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Abstract: Flood prediction in hilly regions, characterized by rapid flow rates and high destructive
potential, remains a significant challenge. This study addresses this problem by introducing a
novel machine learning-based approach to enhance flood forecast accuracy and lead time in small
watersheds within hilly terrain. The study area encompasses small watersheds of approximately
600 km2. The proposed method analyzes spatiotemporal characteristics in rainfall dynamics to
identify historical rainfall–flood events that closely resemble current patterns, effectively “learning
from the past to predict the present”. The approach demonstrates notable precision, with an average
error of 8.33% for peak flow prediction, 14.27% for total volume prediction, and a lead time error
of just 1 h for peak occurrence. These results meet the stringent accuracy requirements for flood
forecasting, offering a targeted and effective solution for flood forecasting in challenging hilly terrains.
This innovative methodology deviates from conventional techniques by adopting a holistic view
of rainfall trends, representing a significant advancement in addressing the complexities of flood
prediction in these regions.

Keywords: artificial intelligence; manifold learning; spatial and temporal characteristics of rainfall;
flood risk management; flood forecasting; LSTM neural network

1. Introduction

In recent years, with global climate change, frequent occurrences of extreme rainfall
have triggered natural disasters such as basin flooding, urban waterlogging, and mountain-
ous flash floods. From 28 July to 1 August 2023, the Haihe River Basin in China experienced
a historically rare extreme rainstorm process, with a cumulative surface rainfall of 155.3 mm
in the basin and a total precipitation of 49.4 billion m3 [1]. On 20 July 2021, Zhengzhou City
in Henan Province, China, experienced a maximum hourly rainfall of 201.9 mm, which set
a new record for the maximum hourly rainfall intensity for a city in China at that time [2].
With the rapid development of socio-economic conditions, the losses caused by flood disas-
ters are also exponentially magnified. Flood disasters have become an undeniable issue,
emerging as a major natural disaster currently affecting social development and operations,
and they are increasingly prevalent.

Before the arrival of floods, accurately predicting flood occurrences, preemptively
assessing flood risks, and timely evacuation to prevent casualties are crucial aspects of
flood disaster risk management. Traditional flood forecasting methods primarily involve
watershed hydrological models, which, based on the physical characteristics of the underly-
ing surface, approximate the watershed’s water cycle process by incorporating infiltration
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curves, unit hydrographs, evapotranspiration formulas, and other elements. These mod-
els include the Sacramento model in the United States [3], the Tank model in Japan [4],
China’s Xin’anjiang model [5], and so on. In recent years, with technological advancements
and algorithm improvements, the application of distributed hydrological models in flood
forecasting has become increasingly widespread. The work of Abdelmounim [6] concerns
the distributed hydrological modeling of the Azzaba catchment area in Haut-Sebou, “Mo-
rocco”, considering the chronological sequence of phenomena and the influence of the
climatic and physical–hydrogeological parameters of the basin. Dawen Yang [7] applied a
GBHM (geomorphology-based distributed hydrological model) to the Chao Phraya Basin
in Thailand. Khan [8] developed a distributed hydrological model of the Teesta River
Basin using SWAT (Soil Water Assessment Tool) to assess the potential changes to the
water balance. Saavedra [9] used a distributed hydrological model to simulate hydrolog-
ical processes in the Agatsuma River Basin at hourly time steps. Guo [10] proposed a
DEM-based distributed hydrological model to simulate runoff processes throughout a wa-
tershed. Reed [11] used simulation results for 10 basins in Oklahoma and Arkansas, USA,
to improve distributed hydrologic model accuracy in small, interior basins, when forced
by operational quality radar-based precipitation data. Bashirgonbad [12] used the daily
precipitation data of 144 climatology stations in Iran to evaluate the seasonal and monthly
pattern of flood-causing precipitation considering seasonal and monthly distribution.

These methods have achieved significant success and application in engineering plan-
ning, design, and flood forecasting and scheduling. However, traditional hydrological
models generalize complex surface water processes, resulting in high prediction accuracy
but with numerous mathematical model parameters and inherent uncertainties. Addition-
ally, flash floods in hilly areas demand timely forecasts and warnings, imposing higher
requirements on the accuracy and timeliness of flood predictions.

In recent years, with the flourishing development of the water conservancy industry
and the dense network of monitoring stations, a significant amount of historical monitoring
data has been accumulated. People have gained a deeper understanding of the patterns of
rainfall and floods. In response to the demands of this new situation, effectively utilizing
and mining massive historical hydrological data to further enhance the accuracy and
timeliness of flood forecasting is a pressing issue that needs to be addressed.

