ARIMA Analysis of PM Concentrations during the COVID-19 Isolation in a High-Altitude Latin American Megacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site Description
2.2. Data Collection
2.3. Data Analysis
Scenario | Start Date | End Date | Characteristics | |
---|---|---|---|---|
Pre-isolation E1 | 1 January 2020 | 25 March 2020 | Without any type of isolation. Usual behavior of anthropic activities. | |
Isolation E2 | Strict E2.1 | 25 March 2020 | 27 August 2020 | Controlled outflow for primary activities (health, services, and supply). 41% reduction in population mobility [57]. 85–90% reduction in vehicular transport. Staggered reduction in isolation (12 June 2023). 65–70% reduction in vehicular transport [58]. |
Sectorized E2.2 | 5 January 2021 | 2 February 2020 | Weekly isolation by sector in the city. 63.3% of work activity was remote. Access to closed spaces, stores, and public areas continued to be restricted [59]. | |
Flexible E2.3 | 10 April 2020 | 7 June 2020 | Reactivation of the economic sectors of manufacturing, construction, restaurants, and educational centers. Control of maximum capacity in transportation, public places, and commercial establishments. By the end of the scenario, general isolation was repealed [60]. | |
Historical E3 | Strict E3.1 | 25 March 2017–2019 | 27 August 2017–2019 | Historical concentrations of atmospheric pollutants for the same periods (without COVID-19). Three previous years according to other authors’ considerations [14,61,62]. |
Sectorized E3.2 | 5 January 2017–2019 | 2 February 2017–2019 | ||
Flexible E3.3 | 10 April 2017–2019 | 7 June 2017–2019 |
3. Results and Discussion
3.1. PM Concentrations
3.2. Meteorological Analysis
3.3. Short- and Long-Term Analysis
3.4. ARIMA Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). WHO Global Air Quality Guidelines; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003422-8. [Google Scholar]
- World Health Organization (WHO). Air Pollution. In Compendium of WHO and Other UN Guidance on Health and Environment, 2022 Update; (WHO/HEP/ECH/EHD/22.01); WHO: Geneva, Switzerland, 2022; Volume 2019. [Google Scholar]
- Instituto de Hidrología. Meteorología y Estudios Ambientales (IDEAM) Contaminantes del Aire y Sus Efectos. In Gestión de la Calidad del aire en las Ciudades de America Latina; Banco Mundial, Ed.; Banco Mundial: Bogotá, Colombia, 2002; pp. 15–57. [Google Scholar]
- Liou, Y.A.; Vo, T.H.; Nguyen, K.A.; Terry, J.P. Air Quality Improvement Following COVID-19 Lockdown Measures and Projected Benefits for Environmental Health. Remote Sens. 2023, 15, 530. [Google Scholar] [CrossRef]
- Chauhan, B.V.S.; Corada, K.; Young, C.; Smallbone, K.L.; Wyche, K.P. Review on Sampling Methods and Health Impacts of Fine (PM2.5, ≤2.5 Μm) and Ultrafine (UFP, PM0.1, ≤0.1 Μm) Particles. Atmosphere 2024, 15, 572. [Google Scholar] [CrossRef]
- Hao, Y.; Meng, X.; Yu, X.; Lei, M.; Li, W.; Yang, W.; Shi, F.; Xie, S. Quantification of Primary and Secondary Sources to PM2.5 Using an Improved Source Regional Apportionment Method in an Industrial City, China. Sci. Total Environ. 2020, 706, 135715. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Espinosa, J.F.; Rojas, N.Y.; Vargas, J.; Pachón, J.E.; Belalcazar, L.C.; Ramírez, O. Air Quality Variations in Northern South America during the COVID-19 Lockdown. Sci. Total Environ. 2020, 749, 141621. [Google Scholar] [CrossRef]
- Zheng, S.; Fu, Y.; Sun, Y.; Zhang, C.; Wang, Y.; Lichtfouse, E. High Resolution Mapping of Nighttime Light and Air Pollutants during the COVID-19 Lockdown in Wuhan. Environ. Chem. Lett. 2021, 1, 3. [Google Scholar] [CrossRef] [PubMed]
