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Abstract: Flash droughts (FDs) pose significant challenges for accurate detection due to their short
duration. Conventional drought monitoring methods have difficultly capturing this rapidly in-
tensifying phenomenon accurately. Machine learning models are increasingly useful for detecting
droughts after training the models with data. Northeastern Brazil (NEB) has been a hot spot for
FD events with significant ecological damage in recent years. This research introduces a novel 2D
convolutional neural network (CNN) designed to identify spatial FDs in historical simulations based
on multiple environmental factors and thresholds as inputs. Our model, trained with hydro-climatic
data, provides a probabilistic drought detection map across northeastern Brazil (NEB) in 2012 as its
output. Additionally, we examine future changes in FDs using the Coupled Model Intercomparison
Project Phase 6 (CMIP6) driven by outputs from Shared Socioeconomic Pathways (SSPs) under the
SSP5-8.5 scenario of 2024–2050. Our results demonstrate that the proposed spatial FD-detecting
model based on 2D CNN architecture and the methodology for robust learning show promise for
regional comprehensive FD monitoring. Finally, considerable spatial variability of FDs across NEB
was observed during 2012 and 2024–2050, which was particularly evident in the São Francisco River
Basin. This research significantly contributes to advancing our understanding of flash droughts,
offering critical insights for informed water resource management and bolstering resilience against
the impacts of flash droughts.

Keywords: flash drought; convolutional neural network; encoder–decoder architecture; Caatinga;
climate change; hydro-climatic data

1. Introduction

Drought is a water shortage phenomenon caused by an imbalance in long-term water
supply and demand [1,2]. According to a recent study, over 60% of the world’s regions are
affected by drought disasters annually, and the socio-economic and agricultural produc-
tions have been most affected [3]. In recent years, the academic community has shown that
extremely high temperatures and rainfall deficits [4–6] can cause a very rapid onset and
evolution of droughts, which have been referred to as flash droughts (FDs) [7–9]. Their
identification and analysis are essential problems for risk management, informing govern-
mental policy decisions, and advancing our fundamental understanding of the climate
system. With human-induced climate change from increased CO2 and other heat-trapping
gases in the atmosphere, it is anticipated that the future will witness a progressive intensifi-
cation and proliferation of climate extremes [8]. Among extreme events, FDs are ranked
first in hazard characteristics given their severity on the ecological environment and their
generated socio-economic losses [10].
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The complex causes of FDs make their monitoring challenging. Although a com-
mon term, a universally accepted definition of what constitutes an FD does not exist
(e.g., [11]). Nevertheless, from a broad physical standpoint, droughts are meso-climatic
events that arise from interconnected atmospheric and hydrological processes [12], being
self-supported by a positive feedback mechanism [13] (Figure 1). As soil moisture crosses a
critical threshold, evapotranspiration potential rates decrease, lowering the atmospheric
relative humidity and making the saturation point for rainfall harder to achieve. Overall,
because of the stochastic nature of water demands across different regions of the world,
a uniform operational definition of FD has become difficult to establish (e.g., [14]). Thus,
rainfall is less likely, which exacerbates dryness.
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Drought indices have some limitations that make their performance region-specific [15]. 
Firstly, they are often defined with only one type of drought in mind. Secondly, they are 
local and do not account for spatiotemporal links. Thirdly, they assume specific 
probability distributions over the variables involved or simple thresholding ratios. Lastly, 
they are limited to inherent time scales. While they are simple to use, these limitations 
mean that they can lack the adaptability required to correctly identify the concept of FD, 
which shifts over time as climate change deviates climate conditions from normality. The 
complex causes of FDs make their detection and prediction systems challenging. 
Although considering convolutional neural networks (CNNs) can yield acceptable 
accuracy for classifying well-known types of extreme weather events, the choice of 
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Figure 1. Schematic representation of a heat dome which involves high-pressure areas that trap and
heat up the air below. This figure illustrates over a region that high pressure (1 *) in the atmosphere
pushes warm air down toward the ground; hot air masses (2 *) expand vertically into the atmosphere
as the air sinks (3 *) and it warms by compression; and the ground warms and loses its moisture,
which makes it easier to heat even more (4 *). The dome of high pressure inhibits clouds and
local rainfall and deflects away storms (5 *). These conditions lead to the onset of a flash drought,
and consequences of the persistence of hydro-climatic anomalies over days or weeks can lead to
substantial land degradation and desertification [4].

