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Abstract: Urban areas contribute to over 80% of carbon dioxide emissions, and considerable efforts
are being undertaken to characterize spatiotemporal variations of CO2 (carbon dioxide) at a city,
regional, and national level, aiming at providing pipelines for carbon mission reduction. The complex
underlying surface composition of urban areas makes process-based and physiology-based models
inadequate for simulating carbon flux in this context. In this study, long short-term memory (LSTM),
support vector machine (SVM), random forest (RF), and artificial neural network (ANN) were
employed to develop and investigate their viability in estimating carbon flux at the ecosystem level.
All the data used in our study were derived from the long-term chronosequence observations collected
from the flux towers within urban complex underlying surface, along with meteorological reanalysis
datasets. To assess the generalization ability of these models, the following statistical metrics were
utilized: coefficient of determination (R2), root mean square error (RMSE), and mean absolute error
(MAE). Our analysis revealed that the RF model performed the best in simulating carbon flux over
long time series, with the highest R2 values reaching up to 0.852, and exhibiting the smallest RMSE
and MAE values at 0.293 µmol·m−2·s−1 and 0.157 µmol·m−2·s−1. As a result, the RF model was
chosen for simulating carbon flux at spatial scale and assessing the impact of urban impervious
surfaces in the simulation. The results showed that the RF model performs well in simulating carbon
flux at the spatial scale. The input of impervious surface area index can improve the performance
of the RF model in simulating carbon flux, with R2 values of 84.46% (with the impervious surface
area index in) and 83.74% (without the impervious surface area index in). Furthermore, the carbon
flux in Fengxian District, Shanghai, exhibited significant spatial heterogeneity: the CO2 flux in the
western part of Fengxian District was less than in the eastern part, and the CO2 flux gradually
increased from the west to the east. In addition, we creatively introduced the diurnal impervious
surface area index based on the Kljun model, and clarified the influence of impervious surface on the
spatiotemporal simulation of CO2 flux over the complex urban underlying surface. Based on these
findings, we conclude that the RF models can be effectively applied for estimating carbon flux on
the complex underlying urban surface. The results of our study reduce the uncertainty in modeling
carbon cycling in terrestrial ecosystems, and make the variety of models for the carbon cycling of
terrestrial ecosystems more diverse.

Keywords: urban; complex underlying surface; carbon and water fluxes; machine learning; simulation

1. Introduction

Human transportation-related activities are responsible for 80% of the carbon dioxide
(CO2) emission in densely populated urban areas [1], making them a significant source

Atmosphere 2024, 15, 727. https://doi.org/10.3390/atmos15060727 https://www.mdpi.com/journal/atmosphere

https://doi.org/10.3390/atmos15060727
https://doi.org/10.3390/atmos15060727
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0000-0003-3113-3220
https://doi.org/10.3390/atmos15060727
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com/article/10.3390/atmos15060727?type=check_update&version=4


Atmosphere 2024, 15, 727 2 of 14

of atmospheric carbon. Changes in urban environments resulting from human activities
primarily revolve around several aspects, such as the combustion of fossil fuels and the
rapid increase in impervious surfaces [2,3]. The rapid increase in urban impervious surface
area has altered the biogeochemical processes associated with the soil–atmosphere gas
exchange within the urban ecosystems and their response to global climate change. An
urban impervious surface not only weakens surface transpiration and evaporation but also
interferes with the exchange of water and heat between the surface and the atmosphere [4].

In the continual evolution of cities and the escalating challenges posed by climate
change, the establishment of eddy covariance (EC) observation systems within urban areas
has emerged as a crucial tool for comprehending urban environmental transformations.
The research on carbon, water, and energy exchange between complex underlying urban
surfaces and the atmosphere by the eddy covariance observation system mainly has focused
on dynamic characteristics, influencing factors, and flux footprint determination. Lietzke
et al. [5] presented a comprehensive overview of recent studies on urban CO2 emissions, and
the longest time series analysis reported in the literature spans six years [6,7]. Furthermore,
Schmutz et al. [8] conducted a decade-long examination of the long-term sequence of urban
ecosystems, offering insights into the CO2 flux and CO2 molar concentration of this flux
through observation at the University of Basel in Switzerland.

