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Abstract: A significant decrease in surface PM2.5 concentrations has been reported since the im-
plementation of the Air Pollution Prevention and Control Action Plan in 2013. In this study, we
use the GEOS-Chem model to simulate the trend in surface PM2.5 pollution in China from 2013 to
2017, as well as the relative contributions of emission reduction and meteorology. The simulated
decline rate averaged over monitoring sites in China is around −4.7 µg m−3 yr−1 in comparison
with the value of −6.4 µg m−3 yr−1 from observations. The model also captures the variations over
different regions, with r in the range of 0.85–0.95. Based on the sensitivity tests against emissions
and meteorology, the study finds that the decline in PM2.5 concentrations is mainly driven by the
reduction in anthropogenic emissions. The variation in open biomass burning (OBB) is not significant,
except in Northeast China (NEC) and Pearl River Delta (PRD), where the changes originated from
OBB are 40% and 30% of those associated with anthropogenic emission reductions. Changes in
meteorology from 2013 to 2017 led to significant increases in PM2.5 concentrations in most areas in
China, except in NEC. The increase attributed to meteorology, to a large extent, could be explained by
the significant decrease in surface wind speed (WS) and planetary boundary layer height (PBLH)
between 2013 and 2017, combined with their negative correlation with PM2.5. The decrease in PM2.5

concentrations in NEC, on the other hand, could be explained by the significant decrease in relative
humidity (RH) there combined with the positive correlation of RH with PM2.5, while the changes
in WS and PBLH there are relatively small compared with other areas. The change in meteorology,
therefore, hinders the improvement of air quality via emission controls in most of China. In Sichuan
Basin (SCB), the increase due to meteorology almost compensates for the decrease associated with
emission reduction, leading to the least change in PM2.5 concentrations, although the decrease due to
emission controls is the largest compared with other areas.

Keywords: PM2.5; emission reduction; meteorology; decline trend

1. Introduction

With accelerating urbanization and rapid population growth, China has been facing
serious air pollution during the past decades, with frequent haze events generally associated
with extremely high PM2.5 pollution levels. For instance, PM2.5 concentrations reached
311.2 µg m−3 in Beijing during the heavy haze cases in 2014 [1], three times more than
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the National Class 2 standards (75 µg m−3 for 24-h average). High PM2.5 concentrations
were also reported in Nanjing (up to 292 ± 70 µg m−3) [2] and Sichuan Basin (SCB)
(149 ± 72 µg m−3) [3] during the haze episodes in 2013. The high level of PM2.5 pollution
diminishes visibility [4], degrades air quality [5], and consequently results in adverse
health effects [4,6,7]. In addition, PM2.5 pollution can also change the earth–atmosphere
radiative balance by directly scattering/absorbing solar radiation or indirectly altering
cloud microphysical properties. The estimated radiative forcing of PM2.5 under clear sky
over China is −15.7 ± 9.0 W m−2 at the surface and 16.0 ± 9.2 W m−2 inside the atmospheric
column [8]. These values indicate the significant amount of solar radiation trapped inside
the atmosphere by aerosols, leading to the heating of the atmosphere. Additionally, the
value of direct radiative forcing in the atmosphere in China is much larger than the global
average value of 3.01 W m−2 [9].

In order to improve air quality and protect public health, the Chinese government
promulgated the Air Pollution Prevention and Control Action Plan in 2013 (http://www.
gov.cn/zwgk/2013-09/12/content_2486773.htm, accessed on 20 June 2024). Significant
decreases in PM2.5 concentrations have been observed since then. Zhang et al. estimated a
32% reduction in the national population-weighted annual mean PM2.5 concentrations from
2013 (61.8 µg m−3) to 2017 (42.0 µg m−3) [10]. Since the abatement measures target different
emission sources and pollutants, the emission reduction varies among regions and chemical
species, leading to significant variations in the magnitude of the PM2.5 decrease across
different regions in China. For example, studies reported that the Beijing–Tianjin–Hebei
(BTH) area witnessed the largest reduction of 39.10% in PM2.5 concentrations from 2013
to 2017, followed by the Yangtze River Delta (YRD) and Pearl River Delta (PRD) areas
with reductions of 33.97% and 26.37%, respectively [11,12]. The reduction is even more
significant in megacities during similar periods, e.g., 54% reduction in Wuhan city [13] and
46% in Hangzhou city [14].