- Kutralam-Muniasamy, G.; Pérez-Guevara, F.; Roy, P.D.; Elizalde-Martínez, I.; Shruti, V.C. Impacts of the COVID-19 Lockdown on Air Quality and Its Association with Human Mortality Trends in Megapolis Mexico City. Air Qual. Atmos. Health 2021, 14, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Mashayekhi, R.; Pavlovic, R.; Racine, J.; Moran, M.D.; Manseau, P.M.; Duhamel, A.; Katal, A.; Miville, J.; Niemi, D.; Peng, S.J.; et al. Isolating the Impact of COVID-19 Lockdown Measures on Urban Air Quality in Canada. Air Qual. Atmos. Health 2021, 14, 1549–1570. [Google Scholar] [CrossRef]
- Rogulski, M.; Badyda, A. Air Pollution Observations in Selected Locations in Poland during the Lockdown Related to COVID-19. Atmosphere 2021, 12, 806. [Google Scholar] [CrossRef]
- Vega, E.; Namdeo, A.; Bramwell, L.; Miquelajauregui, Y.; Resendiz-Martinez, C.G.; Jaimes-Palomera, M.; Luna-Falfan, F.; Terrazas-Ahumada, A.; Maji, K.J.; Entwistle, J.; et al. Changes in Air Quality in Mexico City, London and Delhi in Response to Various Stages and Levels of Lockdowns and Easing of Restrictions during COVID-19 Pandemic. Environ. Pollut. 2021, 285, 117664. [Google Scholar] [CrossRef]
- Polednik, B. Air Quality Changes in a Central European City during COVID-19 Lockdown. Sustain. Cities Soc. 2021, 73, 103096. [Google Scholar] [CrossRef]
- Toro, A.R.; Catalán, F.; Urdanivia, F.R.; Rojas, J.P.; Manzano, C.A.; Seguel, R.; Gallardo, L.; Osses, M.; Pantoja, N.; Leiva-Guzman, M.A. Air Pollution and COVID-19 Lockdown in a Large South American City: Santiago Metropolitan Area, Chile. Urban Clim. 2021, 36, 100803. [Google Scholar] [CrossRef] [PubMed]
- Munir, S.; Coskuner, G.; Jassim, M.S.; Aina, Y.A.; Ali, A.; Mayfield, M. Changes in Air Quality Associated with Mobility Trends and Meteorological Conditions during COVID-19 Lockdown in Northern England, UK. Atmosphere 2021, 12, 504. [Google Scholar] [CrossRef]
- Xin, Y.; Shao, S.; Wang, Z.; Xu, Z.; Li, H. COVID-2019 Lockdown in Beijing: A Rare Opportunity to Analyze the Contribution Rate of Road Traffic to Air Pollutants. Sustain. Cities Soc. 2021, 285, 102989. [Google Scholar] [CrossRef]
- Aljahdali, M.O.; Alhassan, A.B.; Albeladi, M.N. Impact of Novel Coronavirus Disease (COVID-19) Lockdown on Ambient Air Quality of Saudi Arabia. Saudi J. Biol. Sci. 2021, 28, 1356–1364. [Google Scholar] [CrossRef] [PubMed]
- Teixidó, O.; Tobías, A.; Massagué, J.; Mohamed, R.; Ekaabi, R.; Hamed, H.I.; Perry, R.; Querol, X.; Al Hosani, S. The Influence of COVID-19 Preventive Measures on the Air Quality in Abu Dhabi (United Arab Emirates). Air Qual. Atmos. Health 2021, 14, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Sbai, S.E.; Mejjad, N.; Norelyaqine, A.; Bentayeb, F. Air Quality Change during the COVID-19 Pandemic Lockdown over the Auvergne-Rhône-Alpes Region, France. Air Qual. Atmos. Health 2021, 14, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Kolluru, S.S.R.; Patra, A.K.; Nazneen; Shiva Nagendra, S.M. Association of Air Pollution and Meteorological Variables with COVID-19 Incidence: Evidence from Five Megacities in India. Environ. Res. 2021, 195, 110854. [Google Scholar] [CrossRef] [PubMed]
- Arregocés, H.A.; Rojano, R.; Restrepo, G. Impact of Lockdown on Particulate Matter Concentrations in Colombia during the COVID-19 Pandemic. Sci. Total Environ. 2021, 764, 142874. [Google Scholar] [CrossRef] [PubMed]
- Zárate, E.; Carlos Belalcázar, L.; Clappier, A.; Manzi, V.; Van den Bergh, H. Air Quality Modelling over Bogota, Colombia: Combined Techniques to Estimate and Evaluate Emission Inventories. Atmos. Environ. 2007, 41, 6302–6318. [Google Scholar] [CrossRef]