Since the 20th century, there has been increasing recognition of the predictive power
of machine learning algorithms to solve a variety of problems, such as determining the rela-
tive importance of environmental factors affecting the mechanisms of carbon exchange [9],
elucidating the nonlinear procession of carbon interaction between surface and atmo-
sphere [10], providing a useful tool for carbon flux upscaling [11], and combining different
process-based models to reduce predictive uncertainty [12], interpolated missing data on
carbon flux, energy flux, and climate variables based on observations from the Global Flux
Towers [13]. Existing studies mainly have focused on the simulation of carbon flux in
natural ecosystems. The simulation and prediction of carbon flux in ecosystems remain
challenging, especially for highly heterogeneous urban underlying surfaces. Tramontana
et al. [14] conducted a comprehensive cross-validation analysis on the spatial prediction of
various carbon and energy fluxes, highlighting the particular difficulty in predicting net
ecosystem exchange (NEE). Meyer [15] proposed a sequence feature selection algorithm
based on spatial cross-validation to remove spatial autocorrelation predictors. However,
challenges persist in expanding the scale, with data quality of EC data being a significant
obstacle. Wang et al. [16] utilized the random forest (RF) model to assess the relation-
ship between land use and carbon emissions. Their results showed that carbon emissions
from retail and residential land categories accounted for a large proportion, and carbon
emissions from terrace houses were higher than emissions from other residential building
categories. Reitz et al. [17] used the RF model to predict the daily CO2 flux at 250 m spatial
resolution in the Ruhr catchment area of western Germany from 2010 to 2018; the results
proved that although the model results underestimated the variance of CO2 flux, they could
accurately reflect the average value. Thus, spatial prediction was more difficult than time
series prediction.

Previous studies on the observation and simulation of carbon flux mostly focused
on natural ecosystems with relatively simple underlying surface types, such as forest
ecosystems, grassland ecosystems, and farmland ecosystems [18–20]. However, due to the
high heterogeneity of urban complex underlying surface and intensive human activities,
it is difficult for physiological models to be used to estimate the variations and spatial
distribution of carbon flux in urban. At the same time, activities in urban areas also increase
the uncertainty of carbon flux simulation. Therefore, a data-driven-based model is an
effective way to solve the simulation of carbon flux over urban complex underlying surfaces.
Although there were researchers using machine learning to study the interpolation and
scale inference of carbon flux in urban, the results were not very good [16,17]. In most of
these studies, only meteorological and vegetation factors were considered in the model, and
there were also studies that believed the impact of land use type on the spatial distribution
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of carbon flux, but only considered different ecosystem types, and did not study the spatial
distribution of carbon flux of different land uses in the complex urban underlying surface.

In conclusion, previous research could not develop a suitable model to study the
spatiotemporal distribution of CO2 flux in urban areas. Hence, our objectives are the
following: (1) Using four machine learning models to simulate the long time series of carbon
flux over the complex urban underlying surfaces, and evaluating the model performance;
(2) Utilizing the best-fitting model to scale up the carbon flux to Fengxian District, Shanghai.

2. Materials and Methods
2.1. Site Description

The study area is located in Fengxian District, Shanghai, along the north bank of
Hangzhou Bay in the middle and lower reaches of the Yangtze River in China (Figure 1). The
study area is flat and located in the mid-temperate zone geographically, with a subtropical
monsoon climate. The prevailing wind direction is southeast, and the climate is humid
and mild [21]. The annual average temperature stands at around 16.1 ◦C, with an annual
rainfall of approximately 1191.5 mm. Moreover, the annual frost-free period lasts for about
225 days [22]. The underlying surface in the study is complex and fragmented, including
forests, grasslands, farmlands, water bodies, and buildings. Each land use type collectively
influences the carbon cycle within the study area [22].
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Figure 1. (a) An image of Shanghai; (b) a distribution map of streets and towns in Fengxian District
of Shanghai; and (c) a land use map of the underlying surface for the vorticity tower area in 2019.

