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Abstract: This study concerns the application of statistical learning (SL) in thermal stress assessment
compared to the results accomplished by an international expert group when developing the Univer-
sal Thermal Climate Index (UTCI). The performance of diverse SL algorithms in predicting UTCI
equivalent temperatures and in thermal stress assessment was assessed by root mean squared errors
(RMSE) and Cohen’s kappa. A total of 48 predictors formed by 12 variables at four consecutive 30 min
intervals were obtained as the output of an advanced human thermoregulation model, calculated for
105,642 conditions from extreme cold to extreme heat. Random forests and k-nearest neighbors closely
predicted UTCI equivalent temperatures with an RMSE about 3 ◦C. However, clustering applied after
dimension reduction (principal component analysis and t-distributed stochastic neighbor embedding)
was inadequate for thermal stress assessment, showing low to fair agreement with the UTCI stress
categories (Cohen’s kappa < 0.4). The findings of this study will inform the purposeful application of
SL in thermal stress assessment, where they will support the biometeorological expert.

Keywords: bio-meteorological index; heat stress; cold stress; high-dimensional data; artificial
intelligence; machine learning; UTCI

1. Introduction

Statistical or machine learning (SL) is central to artificial intelligence (AI) applica-
tions [1–3] with potential relevance to environmental risk assessment, especially in settings
with high-dimensional input such as thermal stress indices [4]. There, they may assist
or even attempt to replace the bio-meteorological expert judgment, as indicated by the
increasing number of recent applications in diverse fields of biometeorology concerning,
e.g., indoor and outdoor thermal comfort, the impact assessment of climate change-related
heat stress, urban planning, the adaptation of buildings and human behavior to changing
climatic conditions, or establishing a link between human physiology and thermal sen-
sation [5–11]. The rising number of SL applications triggers a demand for quantitatively
assessing the skills of statistical learning in comparison to results involving expert judgment.
Our study aimed to contribute to such an assessment by utilizing as a testbed the devel-
opment process of the Universal Thermal Climate Index (UTCI), a complex assessment
procedure for the physiological strain related to the outdoor thermal environment [12],
which soon after its release had been widely adopted and applied in core fields of biomete-
orology covering weather services, public health research and epidemiology, precautionary
planning of heat health warning systems and urban environments, including applications
to tourism and health resorts, and climate impact research [13–24].
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The development of UTCI was accomplished by an international inter-disciplinary
endeavor [25,26] involving the judgment of more than 40 experts from 23 countries [12].
Figure 1 visualizes the concept and major stages of the UTCI development process [25].
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Figure 1. Stages of the development process with the elements of the operational procedure for
calculating UTCI equivalent temperatures with thermal stress categories, modified from [25], where
the highlighted stages 4 and 5 are of major concern in this study.

UTCI was conceptualized as an equivalent temperature (in ◦C) defined as the air
temperature of the reference condition with the same dynamic physiological response as
the actual condition. The physiological response to thermal stress was derived at stage 1
from the output of an advanced human model of thermoregulation [27], which had been
coupled with an adaptive clothing model with clothing insulation changing depending
on air temperature [28]. Extensive simulation runs were performed at stage 2, which
also included the validation of predicted physiological responses against experimental
laboratory and field data [29–32]. After the experts reached consensus about the definition
of reference conditions in stage 3, stage 4 derived UTCI on an equivalent temperature scale.
This involved a multivariate approach [25,33] including a dimension reduction step of the
multidimensional model output to a one-dimensional strain indicator by principal com-
ponent analysis. Then, UTCI values for non-reference conditions concerning wind speed,
humidity, and solar and thermal radiation were identified by searching the reference condi-
tion with the same strain indicator value (Figure 1). At stage 5, for assessment purposes,
a scale classifying the UTCI values into ten categories of thermal stress was added to the
operational procedure [25]. The assessment scale was established by consensus and expert
judgment involving the comparison of the model output values concerning the thermal
state of the human body, including thermal sensation and effectors of thermoregulation, to
established ergonomic limit criteria regarding cold and heat stress [25,34].

Thus, UTCI integrates human expert judgment with the high-dimensional model
output from numerous simulations performed for a huge grid of relevant conditions repre-
senting the reference and non-reference climates ranging from the extreme cold to extreme
heat. Therefore, UTCI and its underlying data represent a suitable test case for benchmark-
ing the skills of SL algorithms against procedures involving expert knowledge concerning
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the comprehensive assessment of human responses to thermal stress in biometeorologi-
cal applications.