Commonly used drought indices in different types of gridded datasets are 3D climate
model outputs from drought model simulations and 2D data from satellite retrievals.
Drought indices have some limitations that make their performance region-specific [15].
Firstly, they are often defined with only one type of drought in mind. Secondly, they are
local and do not account for spatiotemporal links. Thirdly, they assume specific probability
distributions over the variables involved or simple thresholding ratios. Lastly, they are
limited to inherent time scales. While they are simple to use, these limitations mean that
they can lack the adaptability required to correctly identify the concept of FD, which shifts
over time as climate change deviates climate conditions from normality. The complex causes
of FDs make their detection and prediction systems challenging. Although considering
convolutional neural networks (CNNs) can yield acceptable accuracy for classifying well-
known types of extreme weather events, the choice of supervised learning can lead to
variations in the effectiveness of data-driven approaches of drought events [16].

Nevertheless, the origins of Deep Neural Networks (DNNs) date back to the 1950s.
The development and utilization of DNNs have recently accelerated rapid achievement of
state-of-the-art results on classification, change and anomaly detection, forecasting, and
model emulation tasks, among others [17–19]. For example, [20] recognizes their ability
to learn optimal representations specifically from the data. Recent work has shown that
fully supervised convolutional neural networks (CNNs) can yield acceptable accuracies
for classifying well-known types of extreme weather events [21]. There is a specific benefit
when applying the DNN algorithm to the detection of extremes. It helps to identify a
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specific type of extreme event from the anomalous data cloud and allows for better fitting
of its distribution.

Deep learning is a new evolution of traditional machine learning research, designed
to enable the computer to learn inherent characteristics of a dataset from a large pool of
sample data, and classify and predict the newly received samples. CNNs are one of the
more common deep learning architectures. They utilize layers of convolutional filters
to automatically detect and learn hierarchical patterns and features from the input data.
Through a combination of convolutional layers, pooling layers, and fully connected layers,
CNNs effectively capture spatial and temporal dependencies. Thus, machine learning has
been gradually applied to the study of drought detection because it can effectively deal
with the nonlinear relationship between various drought factors [7,8]. However, given
the novelty of the method and the challenges in implementation, there are few studies on
drought monitoring using machine learning [20]. To overcome this shortcoming, this study
develops a drought identification model using machine learning architecture, validates it
with an independent set of data, and describes the spatial variability of flash drought events
in northeastern Brazil (NEB). This model is based on a convolutional neural network (CNN)
model. A comparative analysis with outcomes from the method’s implementation relying
on ground observations and satellite retrievals was carried out in 2012. In addition, the FD
identification method was applied to the future emission scenario of CMIP6 (SSP5-8.5) to
quantify the FD events occurring in NEB from 2024 to 2050. The research’s contribution is
introducing a convolutional encoder–decoder framework for identifying flash droughts.

The study is organized as follows. Section 2 describes the study area, datasets for the
hydro-climatic variables, and drought index. Section 3 details the proposed spatial drought
detection model. The evaluation of the results and discussions provided by the architecture
in northeastern Brazil is presented in Sections 4 and 5, respectively. Finally, conclusions are
drawn in Section 6.

2. Materials
2.1. Study Area

Northeastern Brazil (NEB) spans from approximately latitude 1.3◦ to 18.2◦ S and
longitude 34.4◦ to 48.4◦ W, encompassing a land area of approximately 1.55 million square
kilometers [4]. Located in northeastern South America, the region features both inland
and coastal characteristics. The terrain slopes from high in the west to low in the east. The
eastern area, being closer to the ocean, receives more precipitation and is relatively humid.
The western region, situated inland and away from the ocean, is characterized by less
precipitation and higher evapotranspiration, with more drought conditions compared to the
east. Due to the complexity of the terrain and climate zones, along with a large population
(53 million inhabitants), water scarcity is becoming increasingly severe, manifested in
frequent drought events, significantly affecting agricultural development [22]. Furthermore,
climate models described by Marengo et al. [23] suggest that the drought frequency in
NEB will increase in the future due to a higher evaporative demand and persistent dry
conditions associated with global warming. Consequently, flash droughts across NEB are
also expected to increase in response to global warming, particularly as the region is an
agriculture center where increasing CO2 will impact plant growth [4], which is closely tied
to the hydrologic cycle [24].