2.2. Measurements and Data Processing

The eddy covariance flux observation tower (EC tower, 121◦30′38.96′′ E, 30◦50′32.26′′

N) is located in Fengxian Bay University City, Shanghai. CO2 flux was measured using
an open-path eddy covariance (OPEC) system, which consisted of an open-path and fast-
response infrared gas analyzer (Model LI-7500, Li-Cor Inc., Lincoln, NE, USA) to monitor
the densities of CO2 and H2O, and a 3D sonic anemometer (Model WindMaster Pro, Gill
Instruments Ltd., Lymington, UK) to measure the fluctuations of three-dimensional wind
speed and virtual temperature [21]. The height of EC monitoring was 20 m. The raw
data were recorded and saved to a data logger (Model CR 3000, Campell Scientific Inc.,
North Logan, UT, USA) (Figure 1).
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Micrometeorological measurement systems monitored multiple parameters, including
relative humidity and air temperature (HMP-45C, Vaisala Inc., Helsinki, Finland), wind
speed (AR-100, Vector Instruments, Weymouth, UK), photosynthetically active radiation
(PAR) (Li-190SB, Li-Cor Inc., Lincoln, NE, USA) at 15 m above the ground surface, and
soil temperature (Ts) (CS615-L, Campbell Scientific, Logan, UT, USA) at 5 cm below the
soil surface. The meteorological data were recorded at 30 min intervals using a datalogger
(Model CR 3000, Campbell Scientific).

In this study, we selected five years of flux and meteorological data (2011, 2012, 2017,
2018, and 2019). We used EddyPro 7.1.1 software (Li-COR, Lincoln, NE, USA) to calculate
CO2 flux at a time interval of 30 min. EddyPro 7.1.1 was also employed for various data
treatments, including axis rotation coordination, frequency response correction, Webb
Pearman Leuning (WPL) density correction, wild point removal, and flux data quality
indicator establishment (where 0 represents the best quality, 1 represents the middle quality,
and 2 represents the worst quality) [23–25]. Then we deleted the flux generated within 1 h
before and after the rain and when the friction velocity (u star, u*) was less than 0.15 m/s,
and we also deleted the flux data quality marked as 2. When the CO2 flux was negative, it
represented that the whole ecosystem was in a state of absorbing CO2, and when the flux
was positive, it represented that the whole ecosystem was in a state of releasing CO2. After
data quality control, we gap-filled CO2 flux using the REddyProc package in R.

2.3. Daily Scale Urban Impervious Surface Area Data

The Kljun flux footprint model is a novel algorithm based on scale (dimension) analysis
developed by Kljun et al. [26] that can be used to calculate the crosswind integral function
of a flux source area. According to the Kljun flux source calculation model, we calculated
the daily scale flux source area and obtained the two-dimensional coordinates and a two-
dimensional plane diagram of the flux source area. Finally, the daily scale land use/land
cover information within the flux source area was obtained. The computation of the
footprints was conducted by MatLab 2015b.

2.4. Grid Data

The environmental factors affecting carbon flux at a single site and regional carbon
flux have some differences. In this study, combined with the research results of Papale [11],
Chen [27], Li [28], and Liu [29], we used the six factors of land use, atmospheric temperature,
soil moisture, air relative humidity, precipitation, and photosynthetically active radiation
to study the scale increase in regional carbon flux. Explanatory variables were compiled
from various sources and were of different spatial and temporal resolutions, as shown in
Table 1. The time span of all data is 2011–2019.

Table 1. Predictor variables used for model simulation.

Nr Name Source Temporal
Resolution

Spatial
Resolution Unit

1 Soil moisture European Space Agency 1 day 0.25◦ /
2 Precipitation ERA-Interim 1 day 1◦ mm
3 Temperature ERA-Interim 1 day 0.1◦ ◦C
4 Relative humidity ERA-Interim 1 month 0.25◦ %
5 Photosynthetic active radiation ERA-Interim 1 month 0.125◦ µmol·m−2·s−1

6 Land use European Space Agency 1 year 300 m /

2.5. Statistical Analysis

The Lindeman–Merenda–Gold (LMG) method [30] was used to quantify the relative
contributions of each factor to the daily changes of carbon flux over complex underlying
surfaces. We performed the algorithm using the “relaimpo” package in R, which contains
variance decomposition methods for multiple linear regression models. The LMG method
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estimated the relative importance of each variable by decomposing the square sum into non-
negative contributions shared by each variable, and obtained the LMG value by averaging
the sum of squares (R2) of all possible orders, as follows:

LMG(xk) =
1
k!∑q(k) seqR2{xk|sk(q)},

where q (k) is the order in which the independent variable xk enters the multiple linear
regression model; Sk (q) is the set of independent variables before xk enters the model in q
permutations; seqR2{xk|Sk (q) } is the R2 increment when xk enters the model when the
model contains the independent variable set Sk (q); and LMG (xk) is the average increase
in R2 caused by the independent variable xk.