Focusing on the data-driven stages 4 and 5 of the UTCI development (Figure 1), the
aim of this study was to compare the performance of SL algorithms to the outcome of
the process involving the knowledge and judgment of the UTCI expert group [12]. Thus,
it is expected that the findings from this study will inform the purposeful usage of SL
algorithms in supporting the biometeorological expert for thermal risk assessment.

2. Materials and Methods

Our approach was to apply selected SL algorithms deemed representative for recent
applications [5–11,35–41] to the multi-dimensional data simulated over a comprehensive
grid of relevant climatic conditions by the UTCI-Fiala model [27] at stage 2 of the UTCI
development process (Figure 1).

2.1. UTCI Data

The operational procedure [25] was based on the dynamic physiological response
characterized by the 48-dimensional model output formed by 12 variables at 4 consecutive
30 min intervals (Table 1). This output was generated for 1051 reference conditions, which
were characterized by low wind speed (0.5 m/s measured 10 m above ground level), relative
humidity of 50%, but water vapor pressure capped at 20 hPa for air temperatures above
29 ◦C, and shadowed conditions with mean radiant temperature equaling air temperature,
with the latter covering the temperature range from −110 ◦C to +100 ◦C with a 0.2 K
increment. Notably, for reference conditions, UTCI values are known and equal to the air
temperature by definition (Figure 1). Another set of 104,591 non-reference conditions with
varying levels of air temperature (−50 ◦C to +50 ◦C with 1 K increment), wind speed (0.5
to 30.3 m/s 10 m above ground), relative humidity (5% to 100%, but with maximum water
vapor pressure of 50 hPa), and solar and thermal radiation (mean radiant temperature from
30 K below to 70 K above air temperature with 5 K increment) had to be valued in UTCI
equivalent temperatures (◦C) and classified in 10 stress categories ranging from extreme
cold to extreme heat, as indicated by stages 4 and 5 in Figure 1.

For independent test purposes, these analyses were repeated with an external set of
1000 non-reference conditions, which had been simulated previously [25,42] and served as
non-reference test data in this study.

Table 1. Physiological output variables obtained from the UTCI-Fiala model [27].

Physiological Variable 1 Abbreviation 2 Unit

rectal temperature Tre ◦C
mean skin temperature Tskm ◦C
facial skin temperature Tskfc ◦C
hand skin temperature Tskhn ◦C

total net heat loss Qsk W
evaporative (latent) heat loss Esk W

sweat rate Mskdot g/min
metabolic heat production Metab W

heat generated by shivering Shiv W
skin wetness wettA % of body area

skin blood flow VblSk % of basal value
cardiac output sVbl % of basal value

1 In addition, scores of the dynamic thermal sensation (DTS) on the 7-unit ASHRAE [43] scale (−3: cold; −2:
cool; −1: slightly cool; 0: neutral; +1: slightly warm; +2: warm; +3: hot) were estimated from the physiological
output [44]; 2 Each output variable was calculated for 30, 60, 90, and 120 min of simulated exposure duration.

2.2. Data Analysis

To not compromise the study goal of comparing SL algorithms to expert judgment,
data preprocessing using external input was limited. After inspection (Figures 2 and A1), we
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log-transformed the percentage skin blood flow data (VblSK). Data cleaning was obsolete
as the deterministic UTCI-Fiala model [27] did not generate any missing values.
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Figure 2. Set of twelve physiological output variables (abbreviations in Table 1) at four points in time
from the simulated reference conditions plotted representing the distribution of the training data
with UTCI ranging from −55 ◦C to +55 ◦C. Note the log-scale applied to the skin blood flow data
(VblSk) shown in the third column of the bottom row.

Splitting the reference conditions into sets of 840 training and 211 test data and
using the external 1000 non-reference conditions as additional non-reference test data, we
compared the results of the UTCI expert group to diverse SL algorithms in predicting
UTCI equivalent temperature values from the 48 predictors, using the root-mean squared
error (RMSE) as a performance metric with error defined as the deviation of UTCI from
the equivalent temperatures predicted by the SL algorithms. The supervised learning
techniques comprised linear regression (MLR: multiple linear regression; LASSO: least
absolute shrinkage and selection operator), tree-based and ensemble methods (CART:
classification and regression trees; RF: random forests; XGBoost: extreme gradient boosting),
as well as support vector machines (SVN), and the non-parametric k-nearest neighbors
(KNN) [1–3,45–47]. More specifically, because UTCI equivalent temperature equals air
temperature for reference conditions, we could label UTCI equivalent temperatures for
the reference training data and did utilize the above-mentioned regression algorithms for
predicting equivalent temperature by the 48 predictors (12 variables at 4 points in time)
listed in Table 1.