In addition to emission control, meteorological conditions also play a key role in
affecting ambient air pollution. Stagnant air conditions associated with high relative
humidity generally favor the formation of haze events [15]. However, it is still controversial
whether the meteorological conditions during the past decade promote or hinder the
alleviation of air pollution associated with emission control measures. A study by Zhai
et al. [16] reported that changes in meteorology led to a decrease of 12% in PM2.5 from
2013 to 2018 averaged in China, with 14% decrease in BTH, 19% decrease in PRD, 27% in
SCB, and 25% decrease in Xi’an. Similarly, a study by Feng found that lower air stagnation
intensity during 2013–2018 contributed to the improved air quality in North China [17].
In contrast, a slight increase in PM2.5 concentrations from 2013 to 2017 was observed in
Ningxia and Shaanxi, which was attributed to the change in meteorological conditions [18].
Similarly, Li et al. reported an increase of 23% in PM2.5 concentrations in the Taklimakan
Desert Region due to prevailing wind directions that caused sand activities [14].

Additionally, meteorological conditions exert a crucial influence on the occurrence of
open biomass burning. The combination of drought and high temperatures significantly
increases the likelihood of fires [19,20]. For instance, a 1-degree increase in the monthly
average of maximum daily temperatures in the Brazilian Amazon leads to a 30% increase in
fire counts [21]. Similarly, an approximate 1-degree increase in statewide temperature and
a 30% decrease in precipitation led to an overall increase of 20% in the Fire Weather Index
during autumn in California [22]. However, few studies have investigated the change in
open biomass burning emissions and its impact on PM2.5 pollution in China.

In this study, we use the chemical transport model GEOS-Chem to simulate the
temporal and spatial variations of PM2.5 pollution from 2013 to 2017 in China, with a
special focus on regional differences. The aim of this study is to (1) comprehensively assess
the trends in PM2.5 pollution over different regions in China; (2) investigate the relative
impacts of emission reduction as well as interannual variation of open biomass burning
(OBB) and meteorology on the trends in PM2.5 pollutions in China; and (3) explore regional
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differences in the dominant factors contributing to the variations in PM2.5 pollution trends
in China.

2. Data and Model Description

We use the chemical transport model GEOS-Chem (version 12.0.0, http://www.geos-
chem.org, accessed on 20 June 2024) to simulate PM2.5 over China from 2013–2017. The
GEOS-Chem model is driven by the assimilated meteorological field GEOS-FP, of which me-
teorological data include the planetary boundary layer height (PBLH), temperature, wind
speed, precipitation, relative humidity (RH), etc. The simulation in our study is conducted
in a nested grid with a native horizontal resolution of 0.25◦ × 0.3125◦ (latitude × longitude)
and 47 vertical levels over East Asia (70◦–140◦ E, 15◦–55◦ N). The boundary conditions are
provided by a global simulation with a horizontal resolution of 2◦ × 2.5◦. The simulation
consists of a detailed representation of coupled O3-NOx-VOCs-aerosol chemistry [23,24]
and cloud heterogeneous chemistry [25]. Simulated aerosols include inorganic aerosols
(SO4

2−-NO3
−-NH4

+), organic aerosols, black carbon, sea salt, and dust [26–30].
Anthropogenic emissions used in the study are from the 2010 Asian mixed emissions

inventory, overwritten by the Multi-resolution Emission Inventory of China (MEIC) over
mainland China (http://www.meicmodel.org/, accessed on 20 June 2024) [31,32]. The latter
includes monthly emissions from industry, power, agriculture, residential, and transport
sectors for the years 2013–2017. Open biomass burning (OBB) emissions are from Quick
Fire Emissions Datasets (QFED-v2.4) [33] with a horizontal resolution of 0.1◦ × 0.1◦ and a
time resolution of 1 day. The biogenic volatile organic compound (BVOC) emissions are
from the Model of Emissions of Gases and Aerosols from Nature (MEGAN2.1) [34].

