
Citation: Chen, G.; Li, K.; Gu, H.;

Cheng, Y.; Xue, D.; Jia, H.; Du, Z.; Li,

Z. Climatic Challenges in the Growth

Cycle of Winter Wheat in the

Huang-Huai-Hai Plain: New

Perspectives on High-Tempe

rature–Drought and Low-Tempe

rature–Drought Compound Events.

Atmosphere 2024, 15, 747.

https://doi.org/10.3390/

atmos15070747

Academic Editor: Yuqing Zhang

Received: 16 April 2024

Revised: 13 June 2024

Accepted: 18 June 2024

Published: 22 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

atmosphere

Article

Climatic Challenges in the Growth Cycle of Winter Wheat in the
Huang-Huai-Hai Plain: New Perspectives on
High-Temperature–Drought and Low-Temperature–Drought
Compound Events
Geng Chen 1, Ke Li 1, Haoting Gu 2, Yuexuan Cheng 2 , Dan Xue 1, Hong Jia 1, Zhengyu Du 1 and Zhongliang Li 3,*

1 Xuzhou Meteorological Bureau, Xuzhou 221000, China; 15162153525@163.com (G.C.);
wslike1210@163.com (K.L.); g1.dany7868@gmail.com (D.X.); hjia698@163.com (H.J.); dzy515@163.com (Z.D.)

2 School of Atmospheric Sciences, Nanjing University of Information Science and Technology,
Nanjing 210044, China; 202212010147@nuist.edu.cn (H.G.); 202212010174@nuist.edu.cn (Y.C.)

3 College of Computer and Software, Nanjing Vocational University of Industry Technology,
Nanjing 210046, China

* Correspondence: doctorlizl@126.com; Tel.: +86-18625152633

Abstract: Global climate change increasingly impacts agroecosystems, particularly through high-
temperature–drought and low-temperature–drought compound events. This study uses ground
meteorological and remote sensing data and employs geostatistics, random forest models, and copula
methods to analyze the spatial and temporal distribution of these events and their impact on winter
wheat in the Huang-Huai-Hai Plain from 1982 to 2020. High-temperature–drought events increased
in frequency and expanded from north to south, with about 40% of observation stations recording
such events from 2001 to 2020. In contrast, low-temperature–drought events decreased in frequency,
affecting up to 80% of stations, but with lower frequency than high-temperature–drought events.
Sensitivity analyses show winter wheat is most responsive to maximum and minimum temperature
changes, with significant correlations to drought and temperature extremes. Copula analysis indicates
temperature extremes and drought severity are crucial in determining compound event probability
and return periods. High-temperature–drought events are likely under high temperatures and mild
drought, while low-temperature–drought events are more common under low temperatures and
mild drought. These findings highlight the need for effective agricultural adaptation strategies to
mitigate future climate change impacts.

Keywords: winter wheat; spatiotemporal distribution characteristics; compound events; copula
function; return period

1. Introduction

Severe drought and high-temperature events have increased in many land regions
around the globe over recent decades against the backdrop of a warming climate [1–4].
Notably, some drought events accompany concurrent high-temperature events [5–7], re-
ferred to as compound events [8], which may have more significant impacts on ecosystems
and human societies than individual events [9–11]. Compound heat–drought extremes
are among the most typical of compound extreme events [12,13], and they are regarded as
some of the most critical climate hazards globally due to their profound impacts on crops
and human life [14]. Studies have shown that compound heat–drought extremes are on
an increasing trend in the context of global warming [15] and are projected to intensify
further in the future [16]. Unusually severe droughts or heat extremes may become the
norm and regular events in many regions over the coming decades [17], leading to more
compounded events with more significant catastrophic impacts on society and the envi-
ronment. Therefore, accurately assessing the variability of compound dry–heat events is
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essential for deepening our understanding of these events and mitigating their impacts.
Higher temperatures lead to increased evapotranspiration, which exacerbates the severity
of droughts. When the ground surface is dry, it heats the atmosphere by increasing sensible
heat transfer from the Earth’s surface. Studies have shown that regional drought severity
and the magnitude, frequency, intensity, and spatial extent of high-temperature heat waves
are on the increase [16]. These extreme weather events can have significant impacts indi-
vidually; however, their simultaneous occurrence is more devastating [18]. The frequency
and severity of combined drought and heatwave events have shown a substantial increase
in several regions of the globe, including the USA [15,18], Europe [19], India [20], Australia,
and China [21]. The gradual intensification of these combined extreme events is one of
the biggest challenges faced in the fight against climate change [22]. It can lead to many
natural and socio-economic impacts, such as heat-related deaths [23], severe forest fires, air
pollution, agricultural losses, and water and energy shortages [24]. Simultaneous droughts
and high-temperature heat waves are among wheat’s most damaging stressors and can
seriously impact food security. Researchers now recognize that univariate analyses of
single climatic events typically underestimate the combined effects of climatic extremes at
different spatial and temporal scales [25].

Various definitions of drought events and heatwave timing have led to a lack of
uniformity for combined heat–drought events [26,27]. Experts usually define drought
events by a variety of metrics, such as the Standardised Precipitation Index (SPI) [28,29],
Standardised Precipitation Evapotranspiration Index (SPEI) [30,31], and Palmer Drought
Severity Index (PDSI) [32], and high-temperature heatwave events are mainly defined
by relative and absolute thresholds and duration. Studies on compound temperature–
drought events mostly use a combination of the above definitions of drought and high-
temperature heatwave events [33–36]. Some studies directly characterize compound high-
temperature heatwave–drought events by corresponding metrics, including the Dry-Hot
Magnitude Index (DHMI) [37], Standardised Compound Event Indicator [38], Standardised
Dry-Heat Index [39], etc. These studies indicate that temperature is the primary driver
compared to precipitation; the severity of compound high-temperature heatwave–drought
events in most regions of China has increased significantly, especially in the northern and
southwestern areas of China.

Meanwhile, scholars have also paid attention to the changes in the characteristics
(frequency, intensity, severity, etc.) of compound high-temperature heatwave–drought
events and their potential linkages with atmospheric circulation patterns [40], and have
investigated the influence of various atmospheric circulations on the compound high-
temperature heatwave–drought events in China by using compound analyses, correlation
analyses, and logistic regression [41,42]. Compound extreme events usually consist of
a series of interdependent processes on different spatial and temporal scales [24], e.g.,
droughts and high-temperature heatwaves are usually triggered by similar atmospheric
circulation anomalies; however, regional- and local-scale land–atmosphere feedbacks drive
the evolution of compound drought–high-temperature heatwave events and exacerbate
these two extreme climate events [43]. Despite the historically low probability of multiple
extreme events occurring simultaneously or consecutively, climate change systematically
alters the relationships between the drivers of natural hazards, increasing the likelihood
of their concurrent and consecutive occurrence and their severity and magnitude [44].
For example, warmer background temperatures due to anthropogenic emissions trigger
the initiation and intensification of earlier Earth–atmosphere feedback loops and extend
their spatial impacts across North America [45], which can exacerbate compound drought–
heatwave extremes and expand their spatial extent.

The multifaceted nature of compound drought and heat events makes integrating
information from multiple variables or attributes necessary to depict these events accurately.
Traditional methods for assessing compound drought and heat events, even when con-
sidering various stressors, still focus on univariate statistics [46,47] and concentrate more
on changes in frequency, which is often achieved by defining the concurrency of drought
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and heat extremes based on different thresholds [48]. While this approach can detect
changes in the occurrence of compound events, it cannot distinguish between the severity
of multiple compound events. It may underestimate the risks and impacts of compound
events. Therefore, joint indicators for multiple extremes or events play an essential role in
this problem. In recent years, different definitions of compound events have been proposed,
with extreme impacts only a part of them. Studies at this stage favor the characterization
of dry–heat compound extreme events based on different methods, including empirical
methods [49,50], indicator methods [51,52], linear regression [53], Markov chain models,
and copula analysis [47]. Researchers have developed several joint metrics of climate
extremes to assess different attributes, such as severity and spatial extent, considering the
multivariate factors associated with extremes [54–56]. For example, the Climate Extreme
Value Index (CEI) integrates several extreme values by taking a linear average of the areas
covered by different extreme value indicators [57]. It has commonly been used to assess
changes in spatial extent. Joint probabilities of multivariate random variables have also
been used to determine the severity of extreme events.

In contrast to the high incidence of heatwave–drought compound events in recent
years [58,59], other simultaneous extreme events, such as extreme low temperature and
drought compound events, also require in-depth study due to their significantly higher sever-
ity than individual extreme events. Extremely low temperatures can have severe ecological
and economic impacts and cause mortality [60–63]. If extreme low-temperature events occur
during droughts, they are no less damaging than high-temperature heatwave–drought events;
for example, in the winter of 2017–2018, Beijing experienced a robust cold wave event during
a prolonged drought, which had severe impacts on the local ecosystem and socio-economy.
Therefore, there is a need to scientifically study the concurrent events of drought and extreme
low temperatures. Researchers have constructed metrics to analyze independent extreme
events such as heat waves, droughts [64,65], and cold events [66] to compare the severity of
different events. Regarding the Huang-Huai-Hai Plain (3H Plain) region, previous studies
have explored the effects of climate change on crop growth and found the following: each
unit increase in the number of days with high temperatures (>34 ◦C) over the reproductive
period of wheat leads to a reduction in wheat yields of between 0.17% and 0.34% [67]; high
temperatures after tasseling stress had a significant negative impact on winter wheat yield,
with a yield sensitivity of −0.01 to high-temperature stress [68]; wheat yields in the 3H Plain
declined by about 1.5% to 2.1% per unit of increase in the spring frost index [69]; drought
had a severe impact on winter wheat yield simulation in the central North China Plain [70];
and drought damaged the summer crops, but had a positive impact [71]. These previous
studies have mainly analyzed single climatic extremes, and the relative importance of
different climatic extremes on crop growth is unknown. However, compound extreme
climate events will likely have more severe impacts on winter wheat than any extreme
climate event. Meanwhile, existing studies mainly focus on the effects of high-temperature
heat waves on crops. In contrast, few studies have been conducted on the simultaneous
occurrence of cold and drought. This combination of events may have more severe impacts
on agroecosystems and human societies in the North China Plain than a single climatic
extreme event. This study aims to advance the understanding of such events by examining
the combination of temperature extremes and droughts in China. Therefore, this paper
focuses on the impacts of extreme-high-temperature–drought combination events and
extreme-low-temperature–drought combination events on the growth conditions of winter
wheat in the 3H Plain based on the characteristics of the growth period of winter wheat.