- Secretaría Distrital de Ambiente (SDA). Informe Anual de Calidad del Aire Año 2020; SDA: Bogotá, Colombia, 2021. [Google Scholar]
- Secretaría Distrital de Ambiente (SDA). Informe Anual de Calidad del Aire Año 2021; SDA: Bogotá, Colombia, 2022. [Google Scholar]
- Secretaría Distrital de Ambiente (SDA). Informe Anual de Calidad del Aire Año 2019; SDA: Bogotá, Colombia, 2020. [Google Scholar]
- Cheng, Y.; Zhang, H.; Liu, Z.; Chen, L.; Wang, P. Hybrid Algorithm for Short-Term Forecasting of PM2.5 in China. Atmos. Environ. 2019, 200, 264–279. [Google Scholar] [CrossRef]
- García Nieto, P.J.; Sánchez Lasheras, F.; García-Gonzalo, E.; de Cos Juez, F.J. PM10 Concentration Forecasting in the Metropolitan Area of Oviedo (Northern Spain) Using Models Based on SVM, MLP, VARMA and ARIMA: A Case Study. Sci. Total Environ. 2018, 621, 753–761. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, Y.; Wang, K.; Chen, Y.; Leung, L.R.; Fan, J.; Li, M.; Zheng, B.; Zhang, Q.; Duan, F.; et al. Multi-Year Application of WRF-CAM5 over East Asia-Part I: Comprehensive Evaluation and Formation Regimes of O3 and PM 2.5. Atmos. Environ. 2017, 165, 122–142. [Google Scholar] [CrossRef]
- Song, C.; Fu, X. Research on Different Weight Combination in Air Quality Forecasting Models. J. Clean. Prod. 2020, 261, 121169. [Google Scholar] [CrossRef]
- Jamil, R. Hydroelectricity Consumption Forecast for Pakistan Using ARIMA Modeling and Supply-Demand Analysis for the Year 2030. Renew. Energy 2020, 154, 1–10. [Google Scholar] [CrossRef]
- Zhang, L.; Lin, J.; Qiu, R.; Hu, X.; Zhang, H.; Chen, Q.; Tan, H.; Lin, D.; Wang, J. Trend Analysis and Forecast of PM2.5 in Fuzhou, China Using the ARIMA Model. Ecol. Indic. 2018, 95, 702–710. [Google Scholar] [CrossRef]
- Allende, H.; Moraga, C.; Salas, R. Artificial Neural Networks in Time Series Forecasting: A Comparative Analysis. Kybernetika 2002, 38, 685–707. [Google Scholar]
- Guerrero Guzmán, V.M. Análisis Estadístico de Series de Tiempo Económicas, 2nd ed.; Thomson Editores, S.A., Ed.; UNAM: Ciudad de México, Mexico, 2003; ISBN 970-686-326-5. [Google Scholar]
- Díaz-Robles, L.A.; Ortega, J.C.; Fu, J.S.; Reed, G.D.; Chow, J.C.; Watson, J.G.; Moncada-Herrera, J.A. A Hybrid ARIMA and Artificial Neural Networks Model to Forecast Particulate Matter in Urban Areas: The Case of Temuco, Chile. Atmos. Environ. 2008, 42, 8331–8340. [Google Scholar] [CrossRef]
- Das, R.; Middya, A.I.; Roy, S. High Granular and Short Term Time Series Forecasting of PM2.5 Air Pollutant—A Comparative Review. Artif. Intell. Rev. 2021, 55, 1253–1287. [Google Scholar] [CrossRef]
- Cekim, H.O. Forecasting PM10 Concentrations Using Time Series Models: A Case of the Most Polluted Cities in Turkey. Environ. Sci. Pollut. Res. 2020, 27, 25612–25624. [Google Scholar] [CrossRef]
- Photphanloet, C.; Lipikorn, R. PM10 Concentration Forecast Using Modified Depth-First Search and Supervised Learning Neural Network. Sci. Total Environ. 2020, 727, 138507. [Google Scholar] [CrossRef]
- Grivas, G.; Chaloulakou, A. Artificial Neural Network Models for Prediction of PM10 Hourly Concentrations, in the Greater Area of Athens, Greece. Atmos. Environ. 2006, 40, 1216–1229. [Google Scholar] [CrossRef]
- Taneja, K.; Ahmad, S.; Ahmad, K.; Attri, S.D. Time Series Analysis of Aerosol Optical Depth over New Delhi Using Box–Jenkins ARIMA Modeling Approach. Atmos. Pollut. Res. 2016, 7, 585–596. [Google Scholar] [CrossRef]