With the continuous enrichment of historical hydrological data and the flourishing
development of data mining and artificial intelligence technologies, research on data-driven
machine learning techniques for flood forecasting has become a hot topic [13]. Hitokoto [14]
used ANN models for the Abashiri River catchment, and river stage prediction up to 6 h
showed very good accuracy. Luppichini [15] employed a Long Short-Term Memory (LSTM)
model in the Arno River in Italy, for flood warning forecasts, and explored the reliability
of this model. Do Hoai [16] presented an empirical–statistical downscaling method for
precipitation prediction which used a feed-forward multilayer perceptron neural network
for the Thu Bon River Basin, located in Central Vietnam. Akbari [17] proposed LSTM
and the precipitation estimation from remotely sensed information using artificial neural
networks for short-term quantitative precipitation forecasting. Amrul [18] proposed a
support vector machine regression model to forecast flood water levels in the downstream
area for different lead times in Kelantan River in Malaysia. Yuxuan Luo [19] proposed a
Spatiotemporal Hetero Graph-based Long Short-Term Memory (SHG-LSTM) model for
multi-step-ahead flood forecasting, and the SHG-LSTM model outperformed the LSTM
and S-GCN models, with an average reduction in the volume error (VE) of 6.5% and 11.1%.

These models are based on AI algorithms that utilize rainfall and flood data to forecast
hydrologic processes at the basin outlet. However, they rely on single-station or surface-
averaged rainfall processes, as well as flooding processes in the pretemporal sequence at
the outlet, as inputs. They also have a short flood prediction period.

Due to the complexity of spatial and temporal changes in rainfall in hilly areas, flood
forecasting in hilly areas is also the focus and difficulty of flood forecasting. Complex
mountainous regions remain a challenging task even for modern raingauge networks [20].
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However, for watershed floods, especially in hilly areas with small basins, they are directly
related to factors such as the precipitation and the spatial–temporal variations in rainfall
centers in the watershed. Without considering human factors, under similar conditions
of precipitation and spatial–temporal changes, the flooding processes at the surface also
exhibit a certain degree of similarity. Based on this principle, this paper introduces the
manifold learning algorithm from machine learning into the recognition of storm features
and flood forecasting, proposing a flood prediction method based on the manifold learning
algorithm. Manifold learning is a practical algorithm in the field of machine learning,
successfully applied in feature classification, extraction, and identification. This method
extracts spatiotemporal features from historical storm and flood processes to form a spa-
tiotemporal feature sample library. When forecasting rainfall occurs, by identifying the
spatiotemporal features of the current forecasted rainfall trend, the method rapidly matches
the most similar historical storm processes from the spatiotemporal feature sample library,
drawing analogies from the past to predict the entire flood corresponding to the current
forecasted rainfall trend. Using the Zhongping small basin in the Guangxi Zhuang Au-
tonomous Region as an example, the results indicate that this method can effectively predict
peak flow, flood volume, peak occurrence time, and flood shape, extending the flood lead
time. The forecasting results achieve first-class accuracy and meet the requirements of
precision and timeliness for flood forecasting.

For watershed flooding, especially in small watersheds in hilly areas, there is a direct
correlation with the amount of rainfall in the region and the spatial and temporal variability
in storm centers in the watersheds. Excluding anthropogenic factors, there is some similarity
in the flooding process in the subsurface under similar conditions of rainfall and spatial
and temporal variability. Based on this principle, this paper introduces the manifold
learning algorithm in machine learning into storm feature recognition and flood forecasting,
proposing a flood forecasting method. The manifold learning algorithm is a highly practical
tool in the field of machine learning, successfully applied in feature classification, extraction,
and recognition [21].

The method performs a spatiotemporal feature extraction of historical storm flooding
processes to form a library of spatiotemporal feature samples. When rainfall is forecasted to
occur, the spatial and temporal features of the current forecast rainfall trend are recognized.
This allows for the quick matching of the most similar historical rainstorm processes from
a sample library of spatial and temporal features, with historical flood processes identified
as the result of flood forecasting under the current forecast rainfall trend.

In this paper, the Zhongping sub-basin of the Guangxi Zhuang Autonomous Region of
China is taken as an example. The results show that the method can effectively predict the
flood peak flow, flood volume, peak present time, and the shape of flood change, extending
the flood forecast period. The prediction result reaches the accuracy of a Class A forecast,
meeting the requirements of flood forecast accuracy and timeliness. Unlike traditional flood
forecasting methods, this method can predict not only the total rainfall, maximum rainfall
intensity, and other rainfall characteristics but also the entire flood process, including flood
volume, peak flow, peak time, and flood shape changes. This can meet the accuracy and
timeliness requirements for flood forecasting in small mountainous basins. This study
effectively extends the flood forecast period, filling the gap in the timeliness of AI-based
flood forecasting technology.