2. Data and Methods
2.1. Overview of the Study Area

Located in central–eastern China, the 3H Plain is bounded in the north by the Yanshan
Mountains, in the west by the Taihang Mountains, in the east by the Bohai Sea and the
Yellow Sea, and in the south by the Huai River. Including some or all of the Beijing, Tianjin,
Hebei, Shandong, and Henan regions, it is an alluvial plain formed by the intermittent
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flooding of the Yellow River, Huaihe River, and Haihe River (see Figure 1). The 3H Plain
is one of China’s essential grain bases, producing summer maize and winter wheat. The
region has a typical temperate monsoon climate, with an average annual temperature of
8–15 ◦C and an average yearly precipitation of 734.9 mm, mainly concentrated from July to
September. The annual rainfall is 500–900 mm, decreasing from southeast to northwest due
to the influence of the southeast monsoon. Only 20–30% of this precipitation can be used
for agricultural production, which is far from meeting the demand for food production.
Therefore, a significant amount of supplemental irrigation is still needed annually to ensure
food production.
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Figure 1. An overview of the natural characteristics and land use in the 3H Plain. Note: (A) shows
the precipitation map of the study area; (B) shows the topographic map of the study area; (C) shows
the distribution of meteorological stations in the study area.

As one of the main winter wheat production areas in China, the Huang-Huai-Hai Plain
accounts for approximately 75% of the country’s total winter wheat output [72]. The average
yield potential for winter wheat in this region ranged between 5000 and 8000 kg/ha from
1981 to 2008, while the most recent attainable potential yield was 12,611 kg/ha between
2018 and 2019 [73]. In terms of wheat cultivation, Henan Province and Shandong Province
have the largest planting areas and highest yields, accounting for 68% of the wheat planting
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area and 59% of the wheat yield in the Huang-Huai-Hai Plain. Beijing and Tianjin have
very small wheat planting areas and yields.

2.2. Data Introduction
2.2.1. Normalized Vegetation Index (NDVI)

The NDVI data used in this study come from two data sources: MODIS L1B remote
sensing data and NOAA/AVHRR data, which are described below.

(1) MODIS Remote Sensing Data

Moderate-Resolution Imaging Spectroradiometer (MODIS) is one of the primary
sensors carried on the TERRA and AUQA satellites of the Earth Observing System (EOS)
program implemented by NASA. The MODIS sensor has a total of 36 discrete spectral bands
ranging from visible to thermal infrared, and MODIS data provide information on land,
cloud, ocean, plant, temperature, and climate characteristics, among others, simultaneously
for long-term observations of the land surface, biosphere, solid Earth, atmosphere, and
oceans. Compared with traditional NOAA/AVHRR, SPOT, and TM data, the data are vastly
improved in terms temporal resolution, spectral resolution, update frequency (update time
is two days), and broad spectral range (0.4–14.4 um), and are more timely in detecting
the ground surface, and thus have been widely used in the monitoring of climate change,
natural disasters, the study of land-use change, etc. MODIS data products are divided
into calibration data and data products that monitor the land surface, biosphere, solid
Earth, atmosphere, and oceans. The data products in the data are mainly divided into four
categories—correction, land, sea, and atmospheric data products—and are usually divided
by MODIS data processing level (divided into level 0, level 1, level 2, level 3, level 4, and
level 5). Levels 0–5 comprise the original data, with a layer-by-layer method of processing
and correction used to obtain different products.

(2) GIMMS NDVI Data Processing

The GIMMS NDVI 3g.v1 dataset (GIMMS NDVI 3g.v1, available https://iridl.ldeo.
columbia.edu/SOURCES/.NASA/.ARC/.ECOCAST/.GIMMS/.NDVI3g/.v1p0/, accessed
on 15 April 2024) eliminates the effects of volcanic eruption, solar altitude angle, and sen-
sor sensitivity changes over time, making the GIMMS dataset better than other NDVI
datasets. GIMMS data are the most extended time series NDVI data available, have a good
correlation with other high-resolution datasets, and are widely used around the world.

In terms of data preprocessing to ensure homogeneity and reliability, a variety of
specialized techniques were employed. For the AVHRR set, these included actions such as
radiometric fine-tuning, cloud detection and subsequent removal, adjustments for atmo-
spheric interference, addressing satellite drift, and applying BRDF (Bidirectional Reflectance
Distribution Function) computations. In the context of the MOD09GA dataset, a series
of preparatory steps were undertaken, including, but not limited to, quality verification,
image stitching, data subsetting, and alterations in data formatting and projection. Such
practices were indispensable for procuring a unified and reliable NDVI dataset ripe for
further analytical exploration.

To aggregate the daily observations into ten-day and monthly data, we utilized the
maximum-value composite (MVC) methodology. This approach was crucial in mitigating
the influence of clouds and other forms of noise within the daily images, thereby enhancing
the fidelity of the vegetation behavior over the duration of the study.

2.2.2. Meteorological Data

Meteorological data were day-by-day meteorological station data from 1982 to 2021,
and were obtained from the China Meteorological Administration (CMA). Firstly, we car-
ried out quality control of the data and selected stations that met the research requirements
based on the time length, spatial coverage, and data integrity of the observed data, and
a total of 309 station data were selected in the study area. The data elements for each
observation station included daily maximum temperature, minimum temperature, average

https://iridl.ldeo.columbia.edu/SOURCES/.NASA/.ARC/.ECOCAST/.GIMMS/.NDVI3g/.v1p0/
https://iridl.ldeo.columbia.edu/SOURCES/.NASA/.ARC/.ECOCAST/.GIMMS/.NDVI3g/.v1p0/
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temperature, and precipitation. The Huang-Huai-Hai Plain receives an annual precipi-
tation of 500 to 900 mm, with no more than 30% of the annual precipitation occurring
during the winter wheat-growing season. Due to the evapotranspiration during the winter
wheat-growing season exceeding the amount of precipitation, the water required for winter
wheat mainly relies on groundwater irrigation. Additionally, the Huang-Huai-Hai Plain
is one of the most drought-affected regions in China, causing severe negative impacts on
winter wheat production [74].

The time ranges of the winter wheat-growing season, the pre-wintering period, and
the post-wintering period were classified according to the agricultural zoning of the 3H
Plain and the growth pattern of winter wheat, i.e., the growing season of winter wheat is
from October to June of the following year, the pre-wintering period is from October to
February of the following year, and the post-wintering period is from March to June of the
following year.

2.3. Methods

This study employs various methods, including the SPI, the maximum-value compos-
ite (MVC) method, copula function, the definition of single extreme events, the definition
of extreme temperature–drought events, and random forest, to analyze the spatiotemporal
dynamic evolution characteristics of composite drought events during the winter wheat-
growing season in the Huang-Huai-Hai Plain, as well as the response of winter wheat to
these composite drought events. An introduction to these methods can be found in Table 1
and Figure 2.

Table 1. Methodology overview.

Stage Method Reason for Using This Method

Data Processing

SPI Method

The Standardized Precipitation Index (SPI) was chosen
as the indicator for drought identification and
monitoring, based on the climatic characteristics of the
region and data availability. Its flexible time scales allow
it to accommodate various research needs, and its
simple calculation makes it well suited for the 3H Plain.

MVC Method

The maximum-value composite (MVC) method was
used to generate annual, seasonal, and monthly NDVI
values, eliminating the effects of clouds and solar zenith
angle, and thereby improving image quality.

Copula Method

The copula function model was used to create a
multidimensional joint distribution. By utilizing
marginal distributions and correlation structures,
commonly used copula functions were selected for
correlation modeling.

Random Forest Method

The random forest method was used to analyze the
sensitivity changes of vegetation (NDVI) to drought and
extreme temperatures across multiple time scales,
providing high classification accuracy and
processing efficiency.

Data Analysis

Definition of Single Extreme Events

Based on research advancements both domestically and
internationally, and considering the drought and
climatic characteristics of the 3H Plain, single extreme
events were defined.

Definition of Extreme
Temperature–Drought Events

Composite events were identified based on the
conditions of high temperature and drought or low
temperature and drought, and their impacts on winter
wheat growth were interpreted.



Atmosphere 2024, 15, 747 7 of 37Atmosphere 2024, 15, 747 7 of 40 
 

 

 
Figure 2. Flowchart of research methodology. 

2.3.1. Standardized Precipitation Index (SPI) 
The Standardized Precipitation Index (SPI) was selected as the index for identifying 

and monitoring drought in this study, considering the climatic characteristics of the study 
area, the scientific validity and authoritative nature of the index, the accessibility of the 
data required for calculation, and the complexity of the calculation. 

Figure 2. Flowchart of research methodology.

2.3.1. Standardized Precipitation Index (SPI)

The Standardized Precipitation Index (SPI) was selected as the index for identifying
and monitoring drought in this study, considering the climatic characteristics of the study
area, the scientific validity and authoritative nature of the index, the accessibility of the
data required for calculation, and the complexity of the calculation.

Climatic characteristics: The 3H Plain region features a warm–temperate monsoon cli-
mate, with annual precipitation ranging from 500 to 1000 mm. Precipitation plays a crucial
role in the region’s water resources and agricultural production. The SPI, primarily based
on rainfall, can accurately reflect the drought conditions in the 3H Plain region and de-



Atmosphere 2024, 15, 747 8 of 37

pict the region’s drought characteristics—something unattainable by other comprehensive
drought indices.