According to the Köppen–Geiger climate classification map published by Beck et al. [25],
the study area mainly encompasses nine subtypes within three categories and its vegetation
cover includes caatinga, rainforests, riparian forests, savannas, and montane forests, among
others. Caatinga vegetation accounts for approximately 62% of NEB [26,27], with a rich
diversity of vegetation types (Figure 2). The main plant species covered by Caatinga are
Angico (Anadenanthera colubrina), Barriguda (Ceiba glaziovii), Cacto (Cactaceae), Carnaúba
(Copernicia prunifera), Catingueira (Caesalpinia pyramidalis), Cumaru (Amburana cearensis),
Facheiro (Pilosocereus pachycladus), and Juazeiro (Ziziphus joazeiro). These plant species
withstand drought conditions and are used as food sources for humans and animals, and
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also play a crucial role in maintaining nutrient cycling within this biome [4]. Other climatic
features of the study region are the annual mean rainfall of 400–800 mm, the annual average
air temperature variation from 23 ◦C to 27 ◦C, and the potential evaporation (PET) of about
2000 mm year −1 [26].
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(BA), Ceará (CE), Minas Gerais (MG), Maranhão (MA), Paraíba (PB), Piauí (PI), Pernambuco (PE),
Rio Grande do Norte (RN), and Sergipe (SE).

2.2. Data Sources

We obtained hydro-climatic data from the Brazilian Daily Weather Gridded Data
(BR-DWGD) developed by Xavier et al. [28], a data product derived from a collection
of algorithms and computer software designed to interpolate and extrapolate from daily
meteorological observations to produce gridded estimates of daily weather parameters. The
BR-DWGD were used to assess and identify periods of flash drought across northeastern
Brazil from 2010 to 2022. The precipitation (P) and potential evapotranspiration (PET)
variables shared a common spatial grid of 0.1◦ with daily data. The BR-DWGD variables
used for this assessment were (P) precipitation and potential evapotranspiration (PET), at a
common spatial grid of 0.1◦ on a daily scale. Therefore, referring to the calculation method
of the Standardized Precipitation Evapotranspiration Index (SPEI), this study calculated
the water deficit based on P and PET data in northeastern Brazil, fitted the water deficit
data series using the log-logistic method [29], and used python tools to calculate SPEI data
on a 3-month scale. Daily surface soil moisture (SSM) data were obtained from the SMOS
L3 SSM product provided by the Barcelona Expert Center over the period of 2010–2022. An
overview of the retrieved values is provided by González-Zamora et al. [30]. For example,
the correlation between P and SSM portrays a linearity (Figure 3), which guarantees a
physical relationship between the two variables.
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Figure 3. An example of (a) the observed precipitation (P) and (b) satellite retrievals for surface
soil moisture (SMOS-based SSM data) obtained in an agricultural area across the study area. The
linear correlation between these two variables is indicated by the R2 = 0.70 from January 2016 to
December 2020.

Daily NDVI data were provided by the Laboratory for Analyzing and Processing
Satellite Images (LAPIS)’s archive [31], with a spatial resolution of 3 km. To synchronize the
precipitation data’s temporal scales (Figure 4), we generated monthly and annual NDVI
data series. Subsequently, all raster datasets were resampled to a 5 km resolution to facilitate
analysis and discussion, and details of each data source are provided in Table 1. Previous
studies have shown that the SPEI data from the BR-DWGD have a strong relationship with
the soil moisture and vegetation response in NEB [27,28].
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Table 1. Details of data sources.

Product/Data Name Time
Period

Temporal
Resolution

Spatial
Resolution Data Source Accessed on

P 2010 to 2020 Daily 0.1◦ https://github.com/Alexand
reCandidoXavier/BR-DWGD 15 November 2023PET 2010 to 2020 Daily 0.1◦

SMOS L3 SSM (asc) 2010 to 2020 Daily 0.225◦ http://bec.icm.csic.es 10 October 2023
SMOS L3 SSM (des) 2010 to 2020 Daily 0.225◦ http://bec.icm.csic.es 10 October 2023

NDVI 2010 to 2020 Daily 3 km https://lapismet.com.br/ 12 November 2023

For testing, in addition to the soil moisture validation dataset described in Table 1, we
also ensured all data were at are at the same spatial resolution and scale. NDVI data were
resampled to a 10 km resolution using the bilinear interpolation method in GEE (Google
Earth Engine). The spatial resolution of the NDVI data was about 3 km.