2. Data and Methods
2.1. Data

The Zhongping River is located in the northeast of the Guangxi Zhuang Autonomous
Region, flowing from the south to the north, with a fan-shaped watershed. The area of the
basin is 596 km2, and the average slope drop is 5.04‰, with a river length of 63 km. For
mountainous rivers, the river’s slope is steeper, causing flooding to rise and fall quickly.
As shown in Figure 1, there are three rainfall stations: Wangtian, Dachang, and Liuxiang,
along with the Zhongping hydrological station. In this paper, data from these three rainfall
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stations and one hydrological station for the years 2002 to 2023 are used to build a flood
forecasting model.
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Figure 1. Research scope.

First, data cleaning and filtering are conducted. This study considers periods of
continuous rainfall less than 0.1 mm for more than 2 h as indicating no effective rainfall.
The specific process is as follows: If the 5 min rainfall at a single station exceeds 10 mm and
is an isolated data point, the record is considered unreasonable. If no rainfall is detected
within a 5 km × 5 km range from a given rainfall station, but the 5 min rainfall at that
station exceeds 10 mm, the recorded rainfall at that station is deemed unreasonable. In
such cases, the unreasonable records are replaced with interpolated values using rainfall
data collected from other stations within the 5 km × 5 km range. The interpolation method
used in this study is the Inverse Distance Squared Weighting (IDW) method. After cleaning
the rainfall data, 115 heavy rainfall events were identified from 2002 to 2023, forming a
rainfall–flood event sample library. Subsequently, the heavy rainfall–flood processes were
digitized and structured, constructing a high-dimensional array for these events in both
temporal and spatial dimensions. The algorithm was then applied to analyze the sample
library of high-dimensional arrays, with details as follows.

2.2. Methods

Using the manifold learning algorithm, specifically the Locally Linear Embedding
(LLE) algorithm, and the dynamic clustering algorithm, K-Means (KM), the dynamic
spatiotemporal distribution characteristics of various rainfall types are obtained [22]. Com-
parative learning and feature recognition are then applied to the corresponding flood
process characteristics. This allows for the identification of historical heavy rain–flood
processes that are the most similar to the current rainfall dynamic trends. Consequently, it
becomes possible to predict future flood processes under the current rainfall trends. The
specific technical workflow is illustrated in Figure 2.
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2.2.1. Construction of Spatiotemporal Distribution Dynamic Feature Matrix for Heavy
Rainfall and Floods

Due to significant differences in rainfall and flood volume among different events, this
study aims to facilitate the comparison of the dynamic features of rainfall and floods for
various rainfall processes. For this purpose, matrices representing the temporal and spatial
proportions of rainfall and floods are constructed for different durations of rainfall events.
These matrices, describing the spatiotemporal distribution characteristics of rainfall and
the morphological features of flood processes using the proportions of rainfall and flood
volumes, enable a mathematical description of the spatiotemporal dynamic development
features of multiple rainfall–flood events. A sample set Ω for heavy rain–flood processes is
established, as shown in Equations (1) and (2).

Ω = {P1, Pj, . . . PN} (1)

where Ω represents the historical heavy rainfall sample set, including N instances of heavy
rain, where j = 1, 2, 3. . . N, and N is the number of rainfall events.

Pj =



rj
11 rj

1t · · · rj
1m

rj
21 rj

2t . . . rj
2m

... rj
it

...
rj

s1 rj
s2 . . . rj

sm

qj
1 qj

t . . . qj
m


(2)

Pj represents the j-th storm–flood percentage matrix, where rj
it signifies the percentage

of rainfall at time t at the i-th rainfall station in the j-th storm–flood process concerning
the total rainfall at all stations at that specific time. qj

t denotes the flow at time t of the
watershed outlet cross-section during the j-th storm–flood process as a percentage of the
total for the entire flood process. Here, i = 1, 2, 3. . . s, where s is the number of rainfall
stations, and t = 1, 2, 3. . . m, where m is the number of time slots.

rj
it = Rj

it/∑m
t=1 Rj

it (3)
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qj
t = Qj

t/∑m
t=1 Qj

t (4)

In Equation (3), Rj
it represents the rainfall amount at the i-th rainfall station at time

t during the j-th rainfall event. In Equation (4), Qj
t represents the flow at the watershed

outlet cross-section at time t during the j-th rainfall event.

2.2.2. Dimensionality Reduction Analysis Based on LLE Algorithm

The high-dimensional data sample library describing the spatial and temporal distri-
bution characteristics of rainstorms represents a nonlinear high-dimensional data space.
Directly analyzing it involves a certain degree of uncertainty, requiring downsizing be-
fore analysis. Dimensionality reduction involves representing the original data with a
smaller number of “effective” features, extracting the main features without diminishing
the information contained in the original data.

Through dimensionality reduction, analysis efficiency can be significantly improved,
enhancing the accuracy of the results [23]. In this study, the Locally Linear Embedding (LLE)
algorithm is employed for dimensionality reduction analysis on this high-dimensional
data. The LLE algorithm, proposed by S.T. Roweis [24] et al., is an unsupervised dimen-
sionality reduction method for nonlinear data. It is a flow learning algorithm where local
linearity reflects global nonlinearity, preserving the topology of the original data in the
dimensionality-reduced data.