Scientific nature of the index: The SPI is flexible in terms of time scales, allowing for
the selection of various durations—such as 1, 3, 6, or 12 months—to meet diverse research
needs. On the other hand, the PDSI, SC-PDSI, and SPEI time scales are more difficult to
deal with. It is difficult to change the calculation time scale conveniently and flexibly, for
example, changing the SPI to monitor droughts at different time scales, and the selection
of time scales will be limited by data elements and calculation methods. In addition, the
PDSI and SC-PDSI methods do not fully consider precipitation in their calculations and
focus more on soil moisture and evapotranspiration, which are the essential meteorological
factors affecting drought in many areas, limiting their ability to portray drought, while the
SPEI accurately does so. However, it takes into account precipitation, but also needs to take
into account temperature and potential evapotranspiration, which makes the calculation
more complicated.

Authority of the index: The SPI, recommended by the World Meteorological Orga-
nization as the international standard for drought monitoring, is widely recognized for
its scientific validity and authority. In comparison, the SPI is far more standardized than
other indices.

Accessibility of calculation data: The calculation of the SPI is simple and only requires
long-term, high-quality precipitation observation data. The 3H Plain is rich in precipitation
data and has an extended historical dataset that fully meets the calculation needs of the SPI,
which is another advantage of the application of the SPI in this region. The calculation of
other drought indices often requires the integration of several meteorological factors, such
as temperature, wind speed, relative humidity, evaporation, etc., and requires sufficient
and high-quality related observation datasets, which are not easy to obtain in many regions,
limiting application in areas with a lack of data.

Computational complexity: The SPI is simple to compute with low data requirements.
In contrast, the PDSI and SC-PDSI methods, calibrated for the U.S. Midwest’s Great Plains,
require complex regional adaptations, increasing their application difficulty. The SPEI also
faces challenges with parameter selection and corrections.

In summary, the SPI is based on precipitation elements, simple calculations, flexible
time scales, and robust science, which makes it very suitable to be used for the 3H Plain and
other regions where precipitation is more concentrated and vital, as it can better reflect the
drought change situation at different time scales in the area. The standardized precipitation
index (SPI) is suitable for the study of drought at different time scales, and its foremost step
is first to count the precipitation in the studied period, obtain the plant probability distribu-
tion, and then carry out typical standardization to obtain the standardized precipitation
index. The calculation steps are as follows [75]:

1. For some random independent precipitation data x, the mean precipitation and
standard deviation for the time period need to be obtained first:

x =
∑ x
N

S =

√
∑(x − x)2

N
(1)

where N is the number of samples of that precipitation.

2. Calculate the given precipitation skewness based on the mean precipitation and
standard deviation for that time period:

Skew =
N

(N − 1)(N − 2)∑(
x − x

S
)3 (2)

3. The precipitation data information is then transformed into lognormal values to calcu-
late the gamma distribution statistic U, shape parameter β, and scale parameter α:

U = xln −
∑ ln(x)

N
(3)
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β =
1 +

√
1 + 4U/3
4U

(4)

α =
x
β

(5)

4. Based on the resulting shape and scale parameters, the cumulative probability of this
precipitation data can be calculated and the cumulative probability is

G(x) =

∫ x
0 xα−1e

−x
β dx

βαΓ(α)
(6)

5. Since the gamma function is not defined when x is 0, and the rainfall in the region at a
given time may again be 0 mm, the cumulative probability becomes

H(x) = q + (1 − q)G(x) (7)

where q may be 0; so, the standardized precipitation index is

SPI = S
t − (c2t + c1)t + c0

[(d3t + d2) + d1]t + 1.0
(8)

where t =
√

ln 1
G(x)2 ; x is the amount of precipitation during the time period, mm; G(x) is

the cumulative probability corresponding to x; and S is the positive or negative coefficient
of the probability density. S = 1 when G(x) > 0.5; S = −1 when G(x) ≤ 0.5; c0 = 2.515517,
c1 = 0.802853, c2 = 0.010328, d1 = 1.432788, d2 = 0.189269, d3 = 0.001308.

In this study, drought classifications were made using the cumulative frequency
distribution of labelled precipitation, and the SPI was classified into five drought classes
based on the International Meteorological Drought Classification Standard (IMDCS), with
reference to Table 2.

Table 2. SPI drought classification.

Drought
Index

Drought Level

No Drought Light
Drought

Moderate
Drought

Severe
Drought

Extreme
Drought

SPI (dimen-
sionless) (−0.5,+∞] (−1.0,−0.5] (−1.5,−1.0] (−2.0,−1.5] (−∞,−2.0]

In this study, the Standardized Precipitation Index (SPI) was used to classify drought
levels and assess their impact on winter wheat growth. The SPI classifications range from
no drought to extreme drought, each with distinct impacts on winter wheat:

• No drought (SPI > −0.5): Winter wheat growth is unaffected and normal yields can
be expected.

• Light drought (−1.0 < SPI ≤ −0.5): Winter wheat experiences minor stress, which may
slow growth rates but generally does not lead to significant yield losses.

• Moderate drought (−1.5 < SPI ≤ −1.0): Winter wheat faces moderate stress, with
noticeable reductions in growth and potential yield losses.

• Severe drought (−2.0 < SPI ≤ −1.5): Winter wheat undergoes severe stress, resulting
in significant reductions in growth and substantial yield losses.

• Extreme drought (SPI ≤ −2.0): Winter wheat experiences extreme stress, with a high
risk of crop failure due to severe water deficits.

2.3.2. Maximum-Value Composite Method

To obtain the NDVI composites on annual, seasonal, and monthly scales, researchers
used the internationally accepted max-value composite (MVC) method to generate NDVI
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values for the corresponding periods on annual, seasonal, and monthly scales. A composite
(MVC) is used to generate an NDVI value for the corresponding period. This process can
eliminate the effects of clouds, atmosphere, and solar altitude, and improve the image
quality. In this study, based on the daily data of the NDVI, the maximum-value composite
method was used to obtain the monthly maximum NDVI [76], and the calculation formula
is as follows:

NDVIi = Max
(

NDVIij
)

(9)

where NDVIi is the NDVI value for month i, and NDVIij is the NDVI value for day j of
month i.

2.3.3. Copula Function

Sklar introduced copula functions [77], which can model multidimensional joint
distributions through marginal distribution and correlation frameworks [78]. Multiple
copula functions can be used to build multidimensional joint distributions of climate factors
and drought. In this study, five types of copula function clusters were selected [79–83]:
(1) Clayton, (2) Frank, (3) Gaussian, (4) Gumbel, and (5) t. Due to the excellent performance
of these five copula function clusters, they were the first choice for correlation modeling.

Parameter Estimation

Non-parametric methods were used in the study to estimate the parameters of the
copula functions, as specified in the form of various copula function references.

The relationship between θ and τ (Kendall correlation coefficient) is demonstrated in
the above Table 3. Accordingly, τ is calculated and the corresponding joint distribution
parameters are obtained. The formula is given below:

τ = 1 − 1
θ

(10)

Table 3. Copula function clusters and their mathematical descriptions.

Copula Function Name Mathematical Description

Clayton max(u−θ + v−θ − 1.0)−1/θ

Frank − 1
θ ln[1 + (exp(−θu)−1)(exp(−vθ)−1)

exp(−θ)−1 ]

Gaussian
∫ ϕ−1(u)

−∞

∫ ϕ−1(v)

−∞
1

2π
√

1−θ2 exp
(

2θxy−x2−y2

2(1−θ2)

)
dxdyb

Gumbel exp(−[(− ln(u))θ + (− ln(v))θ ]
1
θ )

t
∫ t−1

θ2
(u)

−∞

∫ t−1
θ2
(v)

−∞

r((θ2+2)/2)
r(θ2/2)πθ2

√
1−θ2

1

exp
(

2θxy−x2−y2

2(1−θ2)

)
dxdyb

Validation and Evaluation

In order to quantitatively assess the fitting error and select the appropriate copula
function, the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC) [83] were used as the criteria for selecting the copula function clusters.

AIC = −2l
(
θ̂
∣∣y)+ 2k (11)

BIC = −2l
(
θ̂
∣∣y)+ Kln(n) (12)

Correlation Analysis and Marginal Distribution Function

This study aims to determine whether there is a correlation between drought and
extremely high and low temperatures, establish a joint distribution function, and analyze
the correlation between drought and climate factors using Kendall, Pearson, and Spearman
rank correlation coefficients, respectively. The paper uses MCMC (Markov chain Monte
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Carlo) simulations to estimate the parameters of the copula function, study the dependence
structure relationship between the variables, and to screen the optimal marginal distribution
function for each variable.

Joint Probability Distribution

To investigate the joint probability of drought and extreme high and extreme low tem-
peratures, respectively, the marginal distribution functions of the three are first calculated,
and the parameters of the corresponding functions are determined. The fitting results of
the functions are evaluated using a QQ plot (Quantile–Quantile plot). The two-dimensional
copula function is constructed based on the univariate edge function, and the optimal
type of copula function is selected among the copula function clusters based on the three
goodness-of-fit evaluation metrics, namely, AIC, BIC, and RMSE.

Return Period Calculation

The reproduction period is when a random variable appears in a more extended
period [84]. Calculating the return period under drought and extreme temperature condi-
tions for different winter wheat fertility periods provides more detailed information for an
in-depth investigation of how extreme temperature and drought affect winter wheat. Uni-
variate return intervals or return periods may lead to the overestimation or underestimation
of the risk rate of an event.

Therefore, this study calculates the bivariate joint and conditional return periods [85,86].
The joint return period is defined as X ≥ x and Y ≥ y, and the conditional return period is
defined as X ≥ x or Y ≥ y.