3. Methods
3.1. The Standardized Precipitation Evapotranspiration Index (SPEI)

In this study, the SPEI was computed as a daily-scale drought index, which considers
both P and PET from the BR-DWGD. The SPEI computation involves fitting the cumulative
moisture deficit (D) series with an appropriate probability distribution function, followed
by normalization to derive SPEI categories [29]. A log-logistic distribution was then used
to fit the D time series [32]. Additionally, the Kolmogorov–Smirnov (K-S) test with a
0.05 significance level was used to determine the optimal probability distribution for
northeastern Brazil using the gma library in Python. Negative SPEI values indicate water
deficit, while positive values denote surplus moisture (Figure 5). We employed the log-
logistic probability distribution function to fit D and conducted SPEI calculations for
northeastern Brazil using the gma library in Python.
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The PET is the sum of the amount of evaporation and transpiration from a reference
vegetation of grass. It can be calculated with the Thornthwaite, Hargreaves, or Penman–
Monteith equations [29]. The Thornthwaite equation is computed as follows:

PET = 16
(

L
12

)(
N
30

)(
10Td

I

)α

(1)

α =
(

6.75 × 10−7
)

I3 −
(

7.71 × 10−5
)

I2 +
(

1.792 × 10−2
)

I + 0.49239 (2)

I =
12

∑
i=1

(
Tmi

5

)1.514

(3)

where PET is the estimated potential evapotranspiration (mm/month), Td denotes the
mean monthly temperature (degrees Celsius), N is the number of days for each month, L
indicates the local insolation (hours/month), and I is the annual heat index, which depends
on the monthly mean temperatures (Tmi in degrees Celsius).

We analyzed the correlations between the monthly hydro-climatic variables’ time series
spanning from 2010 to 2022 and the SPEI sequence with various offsets (e.g., 0 months,
1 month, 2 months, and 3 months) over the study area. Utilizing an area-averaged time
series of grid-scale R calculations, we detrended each variable to evaluate its response to
drought (SPEI). Then, utilizing the maximum value, we identified the optimal response
correlation for each variable and its corresponding lag intensity, employing a significance
level of 95%. Subsequently, we applied a wavelet squared coherence analysis to reveal
underlying oscillation patterns and changes in periodicities in a time–frequency domain
between the area-averaged values of the SPEI against the SSM during their common
time periods.

3.2. Model

The processing pipeline of the model is illustrated in Figure 6. First, given a set of
hydro-climatic variables, we select spatial data for northeastern Brazil. During training, we
select variable data around drought events (further details in Section 3.4). The resulting
batch of selected variable defines the sample to feed the model. Then, a Spatial Convolu-
tional Encoder–Decoder (S-CED) architecture processes this sample by extracting relevant
SSM information (encoder) and transforming it into a probabilistic drought detection map
through time (decoder). During training, the resulting map is compared with the ground
truth map for drought detection to define the penalty by which the model is optimized.
Later, the drought detection map through time is provided for the entire area of study by
concatenating the sample in the sequential order it was taken. Adding convolutions to
neural networks promotes two biases in the model: (i) nearby pixels (locations) are related
to each other, and (ii) targets can appear anywhere in the input data [29].

The convolutional neural networks (CNNs) model can yield acceptable accuracy for
classifying well-known types of extreme weather events. Further, it has been gradually
applied to the study of drought construction because it can effectively deal with the
nonlinear relationship between various drought factors [17]. This is consistent with what
others have observed. Wei and Li [21] found that the overall performance of deep learning
is comparable to that of a random forest, and its multi-layer method can find the best
output in the case of high-dimensional data features. However, the pooling layer of the
CNN model leads to the loss of some important features during training, which may be
one of the reasons why the accuracy of the training model is lower than that of the random
forest model.
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Figure 6. Schematic overview of the individual steps of the deep learning processing for FD detection.
The input-selected hydro-climatic variable (1 *) is taken by following a different sampling strategy
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the model, and a 2D convolutional encoder–decoder architecture provides probabilistic scores (4 *)
for an FD as its output.