For comparison to the UTCI assessment scale, UTCI values were then categorized
by hierarchical and k-means clustering [1] after applying principal component analysis
(PCA) and t-distributed stochastic neighbor embedding t-SNE [48], respectively, to the
high-dimensional UTCI model output for dimensionality reduction. In accordance with
the approach of the UTCI expert group [25], we searched for ten categories using the UTCI
reference data set limited to the 926 values with air temperatures between −110 ◦C and
+75 ◦C, covering the range of UTCI values obtained for non-reference conditions [25]. This
enabled ranking the resulting clusters by the intra-cluster mean air temperatures, which
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were equal to UTCI for the reference conditions according to the equivalent temperature
definition (Figure 1).

Metrics of agreement between the UTCI stress categories and the classification found
by clustering were derived from the confusion matrix by calculating the overall accuracy,
defined as the proportion of the UTCI stress categories that were classified correctly, and by
Cohen’s kappa, defined as (po − pe)/(1 − pe), with po denoting the observed proportion
of agreement and pe the hypothetical proportion of agreement due to chance [49]. The
calculations were performed with the statistical software R version 4.3.3 [50] using the
packages caret [51], xgboost [47], yardstick [52], tidyverse [53], and cowplot [54].

3. Results

Figure 2 illustrates the distribution of the training data, i.e., the 48-dimensional set of
twelve physiological output variables at four points in time predicted by the UTCI-Fiala
model [27] for the UTCI reference conditions with air temperatures ranging from −55 ◦C
to +55 ◦C. Similarly, Figure A1 depicts the corresponding data for the combined reference
and non-reference conditions depending on air temperature.

While several parameters, like rectal, mean skin, and facial temperatures, as well
as skin blood flow, showed a time-dependent pattern of values increasing from cold
to heat stress, other parameters showed non-monotonous relationships, e.g., metabolic
heat production increasing both in the cold due to shivering, and in the heat due to
the so-called Q10-effect, i.e., the rise in metabolic rate associated with increasing body
core temperature. The UTCI-Fiala model had implemented an increase in metabolic
rate of about 7% per 1 K rise in core temperature in accordance with the results of cli-
mate chamber experiments [27,55]. These non-linear and non-monotonous patterns of
stress–strain relationships with respect to the air temperature-dependent physiological re-
sponses, as well as shivering only occurring in the cold, posed a particular challenge to the
learning algorithms.

3.1. UTCI Equivalent Temperature Calculation

UTCI and the equivalent temperatures predicted by the diverse algorithms were
highly correlated, with the squared correlation (R2) exceeding 0.95 for any dataset and with
any method, as shown in Appendix A by Figure A2.

However, performance differences became obvious in Figure 3A, showing the typical
prediction error RMSE obtained from the separate algorithms for the three sets of training
and test data, respectively. While multiple linear regression and LASSO worked well
for UTCI reference conditions, RMSE increased to more than 7 ◦C for the non-reference
data, approximately corresponding to one heat stress category deviation (Figure 1). RMSE
values of similar magnitude for the non-reference test data occurred with CART and
SVM, whereas gradient boosting lowered the prediction error. The best performance was
observed with RF and KNN, both showing an excellent fit for the reference data with
RMSE < 0.2 ◦C and a good agreement with RMSE of about 3 ◦C for non-reference UTCI,
where RMSE for KNN was below the prediction error obtained for calculating UTCI from
meteorological input by the polynomial regression function provided by the operational
procedure (Figure 1) [25]. Among the tree-based algorithms, CART performance was
inferior to RF and gradient boosting (XGBoost) in all cases, in accordance with earlier
observations in different application areas [46]. The results for RMSE were confirmed by
the corresponding analyses utilizing the squared correlation coefficient (R2) and the mean
absolute error (MAE) as alternative performance metrics, as shown in Figure A2.
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Figure 3. (A) Root-mean squared error (RMSE) for predicting UTCI equivalent temperatures from
48 physiological variables by different supervised SL algorithms (MLR: multiple linear regression;
LASSO: least absolute shrinkage and selection operator; CART: classification and regression trees;
SVM: support vector machines; XGBoost: extreme gradient boosting; RF: random forests; KNN:
k-nearest neighbors) for the training reference (train ref) data and two test datasets for reference (ref)
and non-reference (non-ref) UTCI conditions. For comparison, horizontal reference lines indicate
the RMSE for calculating UTCI from meteorological input using the polynomial regression function
or the lookup table provided by the operational procedure [25]. (B) Dynamic thermal sensation
votes from the non-reference test data depending on the equivalent temperature predicted by the SL
algorithms from (A) in comparison to the original UTCI (lower right panel), with lines indicating the
values for the reference conditions.