Since the LLE algorithm maintains the local linear characterization of both high- and
low-dimensional spaces, the classification results in the low-dimensional space are also
reasonable in the high-dimensional space. The LLE algorithm assumes that the data are
linear in a small range around them, expressing each sample point linearly in terms of
its neighboring data. This local linear relationship remains constant in both high- and
low-dimensional spaces. The LLE algorithm consists of three main parts:

1. In the high-dimensional space, find the K nearest samples to sample xi by using the
Euclidean distance measure.

2. For each sample xi, find the linear relationship of the K nearest neighbors in its
neighborhood, and obtain the linear relationship weight coefficient Wi

3. Assuming that the linear relationship weight coefficients Wi remain constant in the
K-neighborhood in both high- and low-dimensional spaces, reconstruct the sample
data in low dimensions using the weight coefficients Wi, xi ∈ RD → yi ∈ Rd , d ≪ D.

First, for N data points in the high-dimensional space {x1, x2, · · · xN} ∈ RD, calculate
the Euclidean distance of each sample point xi from all other samples, and then select the K
samples with the smallest distance {xi1, xi2, · · · xik}.

Each xi be expressed linearly in terms of the nearest K samples {xi1, xi2, · · · xik}

xi ≈ xi = ∑k
j=1 wijxj (5)

∑k
j=1 wij = 1 (6)

Using the mean square deviation as the loss function, the following can be obtained,
as shown in Equation (7):

f (W) = ∑N
i=1 ∥xi − ∑k

j=1 wijxj∥
2

2
(7)

The weighting factor W was solved for the minimum value of Equation (7).
The LLE algorithm assumes that high-dimensional samples are mapped into the

low-dimensional space, where the local linearity of the preserved samples in the high-
dimensional space is maintained, and the weight coefficients are kept unchanged. This
ensures that the points {x1, x2, · · · xN} ∈ RD in the high-dimensional space are mapped
into the low-dimensional space as {y1, y2, · · · yN} ∈ Rd(d ≪ D).
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2.2.3. Dynamic Cluster Analysis

The dimensionally reduced sample set Y ∈ Rd×N (where d is the low-dimensional
spatial dimension of the projection, and N is the number of samples) is categorized into r
subsets, with samples approximated within each subset and variations observed between
subsets. Features specific to each class are extracted by determining the center of mass for
each subset.

In this study, dynamic clustering methods are predominantly employed to classify
samples’ post-dimensionality reduction [25]. The fundamental concept of dynamic cluster
analysis involves iteratively finding a partitioning scheme of r clusters. This minimizes
the overall error when using the means of these r clusters to represent corresponding
sample categories. The algorithm starts by randomly selecting r sample points as the initial
clustering centers for r subsets. The distance between all samples and these initial centers
is calculated. Samples are then assigned to the subset with the closest center. This process
clusters all samples into subsets automatically based on distance, establishing the initial
classification categories and subsets.

The mean of all samples in each subset is calculated to obtain new generation clustering
centers. The distances of all samples from the new centers are computed, and the process is
repeated iteratively. The p th and p + 1 th generation clustering centers are compared, and
convergence is considered if the difference is within a specified range. This yields the final
subsets and clustering centers for each subset.

Although this clustering method converges rapidly and provides improved results,
its outcomes are significantly influenced by the selection of the initial clustering center.
Consequently, after iterative convergence, this paper constantly compares and analyzes to
assess the reasonability of the number of subsets and the initial subset center. Adjustments
are made accordingly, repeating the iterative clustering process until a reasonable number
of spatially distributed feature categories and clustering centers are determined. The
calculation steps are as follows:

1. Φ = {Y1, Y2, . . . YN} is the sample set analyzed, Yi represents the mapping points in
the low-dimensional space, M is the maximum number of iterations, r is the number of
subsets initially divided, and C represents the r subsets C = {C1, C2, · · · , Cr}. Initially,
Cj = ∅, j = 1, 2, . . . r.

2. Randomly select r samples from Φ as the initial r subsets of each center vector

Z0
j = {z1 , z2, . . . . . . zr

}
(0 is the initial value of the iteration number).

3. For n = 1, 2, . . .. . . N, calculate the distance dij =
∥∥Yi − zj

∥∥2
2 between sample Yi(Yi ∈ Φ)

and each clustering center Zj = {z1 , z2, . . . . . . zr
}

. If dij = min
{

dij
}

i = 1, 2, · · · N,
then Yi ∈ Cj. Update Cj = Cj ∪ Yi.

4. For j = 1, 2, . . . r, recalculate the center vector Z1
j =

1
Cj

∑Yi∈Cj
Yi for all sample points in Cj.