- Zafra, C.; Ángel, Y.; Torres, E. ARIMA Analysis of the Effect of Land Surface Coverage on PM10 Concentrations in a High-Altitude Megacity. Atmos. Pollut. Res. 2017, 8, 660–668. [Google Scholar] [CrossRef]
- Zukaib, U.; Maray, M.; Mustafa, S.; Haq, N.U.; Khan, A.R.; Rehman, F. Impact of COVID-19 Lockdown on Air Quality Analyzed through Machine Learning Techniques. PeerJ Comput. Sci. 2023, 9, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Inostroza, L. Informal Urban Development in Latin American Urban Peripheries. Spatial Assessment in Bogotá, Lima and Santiago de Chile. Landsc. Urban Plan. 2017, 165, 267–279. [Google Scholar] [CrossRef]
- Secretaría Distrital de Ambiente (SDA). Informe Anual de Calidad del Aire Año 2016; Alcaldía Mayor de Bogotá: Bogotá, Colombia, 2017; p. 187. [Google Scholar]
- Hall, E.; Gilliam, J. Reference and Equivalent Methods Used to Measure National Ambient Air Quality Standards (NAAQS) Criteria Air Pollutants—Volume I; US Environmental Protection Agency: Washington, DC, USA, 2016. [Google Scholar]
- Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air. United States Enviromental Protection Agency (US. EPA). List of Designated Reference and Equivalent Methods; EPA: Cincinatty, OH, USA, 2018; p. 72. [Google Scholar]
- Chehrassan, M.; Nikouei, F.; Shakeri, M.; Behnamnia, A.; Mahabadi, E.A.; Ghandhari, H. The Role of Environmental and Seasonal Factors in Spine Deep Surgical Site Infection: The Air Pollution, a Factor That May Be Underestimated. Eur. Spine J. 2024, 33, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Urbanowicz, T.; Skotak, K.; Olasińska-Wiśniewska, A.; Filipiak, K.J.; Bratkowski, J.; Wyrwa, M.; Sikora, J.; Tyburski, P.; Krasińska, B.; Krasiński, Z.; et al. Long-Term Exposure to PM10 Air Pollution Exaggerates Progression of Coronary Artery Disease. Atmosphere 2024, 15, 216. [Google Scholar] [CrossRef]
- Kotsiou, O.S.; Saharidis, G.K.D.; Kalantzis, G.; Fradelos, E.C.; Gourgoulianis, K.I. The Impact of the Lockdown Caused by the COVID-19 Pandemic on the Fine Particulate Matter (PM2.5) Air Pollution: The Greek Paradigm. Int. J. Environ. Res. Public Health 2021, 18, 6748. [Google Scholar] [CrossRef] [PubMed]
- Alsaber, A.R.; Pan, J.; Al-Hurban, A. Handling Complex Missing Data Using Random Forest Approach for an Air Quality Monitoring Dataset: A Case Study of Kuwait Environmental Data (2012 to 2018). Int. J. Environ. Res. Public Health 2021, 18, 1333. [Google Scholar] [CrossRef]
- Kim, T.; Kim, J.; Yang, W.; Lee, H.; Choo, J. Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks. Int. J. Environ. Res. Public Health 2021, 18, 12213. [Google Scholar] [CrossRef]
- Van Buuren, S.; Groothuis-Oudshoorn, K. Mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. [Google Scholar] [CrossRef]
- Stekhoven, D.J.; Bühlmann, P. Missforest-Non-Parametric Missing Value Imputation for Mixed-Type Data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [PubMed]
- Box, G.; Jenkins, G. Times Series Analysis: Forecasting and Control, 2nd ed.; Holden Day, Ed.; Holden Day: San Fransico, CA, USA, 1970; ISBN 0-8162-1104-3. [Google Scholar]
- Zafra-Mejía, C.A.; Rondón-Quintana, H.A.; Urazán-Bonells, C.F. ARIMA and TFARIMA Analysis of the Main Water Quality Parameters in the Initial Components of a Megacity’s Drinking Water Supply System. Hydrology 2024, 11, 10. [Google Scholar] [CrossRef]
- Zheleva, I.; Veleva, E.; Filipova, M. Analysis and Modeling of Daily Air Pollutants in the City of Ruse, Bulgaria. AIP Conf. Proc. 2017, 1895, 030007. [Google Scholar] [CrossRef]