3.3. Model Architecture Design

Detecting an FD requires network architectures capable of learning complex represen-
tations and exploiting interconnections in space and time. Adding convolutions to neural
networks encourages two biases in the model: (i) nearby pixels (locations) are related to
each other, and (ii) targets can appear anywhere in the input image [29]. Using convolu-
tions significantly reduces the number of learnable parameters, resulting in faster learning
and more scalable networks for deployment in real-case scenarios. Motivated by these
properties, we propose an encoder–decoder architecture [33] that uses 2D convolutional
layers to process hydro-climatic variables in space for FD detection as a binary classification
task (FD vs. non-drought conditions) at the grid level. The splits are defined such that
the amount of flash drought grids in each is similar, with the corresponding drought vs.
non-drought ratios being 0.8%, excluding water. In a nutshell, the network receives as
input a batch of data variables of size (lat, lon), with lat and lon being the latitude and
longitude sizes, respectively. The model comprises two 2D convolutional layers for the
encoder and two corresponding 2D convolutional layers for the decoder. CNNs utilize
layers of convolutional filters to automatically detect and learn hierarchical patterns and
features from the input data. Due to a reduction in the number of learnable parameters,
deep learning offers high accuracy and efficiency in processing large datasets [34,35]. The
architecture is shown in Figure 7.

The model uses a batch normalization, a normalization layer, a modified linear unit
layer (ReLU), and a fully connected layer. At the encoder, max pooling is used after
dropout layers to reduce the spatial dimensions by a factor of two. Likewise, residual
skip connections [35,36] connect the encoder and the decoder blocks. At the top of the
decoder, a final 2D convolutional layer followed by a sigmoid activation produces the
class probabilities for each pixel, which constitute FD detection maps through time. In
this study, we present the selected hydro-climatological data of size (240, 240) and output
the probabilistic drought detection map of size (240, 240). Convolutional layers typically
employ padding to extend the range of the convolution operation at image borders and
produce an output that is the same size as the input [16,37]. Using valid convolutions has
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the noticeable caveat that each convolution produces feature maps with fewer elements. In
a nutshell, the network receives as input a batch of selected data of variable size (lat, lon),
with lat and lon being the latitude and longitude sizes, respectively. The model comprises
2D convolutional layers for the encoder and two corresponding 2D convolutional layers
for the decoder. Exploiting convolutions significantly reduces the number of learnable
parameters, resulting in faster learning and more scalable networks for deployment in
real-case stages.
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input a selected data variable and provides a probabilistic FD detection map for multiple timesteps
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in terms of (lat, lon) is indicated. Skip connections are placed between the input of an encoder block
and the activation layer of the corresponding decoder block.

3.4. Flash Drought Identification

FDs were identified over the period 2010–2022 using SPEI and SSM values. The SPEI
was spatially averaged for the study area. To enhance the accuracy of FD identification, the
five-day average of the SSM time series was taken. The daily SPEI can exhibit noise due
to short-term meteorological variability that can potentially obscure the FD onset [14,38].
By averaging the SPEI values over five-day intervals, the variability was mitigated while
still being sufficient to capture the rapid intensification period characteristic of FDs. Flash
drought events were identified using multi-criterion guidelines as defined in previous
studies [4]. This method employs the following criteria: (1) the total decrease in the SPEI
should be 2 or greater in a 30-day period; (2) at the end of the same 30-day period, the
SPEI value should be less than −1.5 (or the SSM should be below the 20th percentile);
and (3) after crossing the drought threshold value of −0.5, the SPEI should remain below
−0.5 for at least 30 days. The first criterion captures the rapid intensification aspect of FDs
and confirms that the identified events are not affected by temporary fluctuations in the
SPEI or SSM due to increased rainfall, decreased temperatures, or increased cloud cover.
The second and third criteria help separate FDs and dry spells and identify flash drought
events that may have potential environmental impacts over more extended periods. The
SSM is expressed in a percentage format. The daily values of the SSM data are assigned to
different percentile categories of FDs, including 20th–25th, 15th–20th, 10th–15th, and <10th
(Table 2). The quantile values provide a useful way of comparing the SPEI with varying
orders of magnitude. They help to standardize the data and make them easier to compare
and analyze FD categories across different regions. Although drought categories are binary,



Atmosphere 2024, 15, 761 10 of 17

i.e., drought/non-drought, we rely on the assumption that the FD detection system should
be continuous and capture the evolution of the phenomena. This is achieved by taking the
probability distribution by which an example is labeled as belonging to one category and
not to another (i.e., the similarity structure), as shown in Table 2.

Table 2. Thresholds used for flash drought classification.

