMSE values were 45.0 and 34.9.
Models 3 and 4, considering the SAMIs, had the same results as OK, as shown in Table 1.

Table 1. Comparison of statistical verification (R2, RMSE, and MAE) for each interpolation technique
for S0.

Interpolation Validation

Model

Model 1
(n = 48)

Model 2
(n = 49)

Model 3
(n = 49)

Model 4
(n = 49)

Inverse Distance
Weighted (IDW)

R2 * 0.66 0.63 0.94 0.93
RMSE ** 45.0 35.5 17.2 19.0
MAE *** 34.0 22.6 11.5 12.7

Ordinary Kriging
(OK)

R2 0.66 0.66 0.95 0.95
RMSE 45.0 34.6 13.6 13.9
MAE 34.0 22.1 8.9 9.1

Universal
Kriging

(UK)

R2 0.66 0.63 0.95 0.95
RMSE 45.0 34.9 13.6 13.9
MAE 34.0 22.3 8.9 9.1

* Coefficient of determination; ** Root mean square error; *** Mean absolute error.



Atmosphere 2024, 15, 664 7 of 12

Atmosphere 2024, 15, x FOR PEER REVIEW 7 of 13 
 

 

3.2. Verification between Estimation and Observation 
The accuracy of each model was evaluated via statistical verification by comparing 

the measured values obtained from the central monitoring station in the Guro district (S0) 
with the values estimated via interpolation in each model. The interpolation results for 
each estimation method at 13:00 on September 30 are shown in Figure 6. Model 1 was 
interpolated at a single point, resulting in R2, RMSE, and MAE values of 0.66, 45.0 µg/m3, 
and 34.0 µg/m3, respectively. These values remained consistent across all the interpolation 
methods. The R2 increased or remained similar as the number of measurement points in-
creased using the IDW technique, whereas the RMSE and MAE decreased, indicating an 
improvement in the accuracy of the model. Similar to the IDW technique, the accuracy of 
the model improved as the number of measurement points increased, even when the OK 
technique was used for statistical validation. The R2 of Model 3 was 0.95, which was sim-
ilar to that of Model 4, which included the monitoring stations in the vicinity. Model 3 
was the most accurate in predicting S0, with an RMSE of 13.6 µg/m3 and an MAE of 8.9 
µg/m3. The UK technique showed that the R2 values for Model 1 and Model 2, considering 
AQMSs, were 0.66 and 0.63, respectively. The corresponding RMSE values were 45.0 and 
34.9. Models 3 and 4, considering the SAMIs, had the same results as OK, as shown in 
Table 1. 

 
Figure 6. Visualization of PM2.5 concentration estimated according to the four kinds of models. 

  

Figure 6. Visualization of PM2.5 concentration estimated according to the four kinds of models.

3.3. Comparison by SAMIs According to Distance from the AQMSs

The correlations between SAMIs (S1–S7) according to the distance from the AQMSs
in the Guro-gu district through each spatial interpolation technique were compared using
OK (Figure 7). S1 and S2 present the scatter plot of R2 derived using the IDW and UK
method, respectively.
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Among the AQMSs and SAMIs, the R2 of the monitoring station (S1) located at 1.4 km
was the highest at 0.81–0.91, and Model 3 showed the highest R2 at 0.91. Monitoring
stations (S2–S4) within a 2 km radius in Model 3, which includes a SAMI with a relatively
large number of monitoring stations, recorded relatively high R2 values of 0.80, 0.72, and
0.86. Although there was a difference in the R2 values according to the classification of the
monitoring station, the trend of the graph decreased in all four models as the distance from
the AQMSs increased.

4. Discussion

This study was conducted to confirm whether the auxiliary installation of a SAMI
overcomes the limitations of the existing AQMSs and improves the accuracy of calculating
local residents’ exposure to PM2.5. After classifying the four models using AQMSs and
SAMIs, the PM2.5 concentrations measured were collected at the measurement stations of
each model. Spatial interpolation techniques, such as IDW and kriging, were performed
through the QGIS program to visualize the PM2.5 concentration using the collected PM2.5
concentration, and the concentration for unmeasured points was estimated. The estimated
values obtained through interpolation were statistically verified by the comparison with
the observed values measured using SAMIs (S0).

The AQMS is limited in its ability to measure air quality beyond a certain distance,
which can reduce the accuracy of exposure assessments. In addition, owing to cost con-
straints, the spatial resolution cannot be increased. Therefore, installing a SAMI as an
auxiliary installation could overcome spatial limitations at a relatively low cost and address
the limitations of an AQMS by collecting more data on PM2.5 concentrations. In this study,
cross validation was performed for each interpolation technique to compare and evaluate
the accuracy of the models.