5. Keep repeating the iteration; if Zp+1
j ̸= Zp

j , j = 1, 2, . . . r, go back to step 3, and repeat

the iterative calculation. If Zp+1
j = Zp

j , j = 1, 2, . . . r, the operation ends.

6. Output the subsets C = {C1, C2, · · · , Cr}, the samples yCi
1 , yCi

2 , . . . . . . yCi
o belonging to

each subset, and the mean Zp+1
j = {z1 , z2, . . . . . . zr

}
.

2.2.4. Reconstruction of Spatiotemporal Feature Spaces

The subsets C = {C1, C2, · · · , Cr} and the means Zp+1
j of each subset obtained from

the aforementioned clustering method do not represent the sought-after feature space but
rather the feature space of the dataset after dimensionality reduction.

The LLE algorithm utilized in this paper assumes that the local linear relationship
between the high-dimensional space and the low-dimensional space remains unchanged.
In other words, the linear relationship between a sample xi in the high-dimensional space
and its neighboring samples is the same as the local linear relationship between its mapped
point yi in the low-dimensional space and its corresponding neighboring samples.
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The samples that belong to the same subset in that space are also similar in the
higher-dimensional space. Similarly, samples belonging to the same subset in the lower-
dimensional space are classified into the same subset in the higher-dimensional space.

This implies that the samples in each subset C = {C1, C2, · · · , Cr} in the lower-
dimensional space also correspondingly belong to the same subset B = {B1, B2, · · · , Br}
in the higher-dimensional space. The mean Sj = 1

Bj
∑

xi∈Bj

xi ∈ RD of each subset in the

high-dimensional space serves as the center of clustering for each category in the high-
dimensional space. In other words, it characterizes the dynamic spatiotemporal distribution
of the samples belonging to that category.

2.2.5. Spatiotemporal Dynamic Feature Recognition and Distinguishing of
Storm–Flood Events

For an upcoming rainstorm, the aforementioned algorithm is utilized to project into
the spatiotemporal feature space. In adherence to the principle of the smallest distance in
the feature space, samples with the smallest distance in the spatiotemporal feature subspace
of historical rainstorms are identified. This process aims to identify historical rainstorms
with the most similar spatiotemporal features to the current rainfall process. The flood
process corresponding to this identified historical storm sample is considered the flood
forecast result for the current forecast storm, as expressed in Equation (8):

min(d2D(Yt; Yi)) = min(∥Yt − Yi∥2) (8)

Here, Yt is the feature matrix of d samples to be recognized, and Yi is the feature matrix
of storm samples.

To further illustrate the comparison between the methodology presented in this paper
and the traditional neural network approach, a flood forecasting model based on the Long
Short-Term Memory (LSTM) neural network model is also constructed.

2.2.6. LSTM Neural Network Model

The Long Short-Term Memory (LSTM) neural network model is an enhanced version
of the Recurrent Neural Network (RNN) model, developed by Hochreiter and Schmidhu-
ber [26]. The enhancement introduced by LSTM to the RNN is primarily manifested in
the addition of a hidden state Ct to the RNN hidden layer. Additionally, three gates—the
forget gate, input gate, and output gate—are incorporated to address the issue of gradient
vanishing or gradient explosion in RNN models [27], as illustrated in Figure 3.
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The output of the oblivion gate is ft, as shown in Equation (9):

ft = σ
(

W f St−1 + U f xt + b f

)
(9)

In Equation (9), the output of the forget gate ft is determined by the sample xt of this
time series and the outputs of the previous time’s hidden layer St−1, where σ represents
the activation and sigmoid functions. As the output of the sigmoid function falls within the
range [0, 1], the output of the forgetting gate ft also lies within [0, 1]. This value indicates
the probability of forgetting the hidden cell state from the previous layer. W f and U f are
the matrix parameters of the model, and b f is the linear bias parameter.

The output of the input gate is depicted in Equations (10) and (11), where the activation
function in Equation (10) is a sigmoid function, and the activation function in Equation (11)
is a tanh function.

it = σ(WiSt−1 + Uixt + bi) (10)

at = tanh(WaSt−1 + Uaxt + ba) (11)

Wi, Ui, Wa, and Ua are linear parameters, and bi and ba are linear bias parameters.
Update the state of Ct from these two outputs

Ct = Ct−1 ⊙ ft + it ⊙ at (12)

where ⊙ is the Hadamard product.
The output of the output gate is shown in Equation (13), where the activation function

is a sigmoid function:
ot = σ(WoSt−1 + Uoxt + bo) (13)

Then, the output St of the implicit layer is obtained by the product of the output ot of
the output gate and Ct

St = ot ⊙ tanh(Ct) (14)

Then, the predicted output is shown in Equation (15), and the activation function is
the sigmoid function.