- Zafra-Mejía, C.A.; Zuluaga-Astudillo, D.A.; Rondón-Quintana, H.A. Analysis of the Landfill Leachate Treatment System Using Arima Models: A Case Study in a Megacity. Appl. Sci. 2021, 11, 6988. [Google Scholar] [CrossRef]
- Castells-Quintana, D.; Herrera-Idárraga, P.; Quintero, L.E.; Sinisterra, G. Unequal Response to Mobility Restrictions: Evidence from COVID-19 Lockdown in the City of Bogotá. Spat. Econ. Anal. 2023, 18, 1–19. [Google Scholar] [CrossRef]
- Caicedo, J.D.; Walker, J.L.; González, M.C. Influence of Socioeconomic Factors on Transit Demand During the COVID-19 Pandemic: A Case Study of Bogotá’s BRT System. Front. Built Environ. 2021, 7, 1–15. [Google Scholar] [CrossRef]
- Blackman, A.; Bonilla, J.A.; Villalobos, L. Quantifying COVID-19’s Silver Lining: Avoided Deaths from Air Quality Improvements in Bogotá. J. Environ. Econ. Manag. 2023, 117, 102749. [Google Scholar] [CrossRef]
- Vallejo-Borda, J.A.; Giesen, R.; Basnak, P.; Reyes, J.P.; Mella Lira, B.; Beck, M.J.; Hensher, D.A.; de Dios Ortúzar, J. Characterising Public Transport Shifting to Active and Private Modes in South American Capitals during the COVID-19 Pandemic. Transp. Res. Part A Policy Pract. 2022, 164, 186–205. [Google Scholar] [CrossRef]
- Sulaymon, I.D.; Zhang, Y.; Hopke, P.K.; Zhang, Y.; Hua, J.; Mei, X. COVID-19 Pandemic in Wuhan: Ambient Air Quality and the Relationships between Criteria Air Pollutants and Meteorological Variables before, during, and after Lockdown. Atmos. Res. 2021, 250, 105362. [Google Scholar] [CrossRef]
- Shahriar, S.A.; Kayes, I.; Hasan, K.; Hasan, M.; Islam, R.; Awang, N.R.; Hamzah, Z.; Rak, A.E.; Salam, M.A. Potential of Arima-Ann, Arima-Svm, Dt and Catboost for Atmospheric Pm2.5 Forecasting in Bangladesh. Atmosphere 2021, 12, 100. [Google Scholar] [CrossRef]
- Collado, C.F.; Lucio, P.B. Metodología de la Investigación; Mcgraw-Hill: Ciudad de México, Mexico, 2014; ISBN 978-1-4562-2396-0. [Google Scholar]
- Shi, Z.; Song, C.; Liu, B.; Lu, G.; Xu, J.; Vu, T.V.; Elliott, R.J.R.; Li, W.; Bloss, W.J.; Harrison, R.M. Abrupt but Smaller than Expected Changes in Surface Air Quality Attributable to COVID-19 Lockdowns. Sci. Adv. 2021, 7, eabd6696. [Google Scholar] [CrossRef] [PubMed]
- Nidzgorska-Lencewicz, J. Application of Artificial Neural Networks in the Prediction of PM10 Levels in the Winter Months: A Case Study in the Tricity Agglomeration, Poland. Atmosphere 2018, 9, 203. [Google Scholar] [CrossRef]
- Borhani, F.; Shafiepour Motlagh, M.; Stohl, A.; Rashidi, Y.; Ehsani, A.H. Changes in Short-Lived Climate Pollutants during the COVID-19 Pandemic in Tehran, Iran. Environ. Monit. Assess. 2021, 193, 331. [Google Scholar] [CrossRef] [PubMed]
- Gao, C.; Li, S.; Liu, M.; Zhang, F.; Achal, V.; Tu, Y.; Zhang, S.; Cai, C. Impact of the COVID-19 Pandemic on Air Pollution in Chinese Megacities from the Perspective of Traffic Volume and Meteorological Factors. Sci. Total Environ. 2021, 773, 145545. [Google Scholar] [CrossRef]
- El-Sayed, M.M.H.; Elshorbany, Y.F.; Koehler, K. On the Impact of the COVID-19 Pandemic on Air Quality in Florida. Environ. Pollut. 2021, 285, 117451. [Google Scholar] [CrossRef] [PubMed]
- Brandao, R.; Foroutan, H. Air Quality in Southeast Brazil during COVID-19 Lockdown: A Combined Satellite and Ground-Based Data Analysis. Atmosphere 2021, 12, 583. [Google Scholar] [CrossRef]
- Rudke, A.P.; Martins, J.A.; de Almeida, D.S.; Martins, L.D.; Beal, A.; Hallak, R.; Freitas, E.D.; Andrade, M.F.; Foroutan, H.; Baek, B.H.; et al. How Mobility Restrictions Policy and Atmospheric Conditions Impacted Air Quality in the State of São Paulo during the COVID-19 Outbreak. Environ. Res. 2021, 198, 111255. [Google Scholar] [CrossRef]