As an essential requirement for thermal stress indices, identical index values should
indicate equivalent thermal strain [12]. Thus, Figure 3B evaluates this criterion for the
equivalent temperatures determined by the diverse SL algorithms in comparison to the
original UTCI concerning the dynamic thermal sensation (DTS) from the non-reference
test data averaged over the four simulated points in time (30, 60, 90, and 120 min). The
resulting pattern for the best-performing algorithms, RF and KNN, was similar to the
original UTCI, showing a small variation around the reference values, whereas the other
algorithms, especially CART, showed larger and partly systematic deviations (Figure 3B).

3.2. UTCI Assessment Scale and Thermal Stress Categories

As illustrated by Figure 4A, the UTCI-Fiala model output projected to the first
two dimensions by PCA, which explained about 90% of total variance, exhibited a one-
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dimensional structure along the UTCI categories from extreme cold to extreme heat, which
followed an increasing course concerning the first principal component (dim1) in accor-
dance with the original analysis [25]. Similarly, a one-dimensional structure also emerged
with t-SNE; however, the resulting curve followed a non-monotonous pattern in each of
the two dimensions (dim1 and dim2).
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Figure 4. (A) Two-dimensional projections from principal component analysis (PCA), and
t-distributed stochastic neighbor embedding (t-SNE), respectively, of the reference data (48 physio-
logical variables plus 4 calculated dynamic thermal sensations) colored by the ten UTCI categories.
(B) Confusion matrices showing the proportion (Prop) of conditions in the original ten UTCI stress
categories (y-axis) assigned to the corresponding number of groups by hierarchical (upper panels)
and k-means-clustering (lower panels) applied to the projections from PCA and t-SNE, respectively.
(C) Metrics (accuracy and Cohen’s kappa) on the agreement of the UTCI stress categories with the
classifications by the different clustering algorithms applied to PCA and t-SNE projections.
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Figure 4B shows the confusion matrices comparing the groups formed by hierarchical
or k-means clustering following dimensionality reduction by PCA and t-SNE, respectively,
to the categories of the UTCI assessment scale. Although correct classifications followed a
trend from extreme cold to heat, discrepancies concerning the intermediate UTCI categories
were obvious.

Consequently, the quantification of agreement in Figure 4C resulted in low to fair
levels of agreement, according to Cohen’s kappa, varying between 0.1 and 0.4 [49]. The
different methods, as defined by the combinations of the dimension reduction (PCA vs.
t-SNE) with the clustering algorithms (hierarchical vs. k-means), performed similarly with
k-means clustering following t-SNE yielding the highest scores for both accuracy (0.395)
and the kappa coefficient (0.33), respectively.

4. Discussion

Our study provided a quantitative assessment of the skills of SL algorithms, focusing
on the data-driven stages 4 and 5 of the UTCI development process (Figure 1). Notably, both
stages did involve consensus and expert judgment, e.g., for selecting the relevant subsets
of two exposure durations (30 min and 120 min) and seven physiological output variables
(Tre, Tskm, Tskfc, Mskdot, Shiv, wettA, and VblSk, with abbreviations from Table 1) in
equivalent temperature calculation (stage 4). Similarly, the assessment scale from stage
5 was based on consensus about limit criteria derived from external expert knowledge
from thermophysiology and ergonomics [25]. While Section 4.1 compares the skills of SL to
the UTCI approach concerning these two stages of the development process, it should be
noted that expert knowledge and judgment were inherently needed at all stages shown
in Figure 1, especially with respect to the definition of the reference conditions in stage
3 as a crucial requirement for equivalent temperature calculation. Therefore, Section 4.2
relates our findings to corresponding results based on ensemble modeling as established
for biological aging research [56,57], which is presented here in a novel context of thermal
index development and could enable the calculation of equivalent temperatures without
requiring the explicit definition of reference conditions, thus waiving stage 3 requiring
expert judgment from the development process (Figure 1).