We conducted a series of simulation cases to investigate the relative contributions of
anthropogenic emissions, OBB, and meteorological conditions to the changes in surface
PM2.5 in China. The detailed model setup for each case is listed in Table 1. The Base case
is simulated from 2013 to 2017 with the emissions mentioned above, which represents
the variation of PM2.5 driven by the combined effects of the changes in emissions and
meteorological fields. The S1 case is only conducted for the year 2017, but with both
anthropogenic and OBB emissions for the year 2013 instead of 2017. The difference between
the Base case for the year 2013 and the S1 case could indicate the impact of changes in
meteorological parameters between 2013 and 2017, while the difference between the Base
case for the year 2017 and the S1 case represents the impact of the changes in anthropogenic
and OBB emissions from 2013 to 2017. The S2 case is similar to the S1 case but uses
anthropogenic emissions in 2017. The difference between the Base and the S2 case for the
year 2017 thus reflects the impact of the changes in OBB emissions from 2013 to 2017.

Table 1. GEOS-Chem model setup for different simulation cases.

Case Simulated Year Meteorological
Data

Emission Year
MEIC QFED

Base 2013–2017 2013–2017 2013–2017 2013–2017
S1 2017 2017 2013 2013
S2 2017 2017 2017 2013

The study focuses on the PM2.5 trends and associated driving factors in seven major
regions in China: Northeast China (NEC, 41◦–48◦ N & 123◦–128◦ E), BTH (37◦–41◦ N &
114◦–118◦ E), Guanzhong Plain (GZP, 33.5◦–35.5◦ N & 107.5◦–111◦ E), SCB (28.5◦–31.5◦ N
& 103.5◦–107◦ E), YRD (30◦–33◦ N & 118◦–122◦ E), Central China (CC, 27◦–31◦ N &
111◦–116◦ E), and PRD (21.5◦–24◦ N & 112◦–115.5◦ E) (areas are marked as black rect-
angles in Figure 1). In addition, we simply divide China into two regions: eastern China
(EC) with longitudes ≥ 103 ◦ and western China (WC) with longitudes < 103◦. The latter
mainly includes Xinjiang, Tibet, Qinghai, and parts of Inner Mongolia, Gansu, Sichuan,
and Yunnan.

http://www.geos-chem.org
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24–103 in YRD, 18–66 in PRD, 23–108 in CC, 13–27 in GZP, and 30–82 in NEP (also marked 
as dots in Figure 1). The ranges represent the increase in the number of sites from 2013 to 
2017. The observed PM2.5 is averaged over the model grid to match the simulated PM2.5. In 
order to focus on the synoptic-scale variability and to access the comparison between ob-
served and simulated PM2.5 time series, the model data are deseasonalized and detrended 
on the 0.25° × 0.3125° grid. The deseasonalized and detrended monthly PM2.5 data are ob-
tained by subtracting the 50-day moving average from the daily mean PM2.5 [16,35]. 
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Figure 1. The spatial distribution of observed and simulated annual PM2.5 mass concentrations in the
years 2013 and 2017. The correlation coefficients (r) and normalized mean bias (NMB) are inset. The
areas defined for NEC, BTH, GZP, YRD, SCB, CC, and PRD are also marked by rectangles. The black
vertical line represents the dividing line between eastern and western China.

In this study, we also use ground-level hourly data of PM2.5 published by the China
National Environmental Monitoring Center (CNEMC, https://quotsoft.net/air/, accessed
on 20 June 2024) to evaluate the model performance of the PM2.5 simulation. The network
was launched in 2013 as part of the Clean Air Action Plan and had about 280 sites at the
beginning, which gradually increased to more than 1600 sites across China in 2017. Only
sites with more than 90% valid data are included in the comparison. After all, data at
264–334 sites in China are used in the comparison, of which 15–57 are in BTH, 19–66 in
SCB, 24–103 in YRD, 18–66 in PRD, 23–108 in CC, 13–27 in GZP, and 30–82 in NEP (also
marked as dots in Figure 1). The ranges represent the increase in the number of sites from
2013 to 2017. The observed PM2.5 is averaged over the model grid to match the simulated
PM2.5. In order to focus on the synoptic-scale variability and to access the comparison
between observed and simulated PM2.5 time series, the model data are deseasonalized
and detrended on the 0.25◦ × 0.3125◦ grid. The deseasonalized and detrended monthly
PM2.5 data are obtained by subtracting the 50-day moving average from the daily mean
PM2.5 [16,35].