- Vlachogianni, A.; Kassomenos, P.; Karppinen, A.; Karakitsios, S.; Kukkonen, J. Evaluation of a Multiple Regression Model for the Forecasting of the Concentrations of NOx and PM10 in Athens and Helsinki. Sci. Total Environ. 2011, 409, 1559–1571. [Google Scholar] [CrossRef]
- Franceschi, F.; Cobo, M.; Figueredo, M. Discovering Relationships and Forecasting PM10 and PM2.5 Concentrations in Bogotá, Colombia, Using Artificial Neural Networks, Principal Component Analysis, and k-Means Clustering. Atmos. Pollut. Res. 2018, 9, 912–922. [Google Scholar] [CrossRef]
- Sulaymon, I.D.; Zhang, Y.; Hopke, P.K.; Hu, J.; Zhang, Y.; Li, L.; Mei, X.; Gong, K.; Shi, Z.; Zhao, B.; et al. Persistent High PM2.5 Pollution Driven by Unfavorable Meteorological Conditions during the COVID-19 Lockdown Period in the Beijing-Tianjin-Hebei Region, China. Environ. Res. 2021, 198, 111186. [Google Scholar] [CrossRef]
- Rojas, J.P.; Urdanivia, F.R.; Garay, R.A.; García, A.J.; Enciso, C.; Medina, E.A.; Toro, R.A.; Manzano, C.; Leiva-Guzmán, M.A. Effects of COVID-19 Pandemic Control Measures on Air Pollution in Lima Metropolitan Area, Peru in South America. Air Qual. Atmos. Health 2021, 14, 925–933. [Google Scholar] [CrossRef] [PubMed]
- Jian, L.; Zhao, Y.; Zhu, Y.-P.; Zhang, M.-B.; Bertolatti, D. An Application of ARIMA Model to Predict Submicron Particle Concentrations from Meteorological Factors at a Busy Roadside in Hangzhou, China. Sci. Total Environ. 2012, 426, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.C.T.; Branco, P.T.B.S.; Sousa, S.I.V. Impact of COVID-19 Pandemic on Air Quality: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 1950. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.S.; Chowdhury, T.A. Effect of COVID-19 Pandemic-Induced Lockdown (General Holiday) on Air Quality of Dhaka City. Environ. Monit. Assess. 2021, 193, 343. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.G.; Tran, P.T.M.; Balasubramanian, R. Air Quality Changes in Cities during the COVID-19 Lockdown: A Critical Review. Atmos. Res. 2021, 264, 105823. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.A.; Mehmood, T.; Lodhi, E.; Bilal, M.; Dar, A.A.; Liu, J. Lockdown Amid COVID-19 Ascendancy over Ambient Particulate Matter Pollution Anomaly. Int. J. Environ. Res. Public Health 2022, 19, 13540. [Google Scholar] [CrossRef]
- Brodeur, A.; Gray, D.; Islam, A.; Bhuiyan, S. A Literature Review of the Economics of COVID-19. J. Econ. Surv. 2021, 35, 1007–1044. [Google Scholar] [CrossRef]
Characteristic | Monitoring Stations | |||
---|---|---|---|---|
CAR | KEN | LAF | TUN | |
Coordinates | 4°39′30.48″ N | 4°37′30.18″ N | 4°41′26.52″ N | 4°34′34.41″ N |
74°5′2.28″ W | 74°9′40.80″ W | 74°4′56.94″ W | 74°7′51.44″ W | |
Atmospheric pollutants | PM10, PM2.5 | PM10, PM2.5 | PM10, PM2.5 | PM10, PM2.5 |
Meteorological variables | VV, DV, T, Pr, HR | VV, DV, T, Pr, RS, HR, Ps | VV, DV, T, Pr, HR, Ps | VV, DV, T, Pr, RS, HR |
Altitude (masl) | 2577 | 2580 | 2552 | 2589 |
Height of sampling (m) | 4.6 | 7.0 | 4.6 | 3.0 |
Type of monitoring station | Background | Background | Traffic | Background |
Mean annual relative humidity (%) | 67.6 | 63.1 | 63.2 | 62.6 |
Mean annual precipitation (mm) | 1148 | 797 | 1147 | 980 |
Mean annual temperature (°C) | 14.9 | 15.8 | 14.4 | 14.9 |
Mean annual wind speed (m/s) | 1.21 | 2.15 | 1.87 | 1.36 |
Predominant annual wind direction (°) | 204 (SSW) | 196 (S) | 140 (SE) | 175 (S) |
Land use (%) | R: 54.9 | R: 38.4 | R: 53.1 | R: 41.9 |
I: 4.40 | I: 5.80 | I: 7.10 | I: 0.60 | |
D: 3.80 | D: 37.1 | D: 10.0 | D: 8.90 | |
C: 9.60 | C: 18.4 | C: 5.20 | C: 31.3 | |