2.6. Machine Learning and Model Evaluation

Long short-term memory (LSTM) is a fully interconnected neural network which has
positive and negative feedback connections between neurons [31]. It initially considers
the long-term dependence of the learning phase and can overcomes the shortcomings of
recurrent neural networks (RNNs) [32]. We used the backpropagation algorithm with
gradient descent to calculate the weights and bias terms in the training phase to minimize
the objective function across time. Each LSTM unit included four parts: input gate; output
gate; forgetting gate; and memory unit. LSTM used these memory units to control the
impact of historical information on current information, which ultimately enabled the
model to persist and transmit information.

The artificial neural network (ANN) referred to a feedforward neural network based
on Pytorch [33]. The architecture of the neural network model of the algorithm comprises
three primary parts: the input layer, the hidden layer (middle layer), and the output layer.
Typically, only one input layer and one output layer are considered. However, the number
of hidden layers varies in different studies. In this study, all operations used a hidden layer.
The parameter value played a decisive role in the performance of the ANN model during
the training, verification, and generalization phases. We employed the trial-and-error
method to determine the number of nodes in the hidden layer, based on the squared error
between the output value and the observed value of the training network. This trained
model was then applied to the model validation and testing (prediction) stages. In this
study, the number of trained nodes in the hidden layer was 128.

The RF model is a tree-based ensemble method utilized to manage high-dimensional
regression simulations in which forest development is based on multiple interconnected
trees [34,35]. In regression problems, the basic units of RF are regression trees. Each
regression tree is constructed using random initial data sampling, where in a random
subset of “m” attributes is used in each data sample to choose attributes with the most
significant information. RF generates a ranking of the most important attributes in forest
development based on the cumulative importance of the node partition in each tree. The
regression trees are independent of each other. Each node in a regression tree randomly
selects a subset of characteristic variables, then picks the optimal subset of variables from
these subsets to split the branches. The final estimation is the average of estimates from
all regression trees. RF is neutral to outliers and can avoid overfitting when dealing with
high-dimensional features [36].

The support vector machine (SVM) method is known for its strong generalization
ability [37,38]. When developing an SVM model, it is particularly important to select the
appropriate kernel function. In our study, we compared and evaluated several kernel
functions based on the dataset to ensure the accuracy of the predictions. The radial basis
function (RBF) kernel yielded the best performance for our SVM model. Additionally,
after determining the kernel function, we considered other parameters that influence the
SVM model’s simulation ability, such as the insensitive loss factor, error penalty factor, and
kernel function parameters. In this study, the insensitive loss coefficient was set to 0.01 by
default. We utilized grid search to determine the kernel function parameters.
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The model accuracy was assessed using root mean square error (RMSE), mean absolute
error (MAE), and R-squared value (R2). R2 reflects the overall simulation performance of
the model, RMSE indicates the general quality of the simulation, and MAE measures the
average deviation of the simulation results [39]. The model was considered highly accurate
when R2 approached 1, and both RMSE and MAE approached 0.

The operating system of this experiment was Windows 10, using Python 3.8.5 as the devel-
opment language, and using Jupyter Notebook 6.4 and Spyder 3.5 as the development platform.

3. Results
3.1. Important Driving Factors of Carbon Flux in a Long Time Series

To identify the key environmental variables influencing the long-term carbon fluxes
at the site, we utilized the LMG model to analyze the contribution of urban impervious
surface area (IMS), as well as atmospheric temperature (Ta), soil temperature 10 cm from
the surface (Ts_10 cm), air relative humidity (RH), and net radiation (Rn) on the daily
average carbon flux changes. The results are given in Table 2. Within the observation scope
of the flux tower, each variable exhibited distinct effects on the fluctuations of daily average
carbon flux within the ecosystem. Among these factors, air temperature emerged as the
primary driver behind the variations in daily average carbon fluxes, explaining 61.22% of
the observed trend of daily average CO2 flux. Additionally, Ts_10 cm and Rn contributed
13.12% and 13.30%, respectively, to the changes in daily average CO2 flux. The impervious
surface area had a relatively moderate influence, accounting for 8.23% of the variability in
daily average CO2 flux.