3. Results
3.1. Simulated Trends in PM2.5 Concentrations in Comparison with Observations

Figure 1 shows the spatial distributions of observed and simulated annual mean PM2.5
concentrations in 2013 and 2017. Both observations and simulated results show a sharp
contrast between eastern and western China, with high concentrations in eastern China,
especially over the BTH, SCB, GZP, and CC regions. This could be expected from the high
level of urbanization as well as the large number of industries and manufacturing facilities
in those areas. The correlation coefficient (r) between the observed and simulated PM2.5

is 0.70 for 2013 and 0.59 for 2017. The normalized mean bias (NMB = ∑i(Mi−Oi)
∑i Oi

× 100%,
where Mi and Oi represent simulated and observed PM2.5 concentrations, respectively, at
site i) [36] is negligible in 2013 at around −3% but slightly higher in 2017 with a value
of 18%. It should be noted that the changes in r and NMB between 2013 and 2017 are
mainly attributed to the increase in the number of monitoring sites from 2013 to 2017, while
the model performance is quite similar between the two years. Overall, the model well
simulates the PM2.5 concentrations in most of eastern China but underestimates those in
western China. The underestimation in western China is more obvious in 2017, as more
monitoring sites were available there in 2017. Likewise, due to the scarcity of monitoring
sites in western China in the early years, the contrast in PM2.5 concentrations between 2013
and 2017 is not available from observations. Therefore, we focus on the evaluation of the
model performance in eastern China, with special attention to the interannual variations.

Figure 2 shows the time series of observed and simulated monthly PM2.5 concentra-
tions averaged in China and the seven major regions. The observed data show obvious sea-
sonality in all regions, peaking in winter with monthly concentrations reaching more than

https://quotsoft.net/air/
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200 µg m−3 in January in the GZP area. Significant decline trends are also observed in all
regions, with decreasing rates ranging from −3.6 µg m−3 yr−1 in PRD to −9.0 µg m−3 yr−1

in BTH, and a mean value of −6.4 µg m−3 yr−1 averaged in China. The largest reduction
observed in the BTH area could be anticipated, as it is one of the target regions for reducing
air pollution in the 2013 Clean Air Action [37]. The minimal decline rate in PRD is partly
due to its relatively clean condition compared with the other six regions. The monthly
PM2.5 concentrations in PRD are, in general, below 80 µg m−3, while in other regions, they
are above 100 µg m−3. Indeed, the more recent plan released in July 2018 has removed PRD
from the list of target regions but added GZP [38]. While most regions show continuous
decrease rates, the time series in the GZP shows a sharp decrease from 2013 to 2015 but a
rebound from 2015 to 2017. Zhai et al. reported similar PM2.5 trends in Xi’an, a major city
in GZP, and attributed the rebound to the influence of meteorology [16]. However, due
to the sharp decrease during 2013–2015, the overall decline rate in GZP is still significant,
with a value of −7.5 µg m−3 yr−1, only after BTH and CC (−8.1 µg m−3 yr−1).
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Figure 2. Time series of observed and simulated monthly mean PM2.5 concentrations averaged in
China and its 7 major regions during 2013–2017. The correlation coefficients (r), normalized model
bias (NMB), and the decline rates in units of µg m−3 yr−1 for both observations (OBS) and model
results (SIM) are inset.