ŷt = σ(VSt + bt) (15)

The above W f , U f , b f , Wa, Ua, ba, Wi, Ui, bi, Wo, Uo, bo, V, bt are parameters, and simi-
lar to the standard RNN algorithm, the LSTM iteratively updates all the parameters by
gradient descent.

As depicted in Figure 4, the input factors for the flood forecasting model based on
the LSTM algorithm encompass the rainfall data from each rainfall station in the initial
three time series and the flow data from the outlet cross-section during the same time span.
The model’s output corresponds to the flow data for the subsequent time series, thereby
categorizing it as an LSTM model featuring multi-factor input and a single output.
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By utilizing the rainfall and flow data from each rainfall station in the preceding time
series, the model predicts the flow rate. Through continuous cycles of training, the objective
is to achieve a comprehensive forecast of the entire rainfall process and, consequently,
predict the flow rate at the outlet section.

2.2.7. Identification of Forecasted Floods

When identifying storm characteristics and matching flood processes, multiple in-
stances of storm–flood events can be considered. To achieve optimal forecasting perfor-
mance, this paper also establishes evaluation metrics for flood forecasting. The forecast
results are assessed, and the best flood process is selected as the outcome of the flood
forecast. The evaluation primarily focuses on peak flow intensity, forecast errors in flow
rates at each time step during the flood process, and the morphological aspects of the
flood process, comparing forecasted values with actual measurements. This encompasses
the following:

1. Peak flow error ∆Qm

∆Qm =

∣∣∣Qmmeasure−Qm f orecast

∣∣∣
Qmmeasure

× 100% (16)

2. Peak timing error ∆Tm

∆Tm =
∣∣∣Tmmeasure − Tm f orecast

∣∣∣ (17)

3. Root mean square error (RMSE) between flow rates at each time step

RMSE =

√
1
n∑n

i=1(yi − fi)
2 (18)

fi and yi denote the predicted and measured results of the model, respectively.
4. The coefficient of determination (R2) indicating the similarity between predicted and

simulated data curves.

R2 = 1 − ∑i(yi − fi)
2

∑i(yi − yi)
2 (19)

In this study, the coefficient of determination, R2, is employed to assess the degree of
similarity between the predicted and observed curves. A higher R2 value, approaching
1, indicates a better fit between these two curves, signifying closer alignment between
the model’s predictions and the actual observations. The formula for calculating R2 is
presented in Equation (19), where fi and yi denote the model’s predicted results and
observed measurements, respectively.

5. Comprehensive indicator

The identified multiple flood events have varying emphases. For instance, some
recognition results exhibit good agreement in peak flow rates, while the shape of the flood
process does not match well. On the other hand, some results demonstrate a good match in
the flood process, but there are significant differences in peak flow rates. To provide a more
objective evaluation, this paper defines a comprehensive indicator, Comindex, to assess the
final recognition results. The specific formulation is presented in Equation (20).

Comindex =
1

RMSE
+ R2 (20)

This indicator is inversely proportional to the RMSE and directly proportional to R2.
A larger value of the indicator indicates smaller errors in predicted flow rates at each time
step and a closer resemblance of the predicted flood process to the actual flood process.
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3. Results and Discussion
3.1. Result

Using the above algorithm, we illustrate the process with the example of the Zhong-
ping small watershed. According to the criteria mentioned above, a total of 115 intense
rainfall events were identified between 2002 and 2023, forming a sample library of rainfall–
flood events. Out of these, 110 events were used as training samples, and an additional
5 rainfall events were randomly selected as samples for identification.

Firstly, the spatiotemporal characteristics of historical intense rainfall events were
extracted, and cluster analysis was conducted based on these features. Building upon
this, the current dynamic rainfall process was identified, recognizing the most similar
historical intense rainfall event. The flood process corresponding to this identified intense
rainfall event was extracted as the forecast result for the ongoing rainfall. Evaluation
was carried out based on the peak flow error ∆Qm, peak timing error ∆Tm, root mean
square error between flow rates at each time step (RMSE), coefficient of determination for
curve similarity (R2), and a comprehensive indicator to assess the similarity between the
identified historical flood process and the sample for identification.

When identifying the sample for identification, the first one-quarter duration, first
one-third duration, and first one-half duration of the rainfall process were initially con-
sidered. These segments were projected onto the historical intense rainfall sample library
for identification, finding corresponding historical intense rainfall samples. Subsequently,
the identification was performed with the entire rainfall process to find the historical in-
tense rainfall sample corresponding to the complete identification sample. The experiment
showed that the results based on the first one-quarter duration differed from those based on
the complete rainfall process, while the results based on the first one-third and first one-half
durations were consistent with the results based on the complete process. In other words,
using the proposed method in this paper, when the ongoing rainfall completes one-third of
its total duration, it is possible to quickly predict the subsequent rainfall process, identify
the most similar historical intense rainfall event, and achieve the early recognition of flood
risk based on the identified rainfall and its corresponding flood process.