4.1. UTCI Approach Compared to SL Algorithms

Our results concerning the equivalent temperature index UTCI indicate that recent
machine learning algorithms such as random forests or k-nearest neighbors were capable of
producing equivalent temperatures deviating from UTCI with an RMSE of about 3 ◦C for
the general, non-reference use case. For comparison, this deviation was similar to, or in the
case of the k-nearest neighbor regression algorithm, even below the RMSE associated with
calculating UTCI from the meteorological input variables using the polynomial regression
function [25]. The non-parametric k-nearest neighbor regression algorithm might be better
suited to capture non-monotonous stress–strain relationships like metabolic rate increasing
under both cold and heat stress conditions (Figures 2 and A1), which could explain the supe-
rior performance of k-nearest neighbor regression compared to the other SL algorithms. The
deviations found for the two best-performing algorithms might be considered acceptable
given that uncertainties in the measurement or estimation of the mean radiant temperature
in application scenarios could lead to absolute deviations above 6 K concerning the UTCI
calculation by the polynomial regression function, which might even increase to more
than 8 K when taking the other meteorological input variables (air temperature, humidity,
wind speed) into account [58]. In addition, the values of dynamic thermal sensation (DTS)
showed only limited variability at equivalent temperatures produced by random forest
and k-nearest neighbors (Figure 3B), which was of similar magnitude as observed for the
original UTCI. As identical equivalent temperature values should indicate identical thermal
strain [12], this supports the potential usefulness of random forest and k-nearest neighbor
regression for thermal index development.
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In summary, our results suggest that selected SL algorithms may be helpful tools to
derive summarizing metrics for complex environmental assessment tasks characterized by
high-dimensional data describing stress and strain. Notably, these useful features concerned
a narrow, but important data-analytical task within the UTCI development (stage 4 in
Figure 1), which itself had been based on multivariate statistical methods [25], bearing some
similarities with the SL algorithms applied in this study. From the opposite perspective,
the close similarities of UTCI with equivalent temperatures calculated by modern machine
learning algorithms suggest that the UTCI approach still appears appropriate considering
recent data analytic developments.

The dimensionality-reduction results by PCA and t-SNE in Figure 4A both suggested
a one-dimensional structure of thermos-physiological strain, concurring with the original
analyses presented as stage 4 of Figure 1 [25]. In addition, the clustering algorithms were
able to identify a trend from extreme heat to extreme cold. However, they did not reliably
discriminate between the intermediate categories, with only marginal differences between
the diverse algorithms. This demonstrates the discrepancy between clustering algorithms
searching for patterns in the data and forming groups of data of comparable size on the
one hand [59] and the definition of UTCI stress categories based on thermo-physiological
knowledge and ergonomics reasoning on the other hand [25,34].

4.2. Alternative Approach by Ensemble Modeling

Ensemble modeling techniques such as random forests and gradient boosting, which
had shown good performance in this study (Figure 3), aim at enhancing the predictive
capabilities of simple models by averaging single predictions of numerous models and
have been successfully applied to the assessment of human biological features changing
with aging by a single quantity termed ‘biological age’ [56,57]. Biological age is defined as
the chronological age of a population reference associated with identical levels of single
or composite aging biomarkers, where the population reference is usually taken as a
means of a comprehensive sample obtained from large-scale clinical or epidemiological
studies [57]. Thus, the concept of biological age bears close similarities with equivalent
temperature-based thermal indices [12], with age taking the role of temperature [60].

Therefore, as additional analysis, we applied the widely used Klemera-Doubal method
(KDM) [56], which predicts the outcome of interest, here air temperature replacing age, as a
weighted average of the predictions obtained by inverting the individual regression lines,
as shown in Figure A1 for the predicted 48 physiological responses from the combined
reference and non-reference datasets. The weights are chosen by the KDM algorithm
proportional to the squared correlation coefficients. We calculated KDM equivalent tem-
peratures using the R package BioAge [57], and compared them in Figure 5 to the UTCI
values determined for the external test data [42]. Both types of equivalent temperatures
were highly correlated with UTCI values above KDM equivalent temperatures in the heat
and below KDM in the cold (Figure 5).