The model well reproduces the seasonal and interannual variability of the observa-
tions in all regions, with r ranging from 0.85 to 0.95. The NMB for the monthly PM2.5
concentrations is, in general, in the range of −11–16%, except in the CC and SCB areas,
where the values are 38% and 85%, respectively. The bias in the CC is mainly driven by
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overestimates in the years 2015–2017, when the model shows little year-to-year changes. In
contrast, observations show a sharp decrease during 2013–2016, followed by the 2016–2017
flattening in the same region. As a result, the decreasing trend simulated in the CC is
much lower than that from observations (−4.3 vs. −8.1 µg m−3 yr−1). The relatively large
overestimation in the SCB could be attributed to the complex terrain combined with the
relatively coarse model resolution, resulting in the poor model performance there [39,40].
On the other hand, the overestimate in the SCB seems to be uniformly distributed over time
and thus does not affect the accuracy of the simulated trend from 2013 to 2017, with a value
of −6.1 µg m−3 yr−1 that is similar to the observed trend of −6.2 µg m−3 yr−1. Simulated
trends of PM2.5 over GZP and NEC are also quite similar to those from observations (differ
by 2–10%). However, due to the overestimation of PM2.5 in the winter of 2016–2017, the
simulated decline rates in BTH, YRD, and PRD are 40–50% lower than the observations,
which could probably be attributed to the overestimation of emissions. When averaged
over China, the simulated decline rate is −4.7 µg m−3 yr−1, slightly lower than the ob-
served one (−6.4 µg m−3 yr−1). Overall, the model moderately captures the mean PM2.5
concentrations and the decreasing trends in PM2.5 concentrations as well as the regional
differences in China.

3.2. Factors Controlling the Trend of PM2.5 Pollution in China

Figures 3 and 4 show the differences in PM2.5 concentrations between 2013 and 2017
and the relative changes driven by emissions and meteorology. The annual mean concen-
tration in eastern China in 2013 was 44 ± 27 µg m−3 and decreased to 37 ± 23 µg m−3

in 2017, decreasing by 16%. The concentrations and the corresponding decrease rates
were smaller in western China (from 16 ± 15 µg m−3 to 13 ± 12 µg m−3), but the relative
change is similar (14%). The largest reduction is found in the BTH, with a decrease of
18 ± 7.9 µg m−3 (23%), followed by GZP (10 ± 3.0 µg m−3, 16%), YRD (9.3 ± 3.5 µg m−3,
16%), NEC (9.3 ± 3.0 µg m−3, 24%), CC (9.1 ± 4.7 µg m−3, 12%), PRD (4.4 ± 2.2 kg m−3,
12%), and SCB (3.6 ± 8.9 µg m−3, 3.6%).
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Figure 4. Changes in PM2.5 concentrations in the seven major regions (Tot) and the relative con-
tributions from meteorology as well as anthropogenic (Anth) and open biomass burning (OBB)
emissions.

3.2.1. The Role of Emission Variations

The sensitivity tests against the emissions, as well as meteorology, indicate that the
changes in PM2.5 concentrations between 2013 and 2017 are mainly driven by the emis-
sion reduction associated with the Clean Air Action in general. However, there is an
obvious contrast between eastern and western China. In the eastern region, the decrease
in PM2.5 concentrations is about 9.5 ± 8.6 µg m−3, which is even larger than the overall
change resulting from the combined influence of all emissions and meteorology (rela-
tive change of 21% vs. 16%). The largest reduction occurs in SCB, with a decrease of
35 ± 10 µg m−3 (35%), followed by CC (21 ± 5.1 µg m−3, 27%), BTH (20 ± 9.2 µg m−3,
26%), GZP (15 ± 5.3 µg m−3, 23%), YRD (14 ± 4.0 µg m−3, 23%), PRD (6.9 ± 2.5 µg m−3,
19%), and NEC (6.6 ± 2.2 µg m−3, 17%). The changes in all regions, except for NEC, are
higher than the magnitude of the total change. For the case of NEC, although the change
is relatively small, it still accounts for 70% of the total. Therefore, the reduction in anthro-
pogenic emission serves as a dominant factor driving the decrease in PM2.5 concentrations
in eastern China. In contrast, the decrease in PM2.5 concentrations attributed to anthro-
pogenic emission reduction in the western region is only 0.69 ± 1.4 µg m−3, which accounts
for approximately one-third of the total change.