A map depicting the dynamic distribution of each storm and a comparison of the
flooding process is illustrated in Figures 5–9. In the five figures, panel A displays the
samples earmarked for identification, panel B showcases the historical samples identified
from the sample library, and panel C exhibits the predicted flooding results from both this
paper’s algorithm and the LSTM model. The total duration of rainfall was T hours, and
the specific storm identification results along with flood forecasting results are detailed
in Tables 1 and 2.

Table 1. Comparison table for identifying storm results.

Serial
Number

Group
Name Rainfall

Average
Surface

Rainfall (mm)
Errors (%)

Maximum
Rainfall at

Single Station
(mm)

Errors (%)

Maximum
Rainfall
Intensity

(mm)

Errors (%)

1
A1 23/05/2022 37

6.22
46

6.52
13

15.38B1 10/05/2022 39.3 43 11

2
A2 23/05/2015 45

9.62
55

16.36
19.5

23.08B2 02/04/2014 40.67 46 15

3
A3 11/06/2022 116

3.71
158

21.52
29

22.41B3 26/08/2019 120.3 124 35.5

4
A4 05/06/2014 32.33

3.19
42

14.29
27.5

21.82B4 10/08/2011 31.3 36 21.5

5
A5 20/06/2022 61.67

7.04
81

7.41
30

8.33B5 07/09/2015 57.33 75 27.5

Average error 5.95 13.22 18.21

Samples in A group are to be identified, samples in B group are identification results.
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Table 2. Comparison table of flooding processes by feature recognition.

Serial
Number

Group
Name Rainfall Q (m3/s) Errors (%) W (×105 m3) Errors (%) Time of Flood

Peaks (h) DT (h)

1 A1 23/05/2022 40.2 23.63 458.85 12.22 18 1B1 10/05/2022 49.7 514.92 17

2 A2 23/05/2015 72.7 9.22 653.94 18.11 24 1B2 02/04/2014 66 535.53 23

3 A3 11/06/2022 1140 2.63 1998.12 25.07 19 2B3 26/08/2019 1170 2498.98 21

4 A4 05/06/2014 60.9 1.64 414.32 3.36 14 0B4 10/08/2011 61.9 400.41 14

5 A5 20/06/2022 110 4.55 928.64 12.59 8 1B5 07/09/2015 105 811.76 9

Average error 8.33 14.27 1

Samples in A group are to be identified, samples in B group are identification results.Atmosphere 2024, 15, x FOR PEER REVIEW 12 of 20 
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Figure 6. The second identification case. (a) Rainfall processes to be identified (23 May 2015);
(b) identification results (2 April 2014); (c) flood forecast results.



Atmosphere 2024, 15, 820 14 of 19
Atmosphere 2024, 15, x FOR PEER REVIEW 14 of 20 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. The second identification case. (a) Rainfall processes to be identified (11 June 2022); (b) 

identification results (26 August 2019); (c) flood forecast results. 
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Figure 7. The second identification case. (a) Rainfall processes to be identified (11 June 2022);
(b) identification results (26 August 2019); (c) flood forecast results.
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Figure 8. The second identification case. (a) Rainfall processes to be identified (5 June 2014); (b) 

identification results (10 August 2011); (c) flood forecast results. 
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Figure 8. The second identification case. (a) Rainfall processes to be identified (5 June 2014); (b) iden-
tification results (10 August 2011); (c) flood forecast results.
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Figure 9. The second identification case. (a) Rainfall processes to be identified (20 June 2022); (b) 

identification results (7 September 2015); (c) flood forecast results. 
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Figure 9. The second identification case. (a) Rainfall processes to be identified (20 June 2022);
(b) identification results (7 September 2015); (c) flood forecast results.

3.2. Discussion

Based on the results of the third group, on 11 June 2022, about 2–3 h after the onset of
rainfall, a judgment can be made to issue a rain warning. This rainfall may reach 120 mm,
with a maximum rainfall at a single station possibly reaching 124 mm, a maximum 1 h
rainfall possibly reaching 35.5 mm, a maximum peak flow possibly reaching 1170 m3/s, and
a total flood volume possibly reaching 24.9898 million m3. The maximum peak flow may
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be reached 21 h after the onset of rainfall. This rainfall and flood risk information, which
differs from traditional flood forecasting methods, is crucial for flood risk management.

From the results in Figures 5–9 and Table 1, it can be observed that the spatial dis-
tribution pattern of the identified historical rainfalls is not exactly the same as that of the
rainfalls to be identified. After all, it is almost impossible for two rainfalls to be “exactly
the same”, and it is not possible to have two rainfalls with the same spatial distribution
pattern. However, the identified historical rainfall is quite consistent with the rainfall to
be identified in terms of indicators such as average rainfall, maximum rainfall at a single
station, maximum hourly rainfall, and the spatial and temporal characteristics of the storm
center during the rainfall process.