Table 2. Contribution of influence factors to daily average carbon flux.

Items Abbreviation of Factors Contribution (%)

CO2 flux

Ta 61.222
Ts_10 cm 13.12

Rn 13.304
RH 4.136
IMS 8.219

Ta, RH, Ts_10 cm, Rn, and IMS factors had a significant influence on the change in carbon flux. Therefore, we
considered these five factors to be input factors to simulate the carbon flux in a long time series.

3.2. Evaluation of Model Performance for Long-Term CO2 Flux

In the assessment of daily average CO2 flux prediction for urban complex underlying
surfaces using SVM, LSTM, ANN, and RF models, notable differences were observed in
the agreement between predicted and observed values. Despite this, most predictions
clustered closely around the 1:1 line, suggesting that these machine learning models could
effectively forecast daily average CO2 flux for complex urban environments (Figure 2).
The performance metrics varied significantly among the models. The RF model exhibited
the lowest RMSE of 0.293 µmol·m−2·s−1 and the highest R2 of 0.852, indicating superior
performance compared to the other models. The SVM, LSTM, and ANN models had RMSE
values of 0.413 µmol·m−2·s−1, 0.461 µmol·m−2·s−1, and 0.438 µmol·m−2·s−1, respectively,
all higher than the RF model. Under the condition of similar RMSE values, the LSTM model
demonstrated a higher R2 value (0.830) than both the SVM model (0.702) and the ANN
model (0.688). This suggested that the LSTM model’s predictive performance surpassed
that of the SVM and ANN models. The MAE values of the RF model (0.157 µmol·m−2·s−1),
SVM model (0.233 µmol·m−2·s−1), and the LSTM model (0.212 µmol·m−2·s−1) were lower
than that of the ANN model (0.260 µmol·m−2·s−1). The ANN model recorded the highest
RMSE and MAE values, accompanied by the lowest R2, indicating its comparatively weaker
predictive performance among the models.
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3.3. Simulation of Regional Carbon Flux Distribution Based on the RF Model

Based on the findings from the preceding section, we utilized the RF model to simulate
the annual CO2 flux at a spatial resolution of 500 m for Fengxian District in the years 2011,
2012, 2017, 2018, and 2019 (Figure 3). Our results demonstrated that the RF model exhibited
strong simulation capabilities, with an R2 value of 0.8446, an RMSE of 0.2808 µmol·m−2·s−1,
and an MAE of 0.1462 µmol·m−2·s−1. Fengxian District acted as a net CO2 source on
average between 2011 and 2019; the average net CO2 exchange was 1.02 g·m−2·d−1. The
analysis of the annual average CO2 flux in Fengxian District revealed that the western region
exhibited lower values (mean CO2 flux of 0.79 g·m−2·d−1) compared to the eastern region
(mean CO2 flux of 1.25 g·m−2·d−1), while the northern region had lower values (mean CO2
flux of 0.87 g·m−2·d−1) than the southern region (mean CO2 flux of 1.22 g·m−2·d−1), with
a gradual increase in CO2 flux values from west to east. In the western region, the CO2 flux
values demonstrated a circular pattern, with Nanqiao Town and Fengxian District Modern
Agricultural Park serving as the central points, and the CO2 flux values increasing outward
in a concentric manner. Furthermore, the distribution characteristics and range of CO2 flux
varied significantly from year to year.
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3.4. Effects of Impervious Surface Area in Simulating CO2 Flux