In previous epidemiological studies, PM2.5 concentrations measured at the AQMSs
were estimated through spatial interpolation using GIS and subsequently utilized for
exposure assessment [19]. Spatial interpolation is a technique that estimates the values
of unobserved points using the values of observed points. It can be used to predict the
concentration of air pollutants in a range that cannot be measured using an AQMS [20].
The accuracy of this process depends on the precision, quantity, and distribution of known
points [21]. In a study conducted in Delhi, India, pollutants generated from vehicles were
visualized using the kriging technique in GIS. Subsequently, respiratory and cardiovascu-
lar deaths were estimated based on exposure to air pollutants [22]. Spatial interpolation
was used to evaluate the efficacy of monitoring sites located in Seoul, Republic of Korea,
and to validate the accuracy of atmospheric PM2.5 concentration measurements. These
results indicate that additional monitoring stations are required for high-resolution moni-
toring [23]. In a study utilizing wind-field data, the spatial interpolation results were signif-
icantly enhanced compared with conventional methods, demonstrating the effectiveness of
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incorporating meteorological factors into PM2.5 concentration estimations [24]. Similarly,
research on regional PM2.5 concentration estimation found that using optimized spatial
models with radial basis function interpolation greatly improved prediction accuracy [25].
These findings suggest the potential for advancing interpolation techniques through various
innovative approaches.

Similar to previous studies, this study also demonstrates the potential of overcoming
the limitations of the measurement imbalance between AQMS regions by predicting the
concentration in unmeasured regions through spatial interpolation. The auxiliary instal-
lation of SAMIs has the potential to improve the accuracy of forecasting ambient PM2.5
levels and reduce costs by overcoming the limitations of the AQMSs. Several studies
have conducted comparative evaluations to assess the accuracy of both the AQMSs and
SAMIs [26].

In a previous study conducted in December 2018 to ensure the accuracy of SAMI, we
conducted a co-location test with AQMS at the site S0 over approximately 334 h across
15 days, resulting in a correlation coefficient (R2) of 0.96 [17]. Although the SAMIs were
only placed outdoors at public buildings overseen by the Guro-gu district, the monitoring
locations were carefully selected. The selection criteria included the ability to provide
representative data, quality assurance, site security, power access, and specific building
consideration. The SAMI network adhered to a neighborhood spatial scale, as specified by
the U.S. EPA’s five categories, with sensors spaced 0.5 to 4.0 km apart [27]. To assess the
accuracy of 12 measuring instruments equipped with low-cost sensors, the study compared
the PM2.5 concentrations measured under identical conditions to those obtained from
an ambient air monitoring station operated using the Federally Equivalent Methods in
Riverside, California, USA [28]. The data collected from the six low-cost sensors showed a
relatively high correlation, with R2 values ranging from 0.7 to 0.75. Furthermore, during
a field test conducted in Australia, a correlation analysis was performed by computing
the daily average concentration of ambient PM2.5 measured by an air quality monitoring
station and a low-cost IoT sensor [29]. The results indicated a strong correlation between R2

and the range of 0.63–0.87, which suggests a relatively high level of performance. Similar
to the results by Feenstra et al. and Tagle et al. [28,29], the R2 value of the predictive model
in this study, which included SAMIs, showed a strong correlation ranging from 0.88 to 0.95.

The accuracy of estimating PM2.5 concentration improved when SAMIs were used
in combination with the AQMS compared with the results obtained through single-point
interpolation when using only the AQMS. By estimating the AQMS using each spatial
interpolation technique with Model 1 as a single point, the R2 value was found to be
0.66. The accuracy improved significantly when SAMIs were installed as an auxiliary,
increasing from approximately 23% to 55%. Moreover, the RMSE and MAE values were
relatively low, indicating an increase in the accuracy of the model estimation of PM2.5.
One simulation study demonstrated that the accuracy of PM2.5 concentration predictions
decreased as the number of monitoring stations decreased from 22 to 12 [30]. In a study
that evaluated the performance of a model estimating PM2.5, the accuracy improved
in cities with a higher number of monitoring stations compared with those with fewer
monitoring stations. This suggests that the accuracy of concentration prediction improves
as the number of monitoring stations increases, owing to the increase in spatial resolution
density [31]. Furthermore, SAMIs can overcome spatial limitations and gather data from
many locations [32]. This can improve the accuracy of predicting PM2.5 concentrations and
contribute to more precise assessments of exposure.