Drought Category SPEI Probability [%] 1 SSM

Non-drought >1.00 >77.50 >25th
Near normal (FD1) 0.99 to −0.99 68.30 20th–25th
Moderate dry (FD2) −1.00 to −1.49 9.20 15th–20th

Severe dry (FD3) −1.50 to −1.99 4.40 10th–15th
Extreme dry (FD4) <−2.00 2.30 <10th

1 The cumulative probability of non-exceedance for each SPEI drought category.

Furthermore, the Coupled Model Intercomparison Project Phase 6 (CMIP6) was used
to calculate the SPEI3 for identifying future stages of FD based on the SPEI under a high-
emission scenario. The following variables were employed: water evapotranspiration
flux, maximum air temperature, minimum air temperature, and precipitation. These data
were derived from historical simulations and Shared Socioeconomic Pathways (SSPs) that
characterize four future scenarios; we chose to use the SSP5-8.5 of CMIP6. The historical
simulation data cover the period from 2010 to 2015, while the data for the future scenario
cover the period from 2024 to 2050. We used the NorESM Climate Modeling Consortium
(NCC) agency, which has a spatial resolution of 1.25◦.

4. Results
4.1. Evaluation of Hydro-Climatic Data in Response to Drought

In the analysis of wavelet coherence between the SPEI and SSM (Figure 8a), it is evident
that the periodicity of 8–12 months is predominantly high from 2010 to 2016 (significant at a
95% level). The cone area denotes the cone of influence under which the period (month) can
be considered for the analysis. Hence, it is evident from the wavelet analysis that the SPEI
changes are in accord with the different periodicities of the SSM, which are also interpreted
as drought-induced temporal effects on the SSM over NEB. Considering that the SPEI has a
stronger explanatory power on the intensity of drought, which includes information on
temperature, precipitation, and potential evapotranspiration, this study selected the SSM,
NDVI, and PET as independent hydro-climate variables.
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Figure 8b reflects the interactive effects of each variable on the temporal impact of
drought (SPEI). The SSM and NDVI dominate as the driving factors, followed by the
PET. We identified the lag effect durations of each variable during drought as follows:
SSM > NDVI > PET. In addition, we observed significant negative correlations between
the PET and drought, indicating a stronger response of the PET to lagging drought (i.e.,
higher sensitivity). Longer lag effect times imply that the SSM is more likely to be affected
by the lingering effects of previous months’ droughts and is less likely to recover from
earlier droughts. Compared to other commonly used meteorological drought indices, the
SPEI exhibits a greater capability to measure the impacts of drought on agricultural and
ecological responses [27,29]. Thus, we conclude that the SSM was the optimal variable for
drought detection.

4.2. Identifying and Mapping Flash Drought Events

To showcase the ability of the SSM to capture FDs, the well-studied 2012 NEB event
was examined. This drought event occurred during the autumn, winter, and spring of 2012
and was a historically unprecedented event in NEB, ranked as the third-largest drought in
terms of aerial extent since 1901. The event was preceded by La Niña conditions during
the summers of 2011–2012, resulting in drier-than-normal conditions at the beginning of
the year [26,31]. Figure 9 shows the rapid onset and progression of the 2012 flash drought
demonstrated by SSM values every 5 days (i.e., pentads) from 1 March to 28 December. The
drought reached its peak severity at the end of August, with nearly three-fourths of NEB
classified as having severe or extreme drought conditions according to the SPEI categories.
The mean and median lengths of the flash drought events in 2012 were 24 and 114 days. This
indicates that the flash drought events identified in NEB lasted approximately 1–4 months.
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Figure 9. (a) Time series of the five-day moving average of the daily SMOS-based SSM values over
the entirety of NEB from 1 March to 28 December 2012. The dashed orange line and dashed red line
represent the 40th and 20th percentiles for soil moisture, respectively. The blue dot represents non-FD
(condition 1), and the green dot represents FD (condition 2). (b) The blue–orange vertical time series
of anomaly values represents the period of precipitation (P) and potential evapotranspiration (PET)
data from 2 May to 28 November 2012. The vertical dashed blue lines indicate the period between
the FD conditions.