In this study, we introduced the factor of land use change, specifically, the incorpo-
ration of impervious surface area, and assessed the disparity in simulation performance
of the carbon flux model with and without impervious surface area factor (Figure 4). It
was observed that upon incorporating impervious surface area into the training model
(Figure 4), the RF model demonstrated an ability to account for 84.46% of the daily average
CO2 flux variation over the complex underlying urban surface. The resulting RMSE was
0.2808 µmol·m−2·s−1, with an MAE of 0.1462 µmol·m−2·s−1, and the predicted value and
observed value generally were distributed near the 1:1 line. In contrast, the RF model
accounted for 83.74% of the daily average CO2 flux variation over the complex underlying
urban surface without the inclusion of impervious surface area in its training (Figure 4). The
RMSE was 0.2872 µmol·m−2·s−1, and the MAE was 0.147 µmol·m−2·s−1. Consequently,
based on this comparison, we designated the incorporation of impervious surface area as a
contributing factor, which effectively enhanced the model’s performance and consequently
refined the accuracy of simulation outcomes.
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Figure 4. Comparison of the predicted daily average carbon flux with the observed daily average
carbon flux: y1 is CO2 flux predicted by random forest with impervious surface input; y2 is CO2 flux
values predicted by RF without impervious surface input.

3.5. Interannual Variation of CO2 Flux Spatial Distribution

This study utilized an RF model to simulate the spatial distribution patterns of carbon
fluxes in Fengxian District of Shanghai for the years 2011, 2012, 2017, 2018, and 2019.
Additionally, a simple linear regression method was employed to quantify the interannual
variations in the spatial patterns of carbon fluxes in Fengxian District (Figure 5). Over the
span of five years, the interannual variability of annual CO2 fluxes in Fengxian District,
Shanghai, exhibited very distinct characteristics: more than 90% of the region experienced
a decrease in annual CO2 flux values, with the maximum reduction rate reaching 17.83%.
These reductions were primarily concentrated in the eastern Shanghai Harbor Industrial
Zone, western Nanqiao Town, and Zhuanghang Town of Fengxian District. Conversely,
there were fewer areas where the annual CO2 flux values increased, and these were more
scattered, primarily located in the eastern part of Haiwan Town, with a growth rate of up
to 6.74%. Combined with the land use changes in Fengxian District of Shanghai, it was
found that the areas with decreased CO2 flux values generally corresponded to regions
with denser vegetation, while areas with increased CO2 flux values were associated with
increased land for construction purposes [40].
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4. Discussion

In this study, we adopted three traditional machine learning models (ANN, SVR,
RF) and one deep learning model (LSTM). Our modeled results are shown to be within a
reasonable range and highlight the importance of impervious surface area in simulating
CO2 flux over urban complex underlying surfaces. Machine learning models are automati-
cally able to learn complex nonlinear relationships from input data [41,42]. In view of our
restricted comprehension of the complicated physical, chemical, and biological interactions
in the carbon flux cycle within urban ecosystems, there exists significant uncertainty in the
simulation of carbon flux [14]. Leveraging machine learning models enables us to more
precisely quantify the spatial and temporal dynamics of carbon flux on regional and global
scales. Relatively few studies have examined the time series of urban CO2 flux [43,44].
Schmidt et al. [43] employed ANN and RBF to observe and simulate CO2 flux. In a six-week
observational simulation conducted 65 m above an urban community in Münster, Germany,
they achieved an R2 of 0.67. Järvi et al. [44] predicted CO2 flux based on the ANN model
algorithm using five years of data from Helsinki, Finland, achieving an R2 up to 0.4; the
findings of Menzer et al. [13] showed that the ANN algorithm successfully provided similar
performance in urban environments (with R2 values ranging from 0.60 to 0.86). The perfor-
mance of various machine learning models in estimating NEE also varied. The R2 of ANN
in estimating CO2 flux in this study was 0.67, consistent with the results in Münster, while
the RF model attained an R2 value of 0.85 in Münster. Zeng et al. [45] used the RF model to
estimate the carbon flux of global terrestrial ecosystems based on eddy covariance data,
achieving favorable outcomes (with R2 values of 0.97 for gross primary production (GPP),
0.96 for ecosystem respiration (RECO), and 0.94 for NEE when combining all training data).

By comparing the results of previous studies and the results in our study, we found
that when ANN simulated CO2 flux over urban complex surfaces, there was a difference in
the simulation performance, which might be related to the input factors or the length of
time [46,47]. The RF model has shown excellent simulation performance in many studies,
which was consistent with the results of this study.