This spatial variation is aligned with the spatial distribution of the reduction in an-
thropogenic emissions. Zheng et al. describe detailed changes in anthropogenic emissions
of SO2, NOx, NH3, BC, and OC, which are major components or precursors of PM2.5,
from different sectors over China from 2010 to 2017 [32]. National emissions of the five
pollutants were 25, 28, 11, 1.7, and 3.1Tg, respectively, in 2013, most of which were emitted
from eastern China. Since the emission control measures are most effective when targeting
power plants and industries, the largest cut is found in SO2 emissions from 2013 to 2017
(15 Tg, 59%), attributed to the elimination of small coal-fired industrial boilers, the switch
to lower-sulfur coals and other cleaner fuel, and the desulfurization of plant gases [32,41].
Previous studies have suggested that the SO2 emission controls are the major driver of the
decline trend in PM2.5 [16,42]. The total SO2 emission reduction in the seven regions is 5.8
Tg, accounting for 39% of the total national reduction. The largest reduction is presented in
CC (1.4 Tg) and BTH, followed by SCB, YRD, NEC, GZP, and PRD. This ranking is slightly
different from the PM2.5 decrease associated with emission controls. The reduction in NOx
emissions is the second largest (5.7 Tg, 21%), followed by OC (1.0 Tg, 32%) and BC (0.49 Tg,
28%). Similar to SO2, the reductions of NOx, OC, and BC in the seven regions account for
35%, 34%, and 37% of the total national reduction, respectively. The change in national NH3
emissions is quite small (0.37 Tg, 3.5%), as they are mainly associated with agricultural
activities.
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The variation in OBB emissions, on the other hand, has a relatively small influence
on PM2.5 concentrations between 2013 and 2017 in most areas, leading to an increase of
0.2 ± 1.6 µg m−3 in eastern China (0.45%) but a decrease of 0.02 ± 0.85 µg m−3 in western
China (0.13%). This is consistent with the changes in OBB emissions, the national total of
which only differs by 5.5–13% for SO2, NOx, NH3, BC, and OC. Also, the OBB emissions
generally decrease from 2013 to 2017, except in NEC and BTH, where PM2.5 concentrations
are increased by 2.5 ± 1.3 µg m−3 (6.4%) and 0.17 ± 0.22 µg m−3 (0.22%), respectively. The
largest decrease attributed to OBB emissions is in PRD, with a value of 2.1 ± 0.89 µg m−3

(5.7%), followed by CC (1.3 ± 0.55 µg m−3, 1.6%), SCB (0.57 ± 0.17 µg m−3, 0.58%), GZP
(0.44 ± 0.26 µg m−3, 0.69%), and YRD (0.19 ± 0.19 µg m−3, 0.32%). Overall, the variation in
total emissions resulted in decreases of 9.3 ± 9.4 µg m−3 and 0.71 ± 1.8 µg m−3, respectively,
in eastern and western China from 2013 to 2017. The changes are mainly driven by the
controls on anthropogenic emissions, while the influence of OBB is negligible in most
regions. There are only a few areas where the influence of OBB variation is significant. For
example, the amplitude of the change in PM2.5 due to OBB variations is about 40% and 30%
of that associated with anthropogenic emission reductions in NEC and PRD, respectively,
although the direction of the change is opposite in NEC.

3.2.2. The Role of Meteorology

As mentioned above, the change associated with emission reduction is larger than
the total change in PM2.5 concentrations, implying the negative effect of meteorology on
alleviating air pollution. The sensitivity test against meteorology shows that with the same
emissions (including anthropogenic and OBB emissions), the PM2.5 concentrations would
increase in most regions in China from 2013 to 2017, especially in SCB (32 ± 17 µg m−3,
32%) and CC (13 ± 4.3 µg m−3, 16%), whose amplitudes are about 91% and 62% of that asso-
ciated with emission reduction, respectively. The increase in SCB due to meteorology almost
compensates for the decrease attributed to emission reduction, resulting in the least change
in PM2.5 concentrations in this area compared with the other six regions. The increases in
other regions are also significant: 5.3 ± 5.2 µg m−3 (8.3%) for GZP, 5.0 ± 1.9 µg m−3 (8.3%)
for YRD, 4.6 ± 3.7 µg m−3 (12%) for PRD, and 1.9 ± 4.1 µg m−3 (2.5%) for BTH, accounting
for 35%, 36%, 67%, and 9.5% of the amplitude of the change attributed to the emission
reduction. However, meteorology also causes decreases in concentrations in northern
China. Especially, the decrease in NEC due to meteorology (5.2 ± 1.6 µg m−3, 13%) is close
to the one from emission reduction (6.6 ± 2.2 µg m−3).