It is important to note that the KDM algorithms allow for the determination of equiva-
lent temperatures without defining reference conditions, thus omitting stage 3 from Figure 1.
In KDM, the reference conditions are unknown, but implicitly referring to those conditions
representing the ‘population average’ in the underlying data, with air temperature equaling
the predicted equivalent temperature after the complex ensemble modeling algorithm in-
volving inverting and weighting individual regression functions. Concerning the combined
reference and non-reference data shown in Figure A1, this population average will be char-
acterized by higher values of wind speed and mean radiant temperature compared to the
UTCI reference conditions. This explains, at least partly, the pattern observed in Figure 5,
because the non-reference test data will be further away from the UTCI reference than
from the implicit population average in KDM in terms of wind speed and mean radiant
temperature. This will increase the offset, i.e., the shift of equivalent to air temperature as
shown in Figure 1 for UTCI compared to KDM, and lead to higher UTCI values in the heat
and lower values in the cold.
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As the KDM procedure removes the necessity of finding consensus about the definition
of the reference conditions, it could simplify the development process of an equivalent
temperature index. On the other hand, it will make the resulting equivalent temperature
less interpretable due to the unspecified reference conditions. Consequently, the utilization
of the KDM algorithm for the development of an equivalent temperature index will require
the most careful design of the underlying database, which will implicitly also define the
(unknown) reference to which all conditions will be compared.

Hence, we believe that the UTCI approach with a specified reference will promote
results that are more interpretable in terms of thermal stress and physiological strain, which
forms an essential requirement for assessment procedures concerning the human responses
to the thermal environment [12,61].

Of course, the KDM algorithm could also be used to derive predictive equations for
the equivalent temperatures from the reference data only and then apply those to the
non-reference data, in the same manner as it was accomplished for the other SL algorithms
in Section 3.1. Implementing this analysis, KDM showed inferior performance, with RMSE
exceeding 23 ◦C for the reference and 42 ◦C for the non-reference conditions, far above
the deviations reported for the other SL algorithms in Figure 3A. According to this result,
the application of KDM for the development of equivalent temperature indices will be
limited to the special case when the definition of reference conditions will not be possible
or warranted.

4.3. Limitations and Outlook

As a limitation concerning generalizability, the database underlying the UTCI devel-
opment was generated by a deterministic model of human thermoregulation. Thus, it
lacks random variation induced by, e.g., inter-individual or day-to-day variability of the
human physiological responses, which might have complicated the analyses of this study.
However, the best-performing SL algorithms for equivalent temperature prediction, i.e.,
concerning stage 4 in Figure 1, like random forests and k-nearest neighbors, had already
been suggested and successfully applied in other fields pertaining to climatic change and
thermal stress [35–41].
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While selected SL algorithms were competitive with procedures involving expert
judgment for equivalent temperature prediction (stage 4 in Figure 1), assessment scales
(stage 5 in Figure 1) automatically derived by clustering algorithms may still require expert
knowledge for their refinement. Future enhancements at this stage may be possible by
including further artificial intelligence tools such as expert systems or large language
models working with knowledge databases [62,63].

Notably, the KDM approach, transferred in this study from biological aging re-
search to a novel context, might facilitate the development of equivalent temperature
indices by avoiding the necessity of specifying reference conditions (stage 3 in Figure 1) in
future applications.

5. Conclusions

In summary, a potential supportive role for the utilized SL algorithms when analyz-
ing high-dimensional input in thermal index development can be concluded from their
adequate performance in equivalent temperature prediction. On the other hand, the low
agreement of the assessment scale defined by the UTCI expert group with clustering-
based thermal stress categories suggested that statistical learning algorithms will not (yet)
fully replace the knowledgeable experts in biometeorological and inter-disciplinary re-
search. Nevertheless, we believe that the findings from our study will contribute to inform-
ing biometeorological experts on the purposeful application of SL algorithms in thermal
risk assessment.
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Appendix A

This appendix contains supplemental Figures A1 and A2.
Figure A1 illustrates the distribution and correlation of air temperature with the twelve

physiological responses at four points in time predicted by the UTCI-Fiala model [27] for
the combined reference and non-reference datasets, i.e., training and test data, including
the individual regression lines. The latter were used by the KDM algorithm [56,57] for
ensemble modeling of the equivalent temperature as averaged predictions from the inverted
regression lines weighted by the squared correlation coefficients, as discussed in Section 4.2.