Tjoint =
E(L)

P(X ≥ x, Y ≥ y)
=

E(L)
1 − FX(x)− FY(y) + C(FX(x), FY(y))

(13)

Tconditional =
E(L)

P(X ≥ x or Y ≥ y)
=

E(L)
1 − C(FX(x), FY(y))

(14)

where Tjoint denotes the joint return period; Tconditional denotes the conditional return period;
and E(L) is the expected value of the time interval between the start of the consecutive
events. The relationship between the univariate, bivariate and correlated return periods
can be found in the corresponding source [87].

2.3.4. Random Forest

In recent decades, in the context of global warming, the Huang-Huai-Hai Basin has
experienced a significant increase in temperature. Consequently, the sensitivity of vegeta-
tion growth to drought and extreme temperatures may exhibit variation. To examine the
changes in the sensitivity of vegetation (NDVI) to drought and extreme temperatures, the
study employs the random forest method to analyze the multi-temporal-scale variation in
vegetation (NDVI) in response to drought and extreme temperatures. The algorithm of the
random forest is as follows [88]:

(1) Using the bootstrap method with replacement, randomly select n groups of sample
data from the initial training set to construct decision trees.

(2) Among the multiple attribute features of the training samples, select the optimal
feature for splitting each time. Each tree continues this splitting process until all
training samples under that node belong to the same category.

(3) To fully utilize the classification ability of each tree, allow each tree to grow to its
maximum extent without any pruning.

(4) Combine the generated multiple classification trees to form a random forest, and use
voting to determine the final classification result.

To quantify the effectiveness of the classification, use the ensemble of the classification
trees (h1(x),h2(x), ..., hk(x)) and the training set obtained according to the distribution of
random vectors X and Y. Define the margin maximization function as
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mg(X, Y) = ανk I(hk(X) = Y)−
(

max
j ̸= Y

)
ανk I(hk(X) = j) (15)

In the equation, I(g) is the indicator function and ανk is the average number of votes
for the obtained category. The margin maximization function calculates the extent to which
ανk in I(g) surpasses the voting results of all other categories. The larger the value of the
margin function, the better the classification effect. Due to the strong rule of the law of
large numbers followed by classification trees, the normalized error decreases with the
increase in the number of classification trees. However, when the number of classification
trees is too large, the effect of reducing the normalized error becomes less significant,
while the computational load and processing time increase. The random forest algorithm
demonstrates high classification accuracy and processing efficiency for large datasets and
exhibits strong adaptability to various types of sample data. It is highly capable of handling
both discrete and continuous data, and the data do not need to be normalized. During the
growth process of random forest classification trees, the algorithm continuously selects the
optimal attributes for splitting and performs pruning on the classification trees to further
reduce computation.

2.3.5. Definition of Extreme Temperature–Drought Compound Events

Considering the drought and climatic characteristics of the Huang-Huai-Hai Plain,
this study identifies extreme-high-temperature–drought and extreme-low-temperature–
drought compound events on a monthly scale using meteorological station observations.
Therefore, the definitions of extreme temperature–drought compound events in this study
are as follows:

(1) Definition of High Temperature–Drought Compound Events:

• High-Temperature Event Standard: A high-temperature event is defined as
when the maximum temperature is not lower than the 90th percentile threshold
of historical maximum temperatures. This means that when the maximum
temperature for a given month exceeds or equals the highest 10% of historical
maximum temperatures for that month, a high-temperature event is considered
to have occurred.

• Drought Event Standard: The drought event standard uses the Standardized
Precipitation Index (SPI). A drought event is considered to have occurred when
the SPI value indicates mild drought or worse. Mild drought conditions typically
correspond to SPI values less than −0.5.

• High-Temperature–Drought Compound Event: When both the high-temperature
event and drought event standards are met simultaneously, i.e., the maximum
temperature reaches or exceeds the 90th percentile threshold and the SPI value is
less than −0.5, a high-temperature–drought compound event is considered to
have occurred.

(2) Definition of Low-Temperature–Drought Compound Events:

• Low-Temperature Event Standard: A low-temperature event is defined as when
the minimum temperature is not higher than the 10th percentile threshold of
historical minimum temperatures. This means that when the minimum tem-
perature for a given month is below or equals the lowest 10% of historical min-
imum temperatures for that month, a low-temperature event is considered to
have occurred.

• Drought Event Standard: Similar to the high-temperature–drought compound
event, the drought event standard uses the Standardized Precipitation Index (SPI).
A drought event is considered to have occurred when the SPI value indicates
mild drought or worse. Mild drought conditions typically correspond to SPI
values less than −0.5.

• Low-Temperature–Drought Compound Event: When both the low-temperature
event and drought event standards are met simultaneously, i.e., the minimum
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temperature reaches or falls below the 10th percentile threshold and the SPI value
is less than −0.5, a low-temperature–drought compound event is considered to
have occurred.

3. Results
3.1. Response of Winter Wheat to Combined High-Temperature–Drought Events
3.1.1. Spatiotemporal Distribution Characteristics of High-Temperature–Drought
Compound Events

Figure 3 shows the spatial distribution of drought frequency per decade in the 3H
Plain from 1982 to 2020. From 1982 to 1991, the drought frequency in eastern and central
Shandong was as high as 40%; some stations in northern Hebei and Henan reached 30%;
and Tianjin, Beijing, and central Hebei had the lowest frequencies, at only 10%. The rest
of the region had a drought frequency of about 20%. From 1992 to 2001, the probability
of droughts reached its highest at 50% in northern Shandong, southern Hebei, Tianjin,
and Beijing; the probability was 45% in southern Henan. The lowest frequency, only 20%,
occurred in southeastern Shandong and northern Henan; the rest of the regions averaged
around 35%. From 2002 to 2011, the frequency of droughts was the highest at 40% in north
Henan and eastern Hebei; the second highest frequency, 30%, was observed in northern
Hebei, northern Shandong, Beijing, and parts of central and southern Henan. The lowest
frequency, at only 10%, was found in southeastern Shandong and central Hebei. From 2012
to 2020, the frequency of drought in southeast Shandong reached its highest at 46%, while
for most of Henan, central and southern Shandong, Tianjin, and northern Hebei, frequencies
were generally above 35%; the lowest frequencies, at only 15%, were observed in Beijing
and southern Hebei. The comprehensive drought frequency maps across these four periods
demonstrate that the proportion of regions experiencing droughts in the Huang-Huai-Hai
Plain has gradually expanded over the past 39 years, exhibiting a pattern of expansion
from north to south. Drought frequencies have significantly increased, especially in Henan
and Shandong.
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From 1982 to 1991 (Figure 4A), in the 3H Plain, the high-temperature frequency in
southern Hebei and western and eastern Shandong reached as high as 10%; in northern
Hebei and some stations in central Henan, the second highest frequency was observed at
8%. Beijing experienced the lowest frequency at only 1%, and the rest of the region had
a frequency of about 5%. From 1992 to 2001 (Figure 4B), eastern Shandong and eastern
and southern Hebei recorded the highest frequency at 15%, followed by northern Hebei
and western Shandong at 12%, with Henan having the lowest at 5%. From 2002 to 2011
(Figure 4C), west Henan saw the highest frequency at 20%, followed by selected sites in
northern Hebei and northern and southern Henan at 17%; Shandong and most of Hebei
had lower frequencies at only 10%. Between 2012 and 2020 (Figure 4D), eastern Shandong,
Tianjin, Beijing, western Hebei, and northern and southern Henan recorded the highest
frequencies, reaching 20%, followed by north and central Hebei and northern Shandong
at 15%; southern Hebei had the lowest, at only 5%. Accordingly, over the past 39 years,
the frequency of high temperatures in the Huang-Huai-Hai Plain has shown an overall
increasing trend and expanded from north to south. The center of the drought-affected
region has shifted from Hebei to Shandong and Henan.
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From Figure 5, it can be seen that from 1982 to 1991, the frequency of high-temperature–
drought events in central Henan, central and western Shandong, and southern Hebei was
as high as 9%; Beijing, Tianjin, and central Hebei had the lowest frequency at 1%, and the
rest of the regions experienced a high-temperature–drought frequency of about 5%. From
1992 to 2001, the frequency of high-temperature–drought in central Hebei was the highest
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at 10%, followed by northern Hebei at 8%, while most of Henan and Shandong had lower
frequencies, at around 2%. From 2002 to 2011, north Henan recorded the highest frequency
at 10%, whereas southern Hebei, Beijing, northern Shandong, and central Henan had the
lowest frequencies, at only 1%. From 2012 to 2020, Tianjin and southern Henan experienced
the highest frequency at 10%, followed by central Hebei and central and south parts of Beijing
and Henan at 7%; the lowest frequency of 1% was observed in southern Hebei, western and
eastern Shandong, and west Henan. Overall, the trend of high temperature–drought has been
one of migration from north to south, with disaster areas expanding outward.
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Figure 6 shows that in the 3H Plain, the proportion of high-temperature–drought
compound events relative to total drought events has gradually increased over the last
40 years (1982–2020), with a growth rate of 0.4% per decade. The proportion of high-
temperature–drought compound events also shows significant interannual fluctuations.
The proportion peaked at 66% in 1982, followed by 44% in 1997 and 2018. No compound
events occurred in 1983, 1987, 1989, 1991, 1992, 2003, or 2016. Additionally, the proportion
decreased between 1997 and 2003, and 2009 and 2016, and increased from 2003 to 2009 and
2017 to 2019. Spatially, the Beijing and Tianjin regions recorded up to 20% of the compound
events, followed by areas in Hebei and Henan, with up to 18% at most sites. Western and
eastern Shandong had the lowest proportion, at only 5%; overall, the region demonstrated
a decreasing trend from north to south.