By examining Figure 9, we see that the minimum SSM values were experienced in
August–October, reaching less than the 10th percentile. The synchronization of the P and
PET during the onset of the 2012 flash drought highlights the connection between the
onset of flash drought conditions indicated by the SSM and subsequent reductions in
precipitation, offering insights into the linked dynamics of the atmospheric and hydrologi-
cal responses.
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The analysis of FD events in 2012 within NEB reveals variations in the visual compar-
ative analysis between SMOS-based SSM retrievals and the CNN model simulation. The
employed criteria ensured robust identification of FDs by considering the multi-criterion
approach outlined in Section 3.4. Figure 10 shows the five-day averages of the SSM and
CNN from 1 March to 28 December 2012. Each map is represented by a mean grid-point
(pixel level), with red indicating instances where the SSM caused an FD, and green indi-
cating non-drought locations. Non-drought conditions fall within typical hydro-climatic
conditions and are comparable to easy-to-classify locations. Moreover, FDs have various
stages in their development, as shown in Figure 9a.
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Figure 10. Visual comparison of the performance of (a) the SMOS-based SMOS L3 SSM product and
(b) the S-CED model trained with SSM data for the 2012 FD events identified from 1 March to 28
December 2012. The red color represents the higher scores of the model trained with the SSM. In
contrast, green means lower values of the model. The Brazilian drylands boundary is displayed as
the blue line (left side), and northeastern Brazil and its states in blue lines (right side).

We provide a visual comparison of the performance of the S-CED model trained with
the SSM and SMOS L3 SSM product. First, in Figure 10, we present the northeastern Brazil
probabilistic drought detection map provided by the S-CED model during the 2012 FD
events. A more intense red color in the S-CED model corresponds to higher scores. This
visualization is used to identify the model’s distribution results of all the grids in the study
region compared to soil moisture conditions estimated from the SSM product. The red
areas in the maps delimit the areas of flash drought events identified for the region, and
a green colormap is used to represent the non-drought category. Thus, the probabilistic
scores of the S-CED model in non-drought category areas (the green color) are higher than
those obtained by the SSM product. The blue contours encompass the Brazilian drylands,
where the visual accuracy is higher between two maps. We also obtain clear signals of
potential non-droughts, highlighting the usefulness of the proposed model and the benefits
of the method for flash drought identification.
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FD events were identified in the growing season (February–May) from 2024 to 2050
within NEB using the CMIP6 predictions. Our focus was on capturing the FD events to
better comprehend their impact on the main rainy season of NEB. Figure 11 shows the
intensity (percentile/year) of FDs in the SSP5-8.5 scenario. The primary impact is primarily
concentrated in the São Francisco River Basin, within NEB’s semi-arid region. The entire
basin is engulfed in FD conditions, characterized by increased severity in its central region,
where the dominant FD4 and FD3 are observed. These categories indicate the severity
of FD conditions, which are close to the extreme drought category defined by the SPEI,
and pose significant challenges to water resources, agriculture, and ecosystems within
those areas. Additionally, the results revealed the FD intensity, showing that 28% of the
region was categorized as FD1. FD2 accounted for 23%, while FD3 and FD4 comprised
21% of the NEB-FD area. It indicates that NEB’s semi-arid region (i.e., the Caatinga biome)
will face significant challenges in terms of FD risk under future scenarios. Therefore,
understanding the interconnected nature of water management within the entire basin is
crucial for comprehensively assessing and addressing the impacts of severe flash droughts
in those areas.
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5. Discussion

We present a new method for FD identification using different types of input data.
An FD is a rapid drought in a short period caused by severe heat waves and rainfall
deficiency [4,25]. It is very difficult to accurately detect an FD [7,12]. The occurrence
of an FD is related to the complex interaction of soil moisture, evapotranspiration, and
vegetation. This research adopts the CNN architecture for FD identification to output data
from model simulations in northeastern Brazil (NEB) by integrating multiple sources of
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hydrometeorological data that represent the atmosphere (P and PET data), surface (NDVI
data), and subsurface (SSM data). We selected SSM data to train the proposed model using
a cross-correlation analysis and tried to avoid splitting the responses of multiple drought
types. The complete area was divided into data of the same size as the samples used for
training, and the model generated probabilistic scores for surface soil moisture data. These
scores were then used to reconstruct the entire region.

The method-based neural representation has been applied in northeastern Brazil, and
it can identify an FD after training with SSM data. The comparison against outcomes
from the CNN model implementation reveals a slight increase in its capability to properly
identify FD areas, which is more substantial when forcing the algorithm with surface soil
moisture. Examination of the CNN’s ability to effectively capture FD events revealed its
proficiency in identifying the development phase. The spatial mapping of the 2012 FD
showcased variations in intensity across NEB, with distinct patterns in different regions.
The southwest NEB region experiences frequent FDs, while the northeast encounters less
frequent events, and its semi-arid region faces severe FD conditions. Additionally, our study
underscores the lag effects of drought on different environmental factors, enriching our
comprehension of soil moisture’s response to drought. The delayed response emphasized
the complex relationship between meteorological and hydrological factors during FD
events, highlighting the challenge of predicting and mitigating the consequences of FDs on
the NEB drylands.