Figure A2 presents the squared correlation coefficients (R2) and the mean absolute
error (MAE) as goodness-of-fit metrics complementing the root mean squared error (RMSE)
presented in Figure 3A for the UTCI equivalent temperature predictions from diverse
SL algorithms.
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Figure A1. Set of twelve physiological output variables (abbreviations in Table 1) at four exposure
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ranging from −50 ◦C to +50 ◦C with correlation coefficients (R) and linear regression lines. Note the
log transformation applied to the skin blood flow data (VblSk) shown in the second row from the
bottom up.
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extreme gradient boosting; RF: random forests; KNN: k-nearest neighbors) for the training reference 
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For comparison, horizontal reference lines indicate the corresponding metrics for calculating UTCI 
from meteorological input using the polynomial regression function or the lookup table provided 
by the operational procedure [25]. 
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References
1. Berk, R.A. Statistical Learning from a Regression Perspective; Springer International Publishing: Cham, Switzerland, 2020. [CrossRef]
2. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Springer: New

York, NY, USA, 2009. [CrossRef]
3. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning: With Applications in R; Springer: New York,

NY, USA, 2013. [CrossRef]
4. Matzarakis, A. Curiosities about Thermal Indices Estimation and Application. Atmosphere 2021, 12, 721. [CrossRef]
5. Ali, A.; Jayaraman, R.; Azar, E.; Maalouf, M. A comparative analysis of machine learning and statistical methods for evaluating

building performance: A systematic review and future benchmarking framework. Build. Environ. 2024, 252, 111268. [CrossRef]
6. Aparicio-Ruiz, P.; Barbadilla-Martín, E.; Guadix, J.; Muñuzuri, J. Predicting the clothing insulation through machine learning

algorithms: A comparative analysis and a practical approach. Build. Simul. 2024, 17, 839–855. [CrossRef]
7. Hamed, M.M.; Al-Hasani, A.A.J.; Nashwan, M.S.; Sa’adi, Z.; Shahid, S. Assessing the growing threat of heat stress in the North

Africa and Arabian Peninsula region connected to climate change. J. Clean. Prod. 2024, 447, 141639. [CrossRef]
8. Guo, R.; Yang, B.; Guo, Y.; Li, H.; Li, Z.; Zhou, B.; Hong, B.; Wang, F. Machine learning-based prediction of outdoor thermal

comfort: Combining Bayesian optimization and the SHAP model. Build. Environ. 2024, 254, 111301. [CrossRef]
9. Wang, J.; Li, Q.; Zhu, G.; Kong, W.; Peng, H.; Wei, M. Recognition and prediction of elderly thermal sensation based on outdoor

facial skin temperature. Build. Environ. 2024, 253, 111326. [CrossRef]
10. Wang, M.; Gou, Z. Gaussian Mixture Model based classification for analyzing longitudinal outdoor thermal environment data to

evaluate comfort conditions in urban open spaces. Urban Clim. 2024, 53, 101792. [CrossRef]
11. Choi, Y.; Seo, S.; Lee, J.; Kim, T.W.; Koo, C. A machine learning-based forecasting model for personal maximum allowable

exposure time under extremely hot environments. Sustain. Cities Soc. 2024, 101, 105140. [CrossRef]
12. Jendritzky, G.; de Dear, R.; Havenith, G. UTCI—Why another thermal index? Int. J. Biometeorol. 2012, 56, 421–428. [CrossRef]

https://doi.org/10.1007/978-3-030-40189-4
https://doi.org/10.1007/978-0-387-84858-7
https://doi.org/10.1007/978-1-4614-7138-7
https://doi.org/10.3390/atmos12060721
https://doi.org/10.1016/j.buildenv.2024.111268
https://doi.org/10.1007/s12273-024-1114-9
https://doi.org/10.1016/j.jclepro.2024.141639
https://doi.org/10.1016/j.buildenv.2024.111301
https://doi.org/10.1016/j.buildenv.2024.111326
https://doi.org/10.1016/j.uclim.2023.101792
https://doi.org/10.1016/j.scs.2023.105140
https://doi.org/10.1007/s00484-011-0513-7


Atmosphere 2024, 15, 703 14 of 15
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