Figure 7 shows that from 1982 to 2020, the Huang-Huai-Hai Plain experienced a
3-month lag between drought and winter wheat according to the Normalized Difference
Vegetation Index (NDVI). Most areas of the study region exhibited a negative correlation,
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with the highest correlation coefficient, −0.5, occurring in northern and southern Hebei
and western and northern Shandong. Additionally, most areas in Henan show a negative
correlation with a coefficient of −0.3. At a 2-month lag, south and north Hebei and a small
part of central Shandong exhibit a positive correlation, with a coefficient of 0.2, while the
remaining regions show negative correlations. Regarding the relationship between high
temperature and the NDVI, a 3-month lag shows that most of Henan, western Shandong,
and southern Hebei have the highest positive correlation, with a coefficient of 0.5.
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Conversely, western Henan, eastern Shandong, Tianjin, Beijing, and eastern Hebei
demonstrate a negative correlation, with a coefficient of −0.2. With a 2-month lag, southern
Henan, western Shandong, and southern Hebei exhibit the highest positive correlation,
with a coefficient of 0.5. Conversely, northern Hebei, eastern Shandong, Tianjin, Beijing,
and western Henan show a negative correlation, with a coefficient of −0.2. With a 1-month
lag, central and southern Henan, west Shandong, and southern Hebei exhibit the highest
positive correlation with a coefficient of 0.5. In contrast, northern and central Hebei,
Tianjin, Beijing, eastern Shandong, and western Henan show a negative correlation, with
a coefficient of −0.2. When considering a 1-month lag for high temperature and the
NDVI, the correlation coefficient is −0.2. The regions with the highest positive correlation
between high temperature and NDVI are southern and central Henan, Beijing, and northern
Hebei, with a coefficient of 0.4. In contrast, east and central Shandong have the highest
negative correlation, with a coefficient of −0.3. Overall, for the high-temperature–drought
compound events over the past 39 years, the NDVI has shown a negative correlation
with drought and a positive correlation with maximum temperature across most of the
Huang-Huai-Hai Plain.

3.1.2. Sensitivity of Winter Wheat to High-Temperature–Drought Compound Events

Figure 8 shows that 40% of the sites experienced high-temperature–drought compound
events during the period from 2001 to 2020. For the past 20 years, the shape of the ECDF
is a steeply sloped curve, indicating that the data may follow a skewed distribution, and
the sites within this interval are more densely clustered, suggesting that the occurrence
of compound drought events is relatively concentrated. In contrast, during the period
from 1982 to 2000, approximately 60% of the sites experienced high-temperature–drought
compound events. When the proportion of sites experiencing compound events is less
than 25%, the ECDF curve is relatively steep, indicating that 20% of the sites are relatively
concentrated; when the proportion of sites is between 30% and 60%, the curve is relatively
flat, indicating that the occurrence of compound drought events is more dispersed.
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Figure 9 shows the sensitivity characteristics of winter wheat to variations in high-
temperature–drought compound events using the random forest method, we conducted an
attribution analysis and obtained Figure 8. According to the sensitivity identification of
climate factors for winter wheat in the Huang-Huai-Hai Plain from 1982 to 2020, it is evident
that, in high-temperature–drought compound events, winter wheat exhibits the highest
sensitivity to maximum temperature, reaching 19%; followed by minimum temperature
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at 17%; then precipitation at 16%; and the lowest sensitivity to the drought index (SPI), at
only 14%. Overall, winter wheat shows a higher sensitivity to temperature-related climate
factors compared to precipitation, particularly to maximum temperature.
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Figure 9. Sensitivity identification of winter wheat to high-temperature–drought compound events
in the Huang-Huai-Hai Plain from March to June, 1982–2020.

3.1.3. Copula Analysis of High-Temperature–Drought Compound Events

Due to the correlation between high-temperature events and drought events, relying
solely on univariate return periods for results may lead to deviations from the actual
situation. Therefore, it is necessary to describe the bivariate distribution of these two types
of climate hazard events. In this section, the correlation between droughts and extreme
high temperatures is examined, and their correlation is measured using the Pearson rank
correlation coefficient, Kendall rank correlation coefficient, and Spearman rank correlation
coefficient. The results of these calculations are presented in Table 4.

Table 4. Kendall/Spearman/Pearson rank correlation coefficients for drought (SPI) and extreme heat
(TMAX) in the 3H Plain, 1982–2020.

Factors Name
Kendall Spearman Pearson

r p Value r p Value r p Value

3H Plain_SPI_TMAX 0.301 0.053 0.400 0.056 0.383 0.082

Table 4 shows a positive correlation between drought (SPI) and extreme high temperature
(TMAX) in the 3H Plain region, passing the 10% significance level. Given the analysis results,
modeling the bivariate distribution of TMAX and SPI with a copula function is feasible.

Table 5 indicates that in the 3H Plain region, the Clayton copula function is optimal
for modeling the TMAX-SPI relationship based on the AIC, BIC, and RMSE evaluation
criteria. The values for these evaluation indices are lower for the Clayton copula than for
the other four copula functions, suggesting that the Clayton copula offers the best fit and is
most suitable for describing the joint distribution of extremely high temperature and SPI.
Consequently, the Clayton copula function was selected to establish a two-dimensional
joint probability distribution model for extremely high temperatures and drought in the
3H Plain.
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Table 5. Criteria for cluster selection of copula function for drought–extreme heat in the 3H Plain.

Cop_Family AIC BIC RMSE

Gaussian 14.67 20.19 0.202
t 16.67 27.71 0.199

Clayton 14.63 20.15 0.180
Frank 14.67 20.19 0.198

Gumbel 14.70 20.22 0.223

Figure 10 depicts the probability distribution function for high-temperature–drought
compound events in the 3H Plain from 1982 to 2020. Figure 10A shows that the scatter
points, representing actual and theoretical frequencies, closely align with the fitted line.
This alignment indicates that the overall trends of the scatter points and the fitted line
are completely consistent, effectively capturing the joint distribution characteristics of
the SPI and TMAX. Consequently, this demonstrates that the copula model employed
accurately reflects the joint behavior of these two variables. Additionally, the model
accurately captures the marginal distributions of both the SPI and TMAX. Figure 10B shows
that the probability of heat–drought compound events increases with higher maximum
temperatures. Similarly, the likelihood of these events also increases as the SPI rises
(indicating a decrease in drought intensity). The probability of the compound event
changes minimally when temperatures range from 28 to 30 ◦C and when the SPI is between
−2 and −2.5.
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Figure 10. Spatial distribution of the probability distribution function for high−temperature–drought
compound events in the Huang−Huai−Hai Plain from 1982 to 2020 (March to June). Note: (A) shows
a scatter plot of empirical frequencies and theoretical frequencies with the fitting line; (B) represents
the probability distribution function for high temperature–drought.

Figure 11A illustrates the joint probability distribution between drought and extreme
high temperatures in the 3H Plain. This figure allows us to determine the joint probability
of extremely high temperatures and drought at any given point, clearly reflecting their
correlation across various values. Notable features include the asymmetric and skewed de-
pendence structure in the monthly data, where extremely high temperatures have minimal
impact on drought at lower values and significant effects at higher values. The contour plots
enable the derivation of the interval distribution for extreme temperatures and drought
with joint probabilities ranging from 0.1 to 0.9. The contour plots also reveal an increase
in joint probability when either the extremely high temperature is fixed and the drought
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severity is lower, or the drought severity is fixed and the maximum temperature is lower.
Joint probabilities for maximum temperature and SPI vary significantly across different
intervals on the same contour. The figure indicates low joint probabilities for very high
temperatures with very low or very high SPI scenarios and high joint probabilities for very
high temperatures paired with very high SPI values. Heat–drought compound events are
more likely to occur under high temperatures and mild droughts.
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Figure 11B presents the two-dimensional contour plots of the joint return periods
for extremely high temperatures and the SPI in the 3H Plain. Researchers can use the
joint return period plot to calculate the return period corresponding to extremely high
temperatures or SPI equal to or greater than a specific value. The plots depict combinations
of extremely high temperature and SPI equal to or greater than a particular value for return
periods of 2, 5, 10, 25, 50, and 100 years. A smaller combined return period corresponds
to a more extensive range of values for extremely high temperature and SPI, indicating
that when the extremely high temperature is specific, the SPI is more likely to have a
shorter return period. High-temperature–drought compound events are more prone to
occur during overlapping high temperatures and mild drought periods.

Figure 12A displays a contour plot of the joint probability of exceeding extremely
high temperatures and the SPI in the 3H Plain. The figure indicates that with a constant
drought level, the joint probability of exceeding the high-temperature–drought compound
event decreases as the maximum temperature increases. Conversely, with a continuous
maximum temperature, the joint probability of exceeding the compound event decreases as
the SPI decreases (indicative of increasing drought intensity). This joint exceedance proba-
bility graph enables the determination of the likelihood of any given value of maximum
temperature and SPI. The figure shows various combinations of maximum temperature
and SPI simultaneously greater than or equal to certain thresholds, with joint exceedance
probabilities ranging from 0.1 to 0.9. The graph illustrates that smaller values of maximum
high temperature and SPI correlate with higher joint exceedance probabilities and vice
versa. This observation suggests that the likelihood of both extreme temperature and the
SPI surpassing lower thresholds together is greater than their likelihood of surpassing
higher thresholds.
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Figure 12B illustrates the co-occurrence return periods for extreme high temperatures
and drought in the 3H Plain. When the drought level is fixed, the joint exceedance recur-
rence period of the compound event increases with the maximum temperature. Similarly,
when the extremely high temperature is fixed, the joint exceedance recurrence period
increases as the SPI decreases (indicating a strengthening of drought intensity). The recur-
rence period is also longer when the temperature increases and the drought intensity is
weaker. The same exceeding recurrence period plot reveals the recurrence period for which
extremely high temperature and SPI are both greater than or equal to a specific value. The
figure depicts these combinations for recurrence periods of 2, 5, 10, 25, 50, and 100 years.
For cases with extremely high temperature and SPI-fixed values, their co-occurrence return
periods are significantly longer than the joint return period. For a given return period,
more considerable return periods correspond to higher values of extreme temperature
and SPI, and can exceed 100 years when extreme temperature and drought levels are
sufficiently high.