P: 8.30 | P: 0.20 | P: 2.80 | P: 17.0 | |
Land category (%) | Urban: 100 | Urban: 93.5 | Urban: 95.8 | Urban: 71.5 |
Urban sprawl: 6.55 | Urban sprawl: 4.14 | Protection: 28.5 | ||
Population density (Inhabitants/Ha) | 123 | 268 | 227 | 183 |
Station | AR (p) | I (d) | MA (q) | Transformation | R2 | MAE | RMSE | MAPE | Q’ | p-Value | DF | BIC | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E1 | |||||||||||||
CAR | PM10 | 6 | 1 | 2 | Square root | 0.999 | 0.043 | 0.057 | 0.151 | 18.099 | 0.053 | 10 | −5.689 |
PM2.5 | 11 | 2 | 1 | None | 0.999 | 0.039 | 0.055 | 0.219 | 11.461 | 0.075 | 6 | −5.762 | |
KEN | PM10 | 2 | 2 | 1 | None | 0.999 | 0.056 | 0.079 | 0.121 | 20.683 | 0.147 | 15 | −5.060 |
PM2.5 | 2 | 1 | 1 | None | 0.999 | 0.059 | 0.078 | 0.213 | 11.037 | 0.750 | 15 | −5.086 | |
LAF | PM10 | 3 | 2 | 7 | None | 0.999 | 0.069 | 0.099 | 0.193 | 14.380 | 0.072 | 8 | −4.584 |
PM2.5 | 0 | 2 | 7 | Square root | 0.999 | 0.055 | 0.073 | 0.271 | 17.432 | 0.096 | 11 | −5.207 | |
TUN | PM10 | 2 | 1 | 1 | None | 0.999 | 0.095 | 0.132 | 0.199 | 16.991 | 0.319 | 15 | −4.027 |
PM2.5 | 2 | 1 | 1 | None | 0.999 | 0.046 | 0.067 | 0.244 | 19.117 | 0.208 | 15 | −5.381 | |
E2.1 | |||||||||||||
CAR | PM10 | 1 | 1 | 3 | Natural logarithm | 0.999 | 0.028 | 0.040 | 0.199 | 21.192 | 0.097 | 14 | −6.440 |
PM2.5 | 1 | 1 | 8 | Natural logarithm | 0.999 | 0.026 | 0.038 | 0.347 | 14.635 | 0.101 | 9 | −6.525 | |
KEN | PM10 | 1 | 2 | 3 | Natural logarithm | 0.999 | 0.042 | 0.056 | 0.130 | 16.815 | 0.266 | 14 | −5.764 |
PM2.5 | 0 | 2 | 6 | None | 0.999 | 0.046 | 0.059 | 0.296 | 7.864 | 0.796 | 12 | −5.628 | |
LAF | PM10 | 1 | 2 | 4 | Natural logarithm | 0.999 | 0.030 | 0.044 | 0.197 | 10.617 | 0.643 | 13 | −6.243 |
PM2.5 | 0 | 2 | 6 | None | 0.999 | 0.024 | 0.034 | 0.316 | 12.118 | 0.436 | 12 | −6.746 | |
TUN | PM10 | 1 | 1 | 5 | Square root | 0.999 | 0.064 | 0.092 | 0.267 | 17.624 | 0.128 | 12 | −4.755 |
PM2.5 | 0 | 2 | 12 | None | 0.999 | 0.033 | 0.046 | 0.385 | 4.195 | 0.650 | 6 | −6.107 | |
E3.1 | |||||||||||||
CAR | PM10 | 2 | 1 | 1 | None | 0.999 | 0.040 | 0.053 | 0.183 | 17.074 | 0.314 | 15 | −5.869 |
PM2.5 | 1 | 2 | 13 | Square root | 0.999 | 0.024 | 0.032 | 0.225 | 1.909 | 0.752 | 4 | −6.854 | |
KEN | PM10 | 7 | 1 | 1 | Natural logarithm | 0.999 | 0.046 | 0.062 | 0.106 | 14.788 | 0.140 | 10 | −5.533 |
PM2.5 | 1 | 1 | 13 | Natural logarithm | 0.999 | 0.032 | 0.042 | 0.146 | 6.420 | 0.170 | 4 | −6.318 | |
LAF | PM10 | 1 | 1 | 12 | None | 0.999 | 0.043 | 0.058 | 0.172 | 9.572 | 0.088 | 5 | −5.664 |
PM2.5 | 0 | 2 | 15 | None | 0.999 | 0.027 | 0.036 | 0.257 | 1.841 | 0.606 | 3 | −6.598 | |
TUN | PM10 | 4 | 1 | 1 | Natural logarithm | 0.999 | 0.052 | 0.070 | 0.168 | 16.950 | 0.202 | 13 | −5.293 |
PM2.5 | 1 | 1 | 5 | Natural logarithm | 0.999 | 0.035 | 0.047 | 0.233 | 12.616 | 0.398 | 12 | −6.115 | |
E2.2 | |||||||||||||
CAR | PM10 | 0 | 2 | 9 | Natural logarithm | 0.999 | 0.061 | 0.083 | 0.237 | 10.085 | 0.344 | 9 | −4.844 |
PM2.5 | 1 | 2 | 1 | None | 0.999 | 0.033 | 0.046 | 0.254 | 24.188 | 0.085 | 16 | −6.108 | |
KEN | PM10 | 0 | 2 | 1 | None | 0.999 | 0.054 | 0.075 | 0.118 | 25.517 | 0.084 | 17 | −5.172 |
PM2.5 | 0 | 2 | 3 | None | 0.999 | 0.056 | 0.073 | 0.258 | 12.180 | 0.665 | 15 | −5.192 | |
LAF | PM10 | 1 | 2 | 4 | Natural logarithm | 0.999 | 0.054 | 0.075 | 0.216 | 17.942 | 0.160 | 13 | −5.112 |
PM2.5 | 0 | 2 | 7 | Natural logarithm | 0.999 | 0.047 | 0.061 | 0.297 | 18.559 | 0.069 | 11 | −5.485 | |
TUN | PM10 | 4 | 2 | 1 | Natural logarithm | 0.999 | 0.087 | 0.125 | 0.229 | 6.561 | 0.087 | 3 | −3.959 |