To identify the main meteorological variables contributing to the changes in PM2.5
concentrations, Figure 5 shows the correlation of daily PM2.5 concentrations with the
individual meteorological variables. Six meteorological variables are considered in this
study, including surface wind speed (WS), RH, temperature (T), meridional wind velocity
at 850 hPa (V850), PBLH, and total surface precipitation flux (PRECTOT) from the GEOS-FP
reanalysis products, which are also used to drive the GEOS-Chem simulation. Previous
studies have shown that those meteorological variables have strong correlations with PM2.5,
varying with seasons and locations [16,43,44]. Therefore, the correlation analysis here is
conducted for each season in addition to the spatial distribution. We define winter as
January, February, and December; spring as March, April, and May; summer as June, July,
and August; and autumn as September, October, and November.

PM2.5 in most regions, especially in eastern China, is negatively correlated with WS,
as higher WS usually means more ventilation [45]. This negative correlation is the most
obvious in winter. For instance, r in BTH ranges from −0.65 to −0.10, in contrast to that in
summer (−0.41–0.053). However, a positive correlation between PM2.5 and WS also exists
in northern and southwestern China. The positive correlation in northern China, especially
in areas of the northwest, is mainly because higher WS induces more dust events [46,47].
On the other hand, the relationship in southwestern China is probably due to the influence
of long-range transport, as local emissions are quite small [48].
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Figure 5. The correlation coefficients (r) between PM2.5 concentrations and key meteorological
parameters in China during different seasons in 2013–2017. The meteorological parameters considered
here include surface wind speed (WS), relative humidity (RH), temperature (T), meridional wind
velocity at 850 hPa (V850), planetary boundary layer height (PBLH), and total surface precipitation
flux (PRECTOT).

RH is generally positively correlated with PM2.5, as it favors secondary formation
via aqueous-phase or heterogeneous processes [49]. The positive correlation is the most
significant in winter. The exception is found in northwestern China, where it is more
affected by dust pollution driven by high wind speeds and dry conditions [50]. There
is also a negative correlation between RH and PM2.5 in southern China, e.g., PRD. Zhai
et al. also observed this negative correlation and attributed it to the association of high RH
with precipitation and onshore wind [16]. The correlation of T with PM2.5 is positive in
northern China but negative in southern China. Tai et al. [43] suggested that the positive
correlation could reflect the covariation of T with other meteorological variables. The
negative correlation implies the volatilization of ammonium nitrate at high T, which may
also explain why the negative correlation is more significant in summer and autumn.

The spatial distribution of the correlation of V850 with PM2.5 is similar to that of
T but for different reasons. The same distribution is also reported by the study of Zhai
et al. [16]. V850 serves as a predictor of PM2.5 pollution in winter in northern China,
with northerly wind, namely negative V850, which stands for good ventilation [51]. The
negative correlation in southern China, especially in summer, could be explained by the
fact that southerly wind (positive V850) brings more clean marine air to the continent. The
correlation of PBLH with PM2.5 is, in general, negative in eastern China but positive in
western China. This could be explained by the fact that eastern China is more affected
by local emissions, where high PBLH represents good ventilation, while western China
is more affected by long-range transport. Su et al. also reported that the correlation
between PBLH and surface PM2.5 is nonlinear, with the magnitude, significance, and
even sign of correlation coefficients varying considerably depending on location, season,
and meteorological conditions [52]. The correlation between precipitation and PM2.5
concentrations is relatively weak, with r mostly in the range of −0.2–0.3. The negative
effect is only found in southern China during the spring and autumn seasons, which may
be explained by the scavenging of PM2.5 during precipitation [53,54]. In contrast, the
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positive effect is found in winter in most regions of China, which could be attributed to the
covariance with other meteorological variables, such as RH [16].