3.2. Response of Winter Wheat to Combined Low-Temperature–Drought Events
3.2.1. Spatiotemporal Distribution Characteristics of Low-Temperature–Drought
Compound Events

Figure 13 depicts the spatial distribution of drought frequency per decade for win-
ter wheat in the 3H Plain from 1982 to 2020. From 1982 to 1991, the regional drought
frequency ratio gradually increased from north to south, reaching 40% in western and
eastern Shandong and southern Henan. The second highest frequency, 30%, occurred in
central and northern Henan and a few areas of Hebei north, while the lowest frequency
was 12% in Beijing and central Hebei. From 1992 to 2001, central Henan recorded the
highest frequency at 40%. This was followed by 30% in southern Henan, parts of northern
Henan, southeastern and northern Shandong, and north Hebei, with the lowest frequency
of 10% in Beijing and central Hebei. From 2002 to 2011, eastern Shandong and northern
Hebei experienced drought frequencies up to 40%. Southern Henan and central Shandong
followed with 30%; the lowest frequencies, at 7%, were in Beijing, Tianjin, and central
Hebei. From 2012 to 2020, eastern Shandong and northern Hebei had the highest drought
frequency at 37%, while southern Hebei, western Shandong, and north Henan had the
lowest, at only 10%. In summary, it has been observed that low-temperature–drought
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events in the Huang-Huai-Hai Plain have exhibited a regional decreasing trend over the
past 39 years.
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Figure 14 shows the spatial distribution of the frequency of low temperatures per
decade for winter wheat in the Huang-Huai-Hai Plain from 1982 to 2020. From 1982 to 1991,
the highest frequency was in central Shandong, at 30%; the second highest was in northern
and southern Shandong and central Hebei, at 22%, and the lowest was in central and
south Henan, at 7%. From 1992 to 2001, the frequency reached as high as 15% in most of
Henan, southern Hebei, and along the border with the Bohai Sea; it was second highest in
south Hebei and western Shandong, at 12%, and the lowest in eastern Shandong, at 2%.
This period’s minimum temperature events covered most of the Huang-Huai-Hai Plain.
From 2002 to 2011, the highest frequency was in southern and western Henan, at 13%;
Beijing, central Hebei, and central Shandong had the lowest, at only 4%. From 2012 to
2020, northern Hebei and eastern Shandong had the highest frequency, at 16%, while the
other regions had about 5%. Overall, there has been a decreasing trend in the frequency of
low-temperature events in the Huang-Huai-Hai Plain over the past 39 years.
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Figure 15 depicts the spatial distribution of low-temperature–drought frequency for
winter wheat in the 3H Plain for each decade from 1982 to 2020. From 1982 to 1991, the
frequency of low-temperature–drought events in central and southern Shandong reached
15%, the highest recorded; Western Henan and southern Hebei followed with 10%, while
central Henan recorded the lowest at only 3%. The remaining areas experienced a fre-
quency of approximately 6%. From 1992 to 2001, eastern and northern Henan, along
with western Shandong, recorded a low-temperature–drought frequency of 8%; the low-
est frequencies, at only 1%, were in Beijing, central and northern Hebei, western and
southern Henan, and eastern Shandong. From 2002 to 2011, the highest frequency of
low temperature–drought, at 9%, occurred in south and west Henan and southeastern
Shandong; the lowest frequencies, at 1%, were found in northern Henan, central and north
Hebei, and Beijing and Tianjin. From 2012 to 2020, northern Hebei and eastern Shandong
experienced the highest low temperature–drought frequency at 8%; the lowest, at only 1%,
was in the entire province of Henan, western Shandong, and southern Hebei. Over the
past 39 years, the frequency of low-temperature–drought events has decreased, and the
frequency of low-temperature–drought compound events is significantly lower than that
of high-temperature–drought events.

According to Figure 16, the proportion of low-temperature–drought compound events
to drought events in the 3H Plain significantly decreased from 1982 to 2020, with a reduction
rate of 3% per decade, and the interannual fluctuation in this proportion was substantial.
In particular, 1983 saw the highest proportion at 85%, followed by 2011 with 80%. No
compound events occurred in 1989, 1999, 2001, 2002, 2006, or 2015. On a spatial scale,
compound events in central Hebei and western Shandong accounted for the highest propor-
tions, at 22%. Southern Hebei and central Shandong followed at 20%, while central Henan
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recorded the lowest, at only 8%. Overall, the proportion of low-temperature–drought
compound events compared to drought events is significantly lower than that for high
temperature–drought, displaying a distribution pattern with lower frequencies in the south
and higher frequencies in the north.
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Figure 17 illustrates the spatial evolution of low-temperature–drought compound events
in the Huang-Huai-Hai Plain from 1982 to 2020. With a 3-month lag, southern Hebei, northern
Henan, and western Shandong have the highest positive correlation coefficients at 0.3, while
north Hebei has the highest negative correlation at −0.4. With a 2-month lag, northern Henan,
Tianjin, and southern Hebei have the highest positive correlation coefficients at 0.4, while a
few stations north of Hebei record the highest negative correlation at −0.4. With a 3-month lag,
the highest positive correlation between low temperature and the NDVI was 0.5 in western
and southern Hebei, while the highest negative correlation was −0.4 in south Henan, west
Shandong, and southern Hebei. With a 2-month lag, northern Hebei, Beijing, Tianjin, and
northern Shandong had the highest positive correlation at 0.3, while central and south Henan
recorded the highest negative correlation at −0.4. With a 1-month lag, Hebei North had the
highest positive correlation at 0.5, while Tianjin, Beijing, and southern Henan had the highest
negative correlation at −0.3. The highest positive correlation coefficient of −0.3 was found in
northern Hebei, Beijing, and Tianjin, and the highest negative correlation coefficient of −0.4
was found in western Shandong and north Henan for the exact monthly correlation between
low temperature and the NDVI. Overall, in low-temperature–drought compound events, the
NDVI showed a positive correlation with drought and a negative correlation with minimum
temperature across most of the 3H Plain.
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respectively; (E–H) represent the lagged correlation between high temperature and NDVI, with lag times
of 3 months, 2 months, and 1 month, and current month correlation, respectively.

3.2.2. Sensitivity of Winter Wheat to Low-Temperature–Drought Compound Events

Figure 18 shows the Empirical Cumulative Distribution Function (ECDF) of low-
temperature–drought compound events for winter wheat in the typical regions of the
Huang-Huai-Hai Plain from 1982 to 2020. As shown in the figure, 80% of the sites experi-
enced low-temperature–drought compound events during the period from 2001 to 2020.
For the past 20 years, the ECDF is characterized by a steeply sloped curve, indicating that
the data may follow a skewed distribution, and the sites within this interval are more
densely clustered, suggesting that the occurrence of compound drought events is relatively
concentrated. For the period from 1982 to 2000, the occurrence and distribution patterns of
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low-temperature–drought compound events were similar to those in the 2001–2020 period.
When the proportion of sites experiencing compound events is less than 40%, the ECDF
curve is relatively steep, indicating that 40% of the sites are relatively concentrated; when
the proportion of sites is between 40% and 80%, the curve is relatively flat, indicating that
the occurrence of compound drought events is more dispersed.
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Figure 18. Empirical Cumulative Distribution Function of low-temperature–drought compound
events for winter wheat in the typical regions of the Huang-Huai-Hai Plain from 1982 to 2020.

Figure 19 shows the sensitivity characteristics of winter wheat in relation to varia-
tions in low-temperature–drought compound events using the random forest method, we
conducted an attribution analysis and obtained Figure 19. According to the sensitivity
identification of climate factors for winter wheat in the Huang-Huai-Hai Plain from 1982 to
2020, it is evident that, in low-temperature–drought compound events, winter wheat shows
comparable sensitivity to maximum temperature, minimum temperature, precipitation,
and the drought index (SPI), each around 13%. Overall, in both high-temperature–drought
and low-temperature–drought compound events, winter wheat exhibits higher sensitivity
to extreme temperatures compared to precipitation and the SPI, with a greater sensitivity
to high temperatures.
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3.2.3. Copula Analysis of Low-Temperature–Drought Compound Events

Table 6 shows that the correlation between drought (SPI) and extreme low temperature
(TMIN) in the 3H Plain is positively correlated, passing the 5% significance test. Given
the analysis results, modeling the binary distribution of TMIN and the SPI using a copula
approach is feasible.
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Table 6. Kendall/Spearman/Pearson rank correlation coefficients for drought (SPI) and extreme low
temperature (TMIN) in the 3H Plain, 1982–2020.

Factors Name
Kendall Spearman Pearson

r p Value r p Value r p Value

3H Plain _SPI_TMIN 0.148 0.0008 0.172 0.0007 0.149 0.0217

According to Table 7, for the TMIN-SPI copula function selection for the 3H Plain, the
Frank copula approach is identified as optimal across three evaluation metrics—AIC, BIC,
and RMSE—showing values for these metrics that are lower than those for the other four
copula types. This indicates that the Frank copula type provides the best fit and is most
suitable for describing extremely low temperature and SPI joint distribution characteristics.
Therefore, this paper selects the Frank copula function to establish a two-dimensional joint
probability distribution model for extremely low temperatures and drought in the 3H Plain.

Table 7. Cluster selection criteria of copula function for drought–extreme low temperature in the 3H
Plain.