PM2.5 | 1 | 1 | 1 | None | 0.999 | 0.043 | 0.060 | 0.316 | 10.774 | 0.823 | 16 | −5.596 | |
E3.2 | |||||||||||||
CAR | PM10 | 1 | 2 | 1 | Square root | 0.999 | 0.040 | 0.054 | 0.129 | 7.891 | 0.952 | 16 | −5.790 |
PM2.5 | 0 | 2 | 2 | None | 0.999 | 0.026 | 0.035 | 0.157 | 25.930 | 0.055 | 16 | −6.676 | |
KEN | PM10 | 1 | 1 | 0 | Natural logarithm | 0.999 | 0.053 | 0.071 | 0.108 | 14.318 | 0.644 | 17 | −5.261 |
PM2.5 | 2 | 1 | 1 | Natural logarithm | 0.999 | 0.035 | 0.046 | 0.141 | 10.817 | 0.765 | 15 | −6.094 | |
LAF | PM10 | 0 | 2 | 6 | Natural logarithm | 0.999 | 0.052 | 0.069 | 0.144 | 20.223 | 0.063 | 12 | −5.247 |
PM2.5 | 1 | 1 | 8 | Natural logarithm | 0.999 | 0.030 | 0.038 | 0.186 | 14.734 | 0.098 | 9 | −6.403 | |
TUN | PM10 | 1 | 1 | 0 | None | 0.998 | 0.058 | 0.077 | 0.148 | 24.639 | 0.103 | 17 | −5.116 |
PM2.5 | 1 | 1 | 7 | Natural logarithm | 0.999 | 0.038 | 0.052 | 0.184 | 8.940 | 0.538 | 10 | −5.809 | |
E2.3 | |||||||||||||
CAR | PM10 | 1 | 2 | 4 | None | 0.999 | 0.050 | 0.074 | 0.300 | 20.424 | 0.085 | 13 | −5.179 |
PM2.5 | 1 | 1 | 2 | Square root | 0.999 | 0.028 | 0.039 | 0.303 | 18.976 | 0.215 | 15 | −6.487 | |
KEN | PM10 | 0 | 2 | 14 | Square root | 0.999 | 0.053 | 0.073 | 0.142 | 8.073 | 0.089 | 4 | −5.136 |
PM2.5 | 1 | 2 | 1 | None | 0.999 | 0.052 | 0.068 | 0.316 | 12.971 | 0.675 | 16 | −5.369 | |
LAF | PM10 | 8 | 2 | 8 | Natural logarithm | 0.999 | 0.037 | 0.054 | 0.216 | 5.448 | 0.066 | 2 | −5.741 |
PM2.5 | 2 | 2 | 2 | None | 0.999 | 0.028 | 0.039 | 0.394 | 13.060 | 0.522 | 14 | −6.440 | |
TUN | PM10 | 1 | 1 | 12 | Natural logarithm | 0.999 | 0.075 | 0.107 | 0.303 | 5.307 | 0.380 | 5 | −4.394 |
PM2.5 | 1 | 1 | 15 | Square root | 0.999 | 0.034 | 0.049 | 0.450 | 2.709 | 0.258 | 2 | −5.921 | |
E3.3 | |||||||||||||
CAR | PM10 | 1 | 1 | 4 | None | 0.999 | 0.044 | 0.057 | 0.172 | 15.500 | 0.277 | 13 | −5.694 |
PM2.5 | 2 | 1 | 1 | None | 0.999 | 0.028 | 0.035 | 0.207 | 18.587 | 0.233 | 15 | −6.656 | |
KEN | PM10 | 1 | 1 | 1 | None | 0.999 | 0.051 | 0.067 | 0.110 | 19.092 | 0.264 | 16 | −5.375 |
PM2.5 | 1 | 1 | 7 | Natural logarithm | 0.999 | 0.035 | 0.046 | 0.150 | 8.840 | 0.547 | 10 | −6.114 | |
LAF | PM10 | 1 | 1 | 12 | None | 0.999 | 0.046 | 0.061 | 0.159 | 5.433 | 0.365 | 5 | −5.514 |
PM2.5 | 2 | 1 | 7 | None | 0.999 | 0.030 | 0.039 | 0.227 | 16.431 | 0.058 | 9 | −6.441 | |
TUN | PM10 | 1 | 1 | 11 | Natural logarithm | 0.999 | 0.057 | 0.074 | 0.164 | 7.041 | 0.317 | 6 | −5.128 |
PM2.5 | 1 | 1 | 8 | Natural logarithm | 0.999 | 0.038 | 0.050 | 0.219 | 8.781 | 0.458 | 9 | −5.921 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Medina, D.S.; Zafra-Mejía, C.A.; Rondón-Quintana, H.A. ARIMA Analysis of PM Concentrations during the COVID-19 Isolation in a High-Altitude Latin American Megacity. Atmosphere 2024, 15, 683. https://doi.org/10.3390/atmos15060683
Hernández-Medina DS, Zafra-Mejía CA, Rondón-Quintana HA. ARIMA Analysis of PM Concentrations during the COVID-19 Isolation in a High-Altitude Latin American Megacity. Atmosphere. 2024; 15(6):683. https://doi.org/10.3390/atmos15060683
Chicago/Turabian StyleHernández-Medina, David Santiago, Carlos Alfonso Zafra-Mejía, and Hugo Alexander Rondón-Quintana. 2024. "ARIMA Analysis of PM Concentrations during the COVID-19 Isolation in a High-Altitude Latin American Megacity" Atmosphere 15, no. 6: 683. https://doi.org/10.3390/atmos15060683
APA StyleHernández-Medina, D. S., Zafra-Mejía, C. A., & Rondón-Quintana, H. A. (2024). ARIMA Analysis of PM Concentrations during the COVID-19 Isolation in a High-Altitude Latin American Megacity. Atmosphere, 15(6), 683. https://doi.org/10.3390/atmos15060683