Using the algorithm proposed in this paper, the average error in identifying surface
rainfall is 19.04%, the average error in identifying the maximum rainfall at a single station
is 18.09%, and the average error of the maximum 1 h rainfall is 31.56% for the five identified
rainfall flooding events. As shown in Tables 2 and 3, a series of indicators proposed in
this paper can effectively discern the similarity of floods in terms of the shape of the
flood process, flood peak flow, etc., which can enhance the accuracy of the algorithm’s
flood forecasting.

Table 3. Comparison table of flooding processes by LSTM.

Serial
Number

Group
Name Rainfall Q (m3/s) Errors (%) W (×105 m3) Errors (%) Time of Flood

Peaks (h) ⊗T (h)

1
A1 23/05/2022 40.2 458.85 18
B12 - 66.56 65.57 452.95 1.29 13 5

2
A2 23/05/2015 72.7 653.94 24
B22 - 61.54 15.35 738.67 12.96 17 6

3
A3 11/06/2022 1140 1998.12 19
B32 - 957.75 15.99 1554.47 22.20 20 1

4
A4 05/06/2014 60.9 414.32 14
B42 - 65.49 7.54 356.53 13.95 17 3

5
A5 20/06/2022 110 928.64 8
B52 - 126.43 14.94 1344.51 44.78 11 3

Average error 23.88 19.04 3.6

Samples in A group are to be identified, samples in B group are flood forecast results.

The flood forecasting results using both the algorithm proposed in this paper and the
LSTM neural network model can provide a better prediction of floods. The algorithm proposed
in this paper, compared to the LSTM neural network model, has the following advantages:

1. Insufficient information required and long foresight period

Since the mechanisms of the algorithms are different, the algorithm proposed in this
paper is based on the identification of the spatiotemporal features of rainfall for forecasting
the entire flooding process, while the LSTM neural network model relies on the pretemporal
sequence of rainfall and flow data for rolling hour-by-hour forecasting. The two methods
require different datasets and forecast periods. The algorithm in this paper can forecast
the complete future flood process based only on the first one-quarter time of the rainfall
process, effectively extending the foresight period for floods. In contrast, LSTM models
require not only the rainfall process but also the flow process in the pretemporal sequence
to obtain the future 1 h flow, resulting in a shorter foresight period. The algorithm proposed
in this paper is more advantageous in small watersheds in hilly areas where information
acquisition is more challenging.

2. Higher forecasting accuracy for flood flow and peak time

The algorithm proposed in this paper has been demonstrated to accurately forecast
flooding for all five rainfall events. The average error of the predicted flood peak flow is
8.33%, significantly better than the 23.53% prediction error of the LSTM model. Regarding
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the peak present time, the average error of the algorithm proposed in this paper is only 1 h,
which is significantly better than the LSTM model’s prediction error of 3.6 h.

4. Conclusions

Based on machine learning algorithms, this paper proposes a novel flood forecasting
method that recognizes the dynamic spatiotemporal features of heavy rainfall in small
watersheds in hilly areas. A series of indicators are introduced to discriminate the similarity
of flooding processes, improving the accuracy of flood forecasting. The conclusions are
as follows:

1. The algorithm presented in this paper identifies historical rainstorms similar to current
rainstorms in terms of surface rainfall, hourly rainfall, and the spatial and temporal
dynamics of the rainstorms. Regarding flood forecasting, the average error in forecast-
ing flood peak flow and peak present time meets the requirements of flood forecasting
accuracy. The average error in flood peak flow forecast is 8.33%, and the peak present
time is 1 h, satisfying the needs of flood control and emergency response.

2. In comparison to the LSTM neural network model, the algorithm proposed in this
paper requires less information and has a longer foresight period to forecast the
entire flood process. Additionally, it provides significantly more accurate forecasts for
important indicators such as flood flow and peak present time.

3. Due to the limitations of available data, this study only uses the rainfall and flood
data of the past 20 years from the Zhongping small watershed as samples. As time
progresses, the quantity and quality of rainfall and flood samples will increasingly
improve, and with the gradual development and refinement of the technology, more
objective, reasonable, and accurate forecasting results can be achieved in the future.

4. The results indicate that the model in this article can provide a general framework for
modeling the spatial heterogeneity and correlation of hydro-meteorological variables
and achieve accurate and reliable flood forecasts, thereby enhancing the model’s
applicability in flood prevention platforms and systems.

This method only considers the spatiotemporal characteristics of rainfall; thus, the
Zhongping small watershed with minimal human impact was selected for demonstration.
In the future, more historical hydrological data from various types of small watersheds
in hilly areas can be collected, such as different watershed areas, underlying surface
topography, vegetation conditions, river channel morphology, and engineering scheduling
conditions. This will enrich the types of learning samples, enhance the intelligence and
applicability of the algorithm, and promote its use on a larger scale.
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