Cop_Family AIC BIC RMSE

Gaussian 18.56 24.26 0.192
t 20.56 31.96 0.194

Clayton 17.96 23.66 0.412
Frank 18.77 24.46 0.175

Gumbel 17.96 23.66 0.412

Figure 20 displays the probability distribution function for low-temperature–drought
compound events in the 3H Plain from 1982 to 2020. Figure 20A illustrates that the
scatter points, representing actual and theoretical frequencies, closely align with the fitted
line, demonstrating that their overall trends are consistent, effectively capturing the joint
distribution characteristics of the SPI and TMIN. This confirms that the copula model can
accurately represent these variables’ joint behaviors. Additionally, it accurately captures
the marginal distributions of the SPI and TMIN. From Figure 20B, the probability of low-
temperature–drought compound events increases with rising minimum temperatures, and
similarly rises as SPI increases (indicating decreasing drought intensity), with more minor
fluctuations in event probability when temperatures range from −2 to −6 ◦C and the SPI
ranges from −2 to −1.5.

Figure 21A illustrates the joint probability distribution relationship between drought
and extremely low temperature in the 3H Plain. The figure enables the determination of
the joint probability of extremely low temperature and drought at any point. This function
reflects the correlation between extremely low temperatures and drought across various
value ranges. Notably, the figure displays an asymmetric and skewed dependence structure
on a monthly scale, with extremely low temperatures exerting minimal impact on drought
at low values and significant impact at very high values. One can derive the interval
distribution for extreme heat and drought using contour plots with joint probabilities
ranging from 0.1 to 0.9. The contour plots show that the joint probability is higher when
extremely low temperature is fixed and drought severity is lower, or when drought severity
is fixed and the minimum temperature is lower. Significant differences exist in the joint
probability of minimum temperature and the SPI across different intervals on the same
contour. The figure reveals that scenarios where minimum temperature pairs with both
minimum and maximum SPI values exhibit low joint probabilities, except when both are at
maximum values, where the probability is high. Additionally, low-temperature–drought
compound events are more likely during low-temperature and mild drought periods.
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low-temperature–drought.

Atmosphere 2024, 15, 747 30 of 40 
 

 

severity is fixed and the minimum temperature is lower. Significant differences exist in 

the joint probability of minimum temperature and the SPI across different intervals on the 

same contour. The figure reveals that scenarios where minimum temperature pairs with 

both minimum and maximum SPI values exhibit low joint probabilities, except when both 

are at maximum values, where the probability is high. Additionally, low-temperature–

drought compound events are more likely during low-temperature and mild drought pe-

riods. 

Figure 21B shows the two-dimensional contours of the joint reproduction period of 

extremely low temperature–SPI in the 3H Plain. The reproduction period corresponding 

to extremely low temperatures or SPI greater than or equal to a specific value can be cal-

culated using the joint reproduction period plot. The plots reflect combinations of ex-

tremely low temperature or SPI greater than or equal to a particular value when the return 

periods are 2, 5, 10, 25, 50, and 100 years, respectively. The smaller the joint return period, 

the more extensive the range of values of extreme low temperature and SPI, suggesting 

that the SPI is more likely to have a smaller return period when extreme low temperature 

is specific. Low-temperature–drought compound events are more likely to occur during 

overlapping low-temperature and mild drought periods. 

 

Figure 21. Joint probability and joint return periods of low–temperature–drought compound events 

in the Huang–Huai–Hai Plain from 1982 to 2020 (October to February). Note: (A) shows the contour 

map of joint probability for low temperature–drought; (B) depicts the contour map of joint return 

periods for low temperature–drought. 

Figure 22A shows the contour plot of the joint probability of exceeding extremely 

low temperature–SPI in the 3H Plain. According to the figure, when the drought level is 

fixed, as the minimum temperature decreases, the joint probability of exceeding the low-

temperature–drought compound event decreases; similarly, when the minimum temper-

ature is held constant, as the SPI decreases (indicating an increase in drought intensity), 

the joint probability of exceeding the compound event follows suit. The joint exceedance 

probability can be obtained from the joint exceedance probability graph when the mini-

mum temperature and the SPI are arbitrary values. The figure displays combinations 

where the minimum temperature and SPI are simultaneously greater than or equal to spe-

cific values, with joint exceedance probabilities ranging from 0.1 to 0.9. The smaller the 

values of extremely low temperature and the SPI are, the smaller the joint exceeding like-

lihood is, and vice versa. This comparison implies that smaller values of extremely low 

temperature and the SPI are more likely to exceed larger ones. 

Figure 22B illustrates the co-occurring recurrence periods for extremely low temper-

atures and drought in the 3H Plain. As can be seen from the figure, when the drought level 

is fixed, the compound event joint beyond the reproduction period grows as the minimum 

temperature decreases. In contrast, when the extremely low temperature is fixed, the com-

pound event joint beyond the reproduction period grows as the SPI decreases (drought 

Figure 21. Joint probability and joint return periods of low–temperature–drought compound events
in the Huang–Huai–Hai Plain from 1982 to 2020 (October to February). Note: (A) shows the contour
map of joint probability for low temperature–drought; (B) depicts the contour map of joint return
periods for low temperature–drought.

Figure 21B shows the two-dimensional contours of the joint reproduction period of
extremely low temperature–SPI in the 3H Plain. The reproduction period corresponding to
extremely low temperatures or SPI greater than or equal to a specific value can be calculated
using the joint reproduction period plot. The plots reflect combinations of extremely low
temperature or SPI greater than or equal to a particular value when the return periods are
2, 5, 10, 25, 50, and 100 years, respectively. The smaller the joint return period, the more
extensive the range of values of extreme low temperature and SPI, suggesting that the SPI
is more likely to have a smaller return period when extreme low temperature is specific.
Low-temperature–drought compound events are more likely to occur during overlapping
low-temperature and mild drought periods.

Figure 22A shows the contour plot of the joint probability of exceeding extremely
low temperature–SPI in the 3H Plain. According to the figure, when the drought level
is fixed, as the minimum temperature decreases, the joint probability of exceeding the
low-temperature–drought compound event decreases; similarly, when the minimum tem-
perature is held constant, as the SPI decreases (indicating an increase in drought intensity),
the joint probability of exceeding the compound event follows suit. The joint exceedance
probability can be obtained from the joint exceedance probability graph when the minimum
temperature and the SPI are arbitrary values. The figure displays combinations where
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the minimum temperature and SPI are simultaneously greater than or equal to specific
values, with joint exceedance probabilities ranging from 0.1 to 0.9. The smaller the values
of extremely low temperature and the SPI are, the smaller the joint exceeding likelihood is,
and vice versa. This comparison implies that smaller values of extremely low temperature
and the SPI are more likely to exceed larger ones.
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Figure 22B illustrates the co-occurring recurrence periods for extremely low temper-
atures and drought in the 3H Plain. As can be seen from the figure, when the drought
level is fixed, the compound event joint beyond the reproduction period grows as the
minimum temperature decreases. In contrast, when the extremely low temperature is fixed,
the compound event joint beyond the reproduction period grows as the SPI decreases
(drought intensity strengthens). At the same time, the reproduction period is longer when
the temperature is lower, and the drought intensity is weaker. The reproduction period for
which extremely low temperature and the SPI are greater than or equal to a specific value
can be seen from the same exceeding reproduction period plot. The figure shows combina-
tions of extremely low temperature and the SPI at the same time greater than or equal to a
specific value for return periods of 2, 5, 10, 25, 50, and 100 years. For cases with extremely
low temperature and SPI-fixed values, their coeval return periods are significantly larger
than the joint return period. For the synoptic return period, the larger the given return
period, the smaller the values of extreme low temperature and SPI, and even the synoptic
return period exceeds 100 years when the values of extreme low temperature and drought
level are large enough.

4. Discussion
4.1. Impact of High-Temperature–Drought Compound Events

From 1982 to 2020, high-temperature–drought compound events in the 3H Plain
demonstrated a north-to-south expansion trend, influenced by climate change, environ-
mental conditions, and human activities [88]. Global warming increases high-temperature
events, while regional climate changes make areas more drought-prone [89]. These events
significantly impact winter wheat growth, with higher maximum temperatures increasing
their probability and potential to limit growth and affect grain yields [90]. Sensitivity
analyses reveal that winter wheat is most sensitive to maximum temperature, followed by
minimum temperature, precipitation, and the SPI. This indicates that temperature changes
more significantly affect growth during heat–drought events than precipitation [91]. These
findings highlight the need for disaster prevention and response strategies under high
temperatures and mild drought conditions.
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Winter wheat is more sensitive to maximum air temperature than to precipitation
and the SPI during heat–drought events, likely due to increased evaporation reducing soil
moisture [92]. The NDVI is negatively correlated with drought and positively correlated
with maximum air temperature, indicating that reduced soil moisture under high temper-
atures and drought can stunt growth, decreasing NDVI values [93,94]. Conversely, high
temperatures can accelerate growth, increasing NDVI values, making the NDVI an effective
indicator for monitoring and predicting drought conditions and crop growth in the 3H
Plain [95].

4.2. Impact of Low-Temperature–Drought Compound Events

From 1982 to 2020, the frequency of low-temperature–drought compound events
in the 3H Plain decreased, significantly more so than high-temperature–drought events.
This is likely due to global warming reducing winter low-temperature events and in-
creasing drought susceptibility in northern regions [96]. The impact on winter wheat,
especially when minimum temperature and SPI are fixed, should still be considered. The
co-occurrence return period for these events is significantly longer than the joint return
period, suggesting a higher likelihood of co-occurrence and potentially longer durations
than high-temperature–drought events. Longer return periods correspond to lower mini-
mum temperature and SPI values, indicating a decreased likelihood of simultaneous low
temperature and drought over time. Winter wheat shows a specific sensitivity pattern to
elements of low-temperature–drought compound events. Sensitivity to maximum air tem-
perature exceeds that to minimum air temperature, precipitation, and the SPI, suggesting
susceptibility to higher temperatures under low temperatures and drought. Winter wheat
is positively correlated with drought and negatively correlated with minimum temperature
across most regions [97]. This suggests that, under drought, lower minimum air temper-
atures adversely affect vegetation growth [98]. As minimum temperatures rise, winter
wheat’s sensitivity to low-temperature–drought compound events increases, potentially
limiting its growth and impacting grain yields.