Figure 6 shows changes in the key meteorological variables from 2013 to 2017. The
variable with the largest change is PBLH, which decreased by 68 m (−37%) in the national
annual average, followed by WS (−0.23 m s−1, −15%). Combined with their negative
correlation with PM2.5 in eastern China, these changes would result in an increase in PM2.5
there. Among all seven regions, the decrease in PBLH and WS is the largest in SCB and CC,
respectively. This is consistent with the above results that the influence of meteorology is
the largest in these two areas, implying that WS and PBLH may be the key meteorological
variables driving the changes in PM2.5. On the other hand, T increases over most areas
but with a relatively small magnitude (0.22 K, 0.22%). This would lead to an increase in
northern China but a decrease in southern China. The change in RH varies largely with
location, with the most significant decrease in northeast China. Therefore, the decrease
in PM2.5 associated with meteorology in NEC, in contrast to the other areas, could be
explained by the combined effects of the relatively small decrease in WS and PBLH as
well as the significant decrease in RH there. The change in V850 is also relatively small.
Precipitation increases in most areas, especially in southwestern China. However, due to
the weak correlation with PM2.5, it may have little influence on the trends of PM2.5.
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4. Conclusions

We use GEOS-Chem to analyze the trends and associated driving factors of surface
PM2.5 pollution in China during 2013–2017. Simulated annual surface PM2.5 concentrations
and the decline rates over different regions in China are validated through comparison with
ground-based measurements by CNEMC. The observed PM2.5 concentrations demonstrate
an obvious decline trend from 2013 to 2017 in all regions, with a mean decline rate of
−6.4 µg m−3 yr−1 averaged over China. Among the seven major regions in China, BTH
has the largest decline rate of −9.0 µg m−3 yr−1, while PRD has the slowest decline rate of
−3.6 µg m−3 yr−1. The model generally captures the observed variations in all regions, with
r in the range of 0.85–0.95. Simulated decline trends are slightly lower than observations,
with a mean value of −4.7 µg m−3 yr−1 averaged in China. The model performance
regarding the PM2.5 decline trends is better in SCB, GZP, and NEC, with a bias of less than
10%. However, it underestimates the decline rates in BTH, CC, YRD, and PRD, with bias in
the range of 40–50%.

Based on the sensitivity tests, the results show that the decline trends in PM2.5 are
mainly driven by the reduction in anthropogenic emissions upon Clean Air Action:

(1) The largest reduction in PM2.5 due to emission controls is found in SCB (35 ± 10 µg m−3,
35%), followed by CC (21 ± 5.1 µg m−3, 27%), BTH (20 ± 9.2 µg m−3, 26%), GZP
(15 ± 5.3 µg m−3, 23%), YRD (14 ± 4.0 µg m−3, 23%), PRD (6.9 ± 2.5 µg m−3, 19%), and
NEC (6.6 ± 2.2 µg m−3, 17%).

(2) The changes in all regions, except for NEC, are larger than the total change in PM2.5,
implying an opposite effect from other factors, e.g., meteorology. Although the change
due to emission controls in NEC is less than the total change, it still accounts for 70%
of the total.

(3) While emission reduction controls the trends of PM2.5 in eastern China, its effect in
western China is small, around one-third of the total change.

By comparison, the influence due to OBB variation is relatively small in most of China,
except for NEC and PRD. The decrease due to OBB in PRD is about 30% of the decrease
attributed to emission controls. In contrast, OBB causes a significant increase in PM2.5 in
NEC, which is about 40% of the reduction achieved through emission controls.

Meteorology exerts a negative effect on air quality in most of China, except in NEC.
The largest increase in PM2.5 associated with meteorology occurs in SCB and CC, where
the magnitude of the change is about 91% and 62% of reductions from emission controls.
The increase in SCB due to meteorology almost compensates for the decrease by emission
controls, leading to the least change in PM2.5 there between 2013 and 2017 among all seven
regions. The increase from meteorology could be explained by the significant decrease
in WS and PBLH combined with their negative correlation with PM2.5 in most of China.
In contrast, the decrease in PM2.5 due to meteorology in NEC could be attributed to the
significant decrease in RH combined with its positive correlation with PM2.5, as well as the
relatively small change in WS and PBLH.
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