Seven stations (S1–S7) of the SAMIs were selected based on their distances from the
AQMS. The estimated values were obtained through spatial interpolation and then com-
pared to the observed values using statistical verification techniques. All four models
(Models 1, 2, 3, and 4) showed that the R2 value between the observation and estimation
decreased with the distance from the installed AQMS. According to the installation and
operation guidelines for AQMSs, the distance between air quality monitoring stations
should be 2 km to avoid redundancy [33]. This suggests that the AQMS represents the
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PM2.5 concentration for an area within a radius of approximately 2 km and is not indicative
of the concentration beyond this distance. SAMIs are considered to have spatial representa-
tiveness when the R2 value is above 0.80 within a radius of approximately 1.5 km. Therefore,
a clear estimation of unmeasured points was possible by installing SAMI at approximately
3 km intervals. The installation requirements for monitoring stations vary depending on
the presence or absence of air pollutant sources. However, for large cities, such as Seoul,
the accuracy of PM2.5 concentration estimation could improve if measurement stations are
installed at 3 km intervals. By comparing the statistical values of Models 3 and 4, it was
observed that the R2 value of Model 4 decreased. These results are contrary to the research
direction, which stated that the accuracy of the PM2.5 concentration estimation would
increase with an increase in the number of monitoring stations. Owing to the nature of
the interpolation technique, it is sensitive to points in close proximity. As a result, AQMSs
located outside the Guro-gu district did not have a significant impact on the improvement
in PM2.5 concentration estimation. As the distance from the AQMS increased, the R2 value
between the observed and estimated values of the selected SAMIs decreased. Combining
the AQMSs and SAMIs in a region could enhance the precision of PM2.5 concentration
estimations for unmeasured locations.

This study identified the limitations of AQMS in accurately measuring local PM2.5
concentrations due to their restricted spatial coverage. By integrating SAMI, we were able
to effectively address these shortcomings, specifically through the auxiliary installation
of SAMIs, which significantly enhanced the spatial resolution and accuracy of PM2.5
concentration estimations. Furthermore, our research established the optimal deployment
range for SAMIs, ensuring effective spatial representativeness. However, the accuracy of
the statistical verification for SAMI may be compromised because of the short duration
of only 3 days. In addition, the measured outdoor PM2.5 results may be biased due to
missing values in the concentration data, and the study area was limited to the Guro-gu
district, Seoul.

Despite these limitations, this study provides significant insights into improving
air quality monitoring and demonstrates the potential of using SAMIs to enhance the
accuracy and spatial resolution of PM2.5 measurements. In future studies, extending the
data collection period of SAMI would be essential to ensure sufficient data availability.
Additionally, it could be necessary to collect and compare data from both urban and rural
areas, as well as to gather data during significant air quality events, like yellow dust storms.
Although the sensors used have a 2-year warranty, research should be carried out to detect
sensor malfunctions and resulting data errors during the measurement period.

5. Conclusions

This study classified four models based on the increase in the number of monitoring
stations. Using QGIS, interpolation techniques, such as IDW and kriging, were used to
visualize the concentration, and statistical verification between the estimated concentration
value and the observed value was performed. Based on the IDW, OK, and UK techniques
in Model 3, the R2 values were 0.88, 0.95, and 0.95, respectively. These values indicate a
higher correlation than the results of the interpolation obtained using Model 1. In addition,
compared with Model 1, the RMSE and MAE showed low values, indicating that the
PM2.5 concentration estimation model had high accuracy. Following the assessment of the
ambient PM2.5 concentration estimation accuracy using spatial interpolation techniques,
it was observed that the kriging technique demonstrated a higher accuracy than the IDW
technique in each model. When statistical verification was performed on the monitoring
stations according to distance, R2 decreased as the distance from the AQMS increased.
This suggests that the auxiliary installation of a SAMI is necessary. Consequently, the
spatial limitations and cost aspects of the AQMS can be supplemented through the SAMIs.
This increase in spatial resolution would improve the accuracy of PM2.5 concentration
estimation for unmeasured points, resolve the concentration distribution imbalance in a
specific space, and efficiently manage air quality. It is possible to calculate the exact amount
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of PM2.5 exposure due to the increase in the measurement density. Therefore, it can be used
for accurate exposure and risk assessments of the entire population and subgroups.
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