The NEB drought events of 2012 showed an evident accuracy in the spatial domain,
as shown in Figure 7. The soil moisture dataset from satellite observations is at the root
of it. We can see how the learned models obtain distinctive simulations for the registered
FD events. We also find clear signals of potential unregistered droughts, highlighting the
usefulness of the proposed model and the benefits of the method for drought detection.
CNNs offer high accuracy and efficacy in processing large datasets, though they may
lose some features due to pooling layers, slightly lowering the accuracy compared to the
random forest model [39].

We found that the model had enough representational capacity with two layers for
the encoder and two for the decoder. More layers decreased the performance results for
the validation data. Convolutional layers typically employ padding to extend the range
of the convolution operation at image borders and produce an output that is the same
size as the input [39,40]. Multiple values for the padding exist, with the zero-valued one
being the most common. However, padding introduces artificial distortions that do not
align with the actual behavior of hydro-climatological variables. As such, we refrained
from using padding in the convolutions and performed valid convolutions. Using valid
convolutions has the noticeable caveat that each convolution produces feature maps with
fewer elements.

Nevertheless, uncertainties persist. Comparing the CNN with the surface soil moisture
provided a holistic perspective on the interconnected dynamics during FD events. The
synchronization observed between the severity of FD conditions indicated by the CNN
and subsequent reductions in soil moisture highlighted the potential of our proposed
approaches to improve FD detection algorithms. The uncertainty and bias in the SSM data
are at the root of unregistered FD events. We acknowledge that validating the model under
categories of drought and non-drought settings is challenging since these problems also
affect the validation data. This can lead to poor estimation of generalization capabilities
and wrongly tuned models [41]. Since the number of drought and non-drought grids varies
considerably, we balanced their contribution by computing a correction factor for each
location based on [41].

By leveraging the CMIP6 (SSP5-8.5) as a predictive tool, our findings revealed that the
FD severity in the São Francisco River Basin within NEB will increase in the future due to
higher persistent dry conditions associated with global warming. In general, an expansion
of the area under FD events in the context of high-emission scenarios was observed the
middle and south areas of the basin from 2024 to 2050 (Figure 11). By examining Figure 11,
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we see that a wide range of minimum SPEI values are observed across NEB, spanning
from 0.99 to <−2.00 (see Table 1). These values indicated the severity of flash drought
conditions, with lower SPEI values representing more intense flash droughts (FD4). NEB’s
areas with minimum SPEI values higher than −2.00 are likely to experience more extreme
flash drought events, posing significant challenges to water resources, agriculture, and
ecosystems within those areas.

Nevertheless, as shown in Figure 11, the high dependence of the NEB rainy season
(February–May) on weather conditions with insufficient rainfall has raised concern about
the risk climate change poses to the entire regional economy [26]. These concerns are even
greater since climate change projections suggest that future flash droughts will be more
severe. In the context of the growing season, agricultural activities that are dependent on
consistent water availability face disruptions that can impact crop yields and overall food
production [23]. Changes in plant growth and transpiration due to climate change will
have a direct impact on watershed processes, potentially leading to an increased intensity
of drought conditions in the São Francisco River Basin in northeastern Brazil [26]. However,
because of the uncertainties in the independent climate models of CMIP6, multi-model
ensembles were typically used to minimize the impact of the models’ uncertainties in the
prediction results.

6. Conclusions

Flash drought (FD) detection and its prediction is of utmost importance in the present
scenario because of its increase due to climate change. Our research introduces a novel
methodology based on a deep learning model which, after training, can identify an FD. This
process embeds spatiotemporal FD-identifying thresholds into the process of generating
probabilistic scores from models that are trained with surface soil moisture data. In
conclusion, the goals of the study were met by introducing a 2D convolutional encoder–
decoder architecture and integrating multiple sources of hydro-climatic data to identify
the complexity of spatial FD events across northeastern Brazil. As flash droughts pose
challenges to accurate detection due to their complex spatial–temporal features, the insights
gained from this research provide a foundation for further studies.
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