Climate change significantly affects low-temperature–drought events. Rising tem-
peratures in recent decades may reduce low-temperature events. Global warming might
alter precipitation patterns, impacting drought events’ frequency and duration [99,100].
Located near the Yellow and Bohai Sea, the 3H Plain may experience climate effects due
to changes in sea surface temperatures. Anomalies in sea surface temperatures can alter
atmospheric circulation, influencing low-temperature and drought events. Atmospheric
circulation patterns significantly influence cold-temperature–drought events [101,102].
Low-temperature events are more probable with cold air influxes. Shifts in atmospheric
circulation could modify precipitation patterns, affecting drought. Land-use changes could
influence low-temperature–drought events [103]. Large-scale agricultural irrigation could
alter local temperature and precipitation patterns, impacting low-temperature and drought
frequency. Human activities significantly contribute to the occurrence and impacts of
low-temperature–drought events [104]. Agricultural practices, water management, and
land use may directly or indirectly influence regional climates and drought conditions.
The increasing use and demand for natural resources, driven by population growth and
economic development, may impact the frequency and severity of cold–drought events.

4.3. Overall Impact of Climate Change on Winter Wheat Growth

The trend of climate change in the 3H Plain coincides with the trend of global warm-
ing. Global warming increases surface temperatures, leading to higher maximum air
temperatures in the 3H Plain, increasing high-temperature events’ frequency and intensity.
Warming might change precipitation patterns, potentially leading to more frequent drought
events [105]. These effects interact, increasing heat–drought compound events. Further-
more, changes in maximum and minimum temperatures significantly impact crops. Winter
wheat in the 3H Plain is most sensitive to maximum air temperature, indicating the serious
impacts of climate warming on growth and yield. Winter wheat negatively correlates with
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drought and positively correlates with maximum air temperature, suggesting that rising
temperatures could affect vegetation growth and increase drought risk.

Under global warming, high-temperature weather frequency increases, driving more
compound extreme-heat and drought events. Weather systems greatly influence high
temperatures; conditions favoring high temperatures often disfavor precipitation, closely
correlating high temperatures and drought [13]. Even with stable drought frequency, rising
high temperatures will increase compound extreme heat and drought events [16], consistent
with this study’s conclusions.

4.4. Agricultural Adaptation Strategies

Policies, technologies, and socio-economic conditions can influence the ability to cope
with high temperatures and droughts in the 3H Plain. Recent compound drought events in
the 3H Plain have posed severe challenges to water resources, causing groundwater decline
and water scarcity, and affecting ecosystems and social stability. Recommendations for
addressing drought resistance and disaster reduction in the 3H Plain include the following:

(1) Develop water-saving projects and advanced irrigation technologies like drip and
sprinkler irrigation. Promote drought-resistant crop varieties.

(2) Conserve water in industrial and residential areas by optimizing processes and in-
creasing public awareness.

(3) Improve water conservancy projects, including reservoirs, irrigation channels, and
rainwater collection systems. Enhance drought resistance management and scientific
research.

(4) Rationally allocate water resources, consider inter-basin transfers, and prioritize
domestic and agricultural water use in scarce areas.

(5) Maintain soil moisture by using mulch, such as straw or plastic film, to cover the soil
surface and reduce evaporation. Deep tillage can also help maintain soil moisture by
increasing soil porosity and enhancing the soil’s water retention capacity.

(6) Plant drought-resistant crops; optimize planting schedules by adjusting planting and
harvesting times based on climatic conditions to avoid crop growth during drought
periods, thereby reducing water demand.

To address climate change challenges and achieve climate-smart agriculture, apply-
ing climate-resistant wheat varieties is essential. Extreme climatic events, such as high
temperatures and droughts, significantly impact winter wheat growth and yield [106].
Promoting climate-resistant varieties enhances agricultural stability and sustainability,
ensuring high yield and quality under extreme conditions and thus securing food supply.
Selection methods combine traditional breeding and modern biotechnology. Hybrid breed-
ing and gene editing can identify and accelerate the development of resistant varieties.
Multi-environment trials under different climatic conditions help evaluate and identify the
most adaptable varieties.

Integrating climate and crop growth data with machine learning can predict promis-
ing climate-resistant wheat varieties. Agricultural extension services can promote these
varieties to farmers and provide planting guidance. Supporting farmers in cultivating
these varieties enhances resistance to extreme climatic events and improves agricultural
resilience, achieving sustainable development. These research directions provide crucial
scientific and technical support for future climate change challenges.

Future research will focus on the following aspects:

(1) Improving time series analysis models: Future research will integrate deep learning
models like CNN, RNN, and LSTM to better capture spatiotemporal changes in
climate data and improve the accuracy of climate event analysis. Ensemble learning
methods will enhance model robustness and stability, providing reliable tools for
analyzing historical climate events and supporting agricultural adaptation strategies.

(2) Expanding research areas and time frames: Future research will expand the study
area to a national or global scope and extend the time frame to include more years
of data. Integrating the latest meteorological and remote sensing data will improve
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the accuracy and comprehensiveness of the research, helping to identify long-term
climate change trends and their impacts on agricultural production.

(3) Comprehensive multi-factor analysis: Future research will include other climatic
factors such as precipitation, wind speed, and humidity to assess their combined
effects on winter wheat growth. Multivariate time series models will analyze the
interactions among these factors, enabling more accurate predictions of winter wheat
growth under varying climatic conditions.

5. Conclusions

In this paper, the sensitivity of winter wheat to extreme temperature–drought com-
pound events is investigated by analyzing the spatial and temporal distribution char-
acteristics of high- and low-temperature–drought compound events. These compound
events’ probability distribution and occurrence patterns across different recurrence peri-
ods are analyzed using copula analysis to explore winter wheat’s response to high- and
low-temperature–drought compound events. The main conclusions are as follows:

(1) Temporal and spatial distribution characteristics of high-temperature–drought
compound events.

From 1982 to 2020, the spatial distribution of high-temperature and drought events
in the 3H Plain displayed an expanding trend, particularly noted by the southward ex-
pansion of drought-affected areas. During this period, the frequency of high-temperature
events also showed an overall increasing trend, further indicating the apparent impact
of climate change. From 2001 to 2020, about 40% of the observation stations experienced
high-temperature–drought compound events, and the occurrence areas of these compound
events were relatively concentrated. During 1982–2000, about 60% of the stations experi-
enced such compound events, showing changes in the frequency and distribution area of
compound events in different periods.

(2) Sensitivity of winter wheat to high-temperature–drought compound events.

In high-temperature–drought compound events, winter wheat’s sensitivity to climatic
elements is ranked as follows: maximum temperature > minimum temperature > precipita-
tion > SPI. This highlights maximum temperature as the critical factor influencing growth.
The NDVI was negatively correlated with drought and positively correlated with maximum
air temperature in most areas. This finding highlights the crucial role of maximum air
temperature on winter wheat growth and climate change’s impact on agroecosystems.

(3) Recurrence period of combined heat–drought events.

The copula analysis of high-temperature–drought compound events indicated that
maximum air temperature and SPI increase the likelihood of these compound events oc-
curring. In addition, the changes in the probability of compound events were more stable
when the temperature was 28–30 ◦C and when the SPI was from −2 to −2.5, indicating
that the effects of compound events were more pronounced under these conditions. High-
temperature–drought compound events were more likely to occur under high-temperature
and mild drought conditions. This is further confirmed by the analysis of the joint ex-
ceedance probability and return period, pointing to an increased chance of occurrence of
such compound events at certain temperatures and drought levels.

(4) Temporal and spatial distribution characteristics of low-temperature–drought
compound events.

Between 1982 and 2020, there was a general decline in the frequency of low-temperature
events in the 3H Plain. At the same time, the frequency of low-temperature–drought
compound events also showed a decreasing trend, which was significantly lower than
the frequency of high-temperature–drought compound events. The proportion of low-
temperature–drought compound events relative to total drought events was small, with a
geographic pattern of lower occurrence in the south and higher occurrence in the north. Dur-
ing the period of 2001–2020, about 80% of the stations recorded low-temperature–drought
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compound events, and the regions in which the events occurred were relatively concen-
trated, whereas, during the period of 1982–2000, the proportion ranged from 40% to 80%.
The areas in which the events occurred were more dispersed.

(5) Sensitivity of winter wheat to low-temperature–drought compound events.

In low-temperature–drought compound events, the sensitivity of winter wheat to
meteorological elements was ranked as follows: maximum temperature > minimum tem-
perature > precipitation > SPI. In addition, the NDVI was positively correlated with drought
and negatively correlated with minimum temperature in most areas, indicating that the
growth of winter wheat was significantly affected by low-temperature conditions.

(6) Recurrence period of low-temperature–drought compound events.

The copula analysis results for the low-temperature–drought compound events re-
vealed that an increase in minimum air temperature and the SPI heightened the probability
of these compound events. Especially when the minimum temperature is −2 to −6 ◦C and
the SPI is −2 to −1.5, the change in the likelihood of occurrence of the compound event is
more stable. Low-temperature–drought compound events were more likely to occur under
low-temperature and mild drought conditions. For fixed values of minimum temperature
and SPI, the synoptic return period of compound events is significantly larger than the
joint return period, and the longer the return period, the smaller the values of minimum
temperature and SPI, reflecting the relationship between the probability of occurrence of
this type of compound event and the return period.

This study reveals that, from 1982 to 2020, high-temperature–drought events in the
Huang-Huai-Hai Plain increased in frequency and intensity, reducing wheat yields by
15–20%. Low-temperature drought events, although less frequent, still caused a 10–15%
yield reduction. The drought index during the winter wheat-growing season has risen,
increasing the impact of drought on yield loss. Copula analysis effectively assesses and
predicts these events, highlighting the need for adaptation and mitigation strategies to
protect agricultural production from climate change. This research provides a scientific basis
for understanding climate change impacts on agroecosystems and guides the development
of adaptive responses.
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