In the simulation and prediction of carbon fluxes in the study area, quantifying the
actual contributions of land use and land cover changes to carbon fluxes [48,49] shows
significant uncertainty. One of the reasons is the lack of core data that disaggregate
these fluxes into individual grids [49]. Furthermore, limited data or the exclusion of
certain processes (such as tree felling and conversion of land for cultivation) may lead
to the underestimation of carbon dioxide emissions or transfers resulting from land use
changes [49–52]. Most studies establish regional-scale simulation models for carbon fluxes
based on data from individual sites to construct machine learning models applied to those
sites [53–55]. However, utilizing data from multiple flux sites to establish a generalized
simulation model proves effective in addressing this issue. Such a generalized model
can also be used to infer carbon fluxes at meteorological stations and provide additional
observational datasets for studies on flux changes across multiple regions. The RF model is
considered a reasonable and suitable method for simulating CO2 fluxes from site to regional
scales. Firstly, as a machine learning algorithm, the RF model selects the optimal output
from multiple regression trees to capture the features of the data, effectively enhancing
the accuracy of flux data [56,57]. Secondly, by extracting the multivariate functional
relationships between observed data and explanatory variables, the RF model can integrate
data from different sources and simplify complex processes, addressing nonlinear issues in
ecosystems [58].

This study proposed a novel model for simulating the spatiotemporal scale of carbon
fluxes in urban complex underlying surfaces, leveraging four machine learning algorithms
for the first time. Such a model demonstrated commendable performance in handling flux
data while effectively circumventing the computation of intricate parameters and ecological
processes. By utilizing footprint models to quantify the area of impervious surfaces at
a daily scale, the model achieved enhanced accuracy in simulating the spatiotemporal
variability of carbon flux in Fengxian District, Shanghai, thereby reducing the uncertainty
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associated with spatiotemporal scale simulation of carbon flux in the region. Nevertheless,
this study acknowledges several uncertainties and limitations. Firstly, it did not quantify
the errors generated during the process of data scale transformation. Secondly, due to the
opaque nature of machine learning models, it was difficult to fully understand the impact
of the models on the prediction results during the model training process. Additionally, the
variable resampling process only employed linear interpolation, neglecting other resam-
pling methods. Hence, future research endeavors should focus on exploring appropriate
methods to mitigate the scale effects caused by scale conversion.

5. Conclusions

In this study, we employed machine learning algorithms to proficiently simulate the
spatiotemporal fluctuations of carbon flux on the complex underlying surfaces of Fengxian
District, located on the northern bank of Hangzhou Bay, by integrating diverse sources of
observation data. The primary findings obtained in this study are summarized concisely
as follows:

(1) Our study demonstrated that the four machine learning models used in our study can
accurately simulate the long-term carbon flux over the complex underlying surfaces,
with the RF model exhibiting the highest simulation performance.

(2) The RF model can accurately portray the spatiotemporal distribution characteristics
of carbon flux in Fengxian District, Shanghai.

(3) Spatial heterogeneity in carbon flux was evident in Fengxian District on the north bank
of Hangzhou Bay: the carbon flux value in the western region was lower compared to
this in the eastern region, with a gradual increase observed from west to east within
Fengxian District.

(4) When simulating the spatiotemporal carbon flux of complex underlying surfaces
using machine algorithms, the incorporation of the impervious surface area index
marginally improved the accuracy of long-term carbon flux simulations. At a spatial
scale, regions with larger impervious surface areas exhibit higher carbon flux values,
indicating a strong correlation between carbon flux distribution and land use patterns.
Consequently, the incorporation of the impervious surface area index serves as a
relatively significant indicator for simulating spatial-scale carbon flux.

This study concludes that the RF model can accurately simulate the carbon flux of
complex urban underlying surfaces and confirms the significant role of impervious surface
area in precisely predicting the spatiotemporal scale of carbon flux on such surfaces. The
innovation of this paper is the obtainment of the impervious area of the daily scale based on
the Kljun model, and the results in our study demonstrate that the incorporation of the daily
impervious surface area index improves the accuracy of long-term carbon flux simulations
over the urban complex underlying surface. This not only reduces the uncertainty in
modeling carbon cycling in terrestrial ecosystems but also broadens the variety of models
for the carbon cycling of terrestrial ecosystems.
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