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Abstract: One of the key reasons for the success of invasive plants is the functional differences
between invasive plants and native plants. However, atmospheric nitrogen deposition may disrupt
the level of available nitrogen in soil and the functional differences between invasive plants and
native plants, which may alter the colonization of invasive plants. Thus, there is a pressing necessity
to examine the effects of atmospheric nitrogen deposition containing different nitrogen components
on the functional differences between invasive plants and native plants. However, the progress made
thus far in this field is not sufficiently detailed. This study aimed to elucidate the effects of artificially
simulated nitrogen deposition containing different nitrogen components (i.e., nitrate, ammonium,
urea, and mixed nitrogen) on the functional differences between the Asteraceae invasive plant Bidens
pilosa L. and the Asteraceae native plant Pterocypsela laciniata (Houtt.) Shih. The study was conducted
over a four-month period using a pot-competitive co-culture experiment. The growth performance of
P. laciniata, in particular with regard to the sunlight capture capacity (55.12% lower), plant supporting
capacity (45.92% lower), leaf photosynthetic area (51.24% lower), and plant growth competitiveness
(79.92% lower), may be significantly inhibited under co-cultivation condition in comparison to
monoculture condition. Bidens pilosa exhibited a more pronounced competitive advantage over
P. laciniata, particularly in terms of the sunlight capture capacity (129.43% higher), leaf photosynthetic
capacity (40.06% higher), and enzymatic defense capacity under stress to oxidative stress (956.44%
higher). The application of artificially simulated nitrogen deposition was found to facilitate the
growth performance of monocultural P. laciniata, particularly in terms of the sunlight capture capacity
and leaf photosynthetic area. Bidens pilosa exhibited a more pronounced competitive advantage (the
average value of the relative dominance index of B. pilosa is ≈ 0.8995) than P. laciniata under artificially
simulated nitrogen deposition containing different nitrogen components, especially when treated
with ammonium (the relative dominance index of B. pilosa is ≈ 0.9363) and mixed nitrogen (the
relative dominance index of B. pilosa is ≈ 0.9328). Consequently, atmospheric nitrogen deposition,
especially the increased relative proportion of ammonium in atmospheric nitrogen deposition, may
facilitate the colonization of B. pilosa via a stronger competitive advantage.

Keywords: ammonium; co-cultivation condition; functional difference; growth performance;
relative dominance
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1. Introduction

Invasive plants (IPs) can have a profound impact on environmental health and eco-
logical security. In particular, IPs can affect the structure and ecological function of native
ecosystems, which can result in the loss of native biodiversity [1–4]. At present, there are in
excess of 500 IPs distributed throughout China [5,6]. In particular, the Asteraceae family
has the highest species number of IPs at the family classification level, with a total of 92 IPs
in the family Asteraceae [5,6]. Thus, the investigation of the mechanisms underlying the
success of IPs, particularly those belonging to the Asteraceae family, represents a pivotal
area of research within the field of invasion ecology in recent years [7–9].

One of the key reasons for the success of IPs is the functional differences between
IPs and native plants. In particular, both IPs and native plants are subject to similar, if
not identical, selection pressures, exerted by the environment [10–13]. More importantly,
IPs generally exhibit higher values for the key functional traits, including plant height,
leaf area, photosynthetic capacity, nutrient use efficiency, and environmental tolerance, etc.
Consequently, they exhibit higher growth performance compared to native plants, even
under stressful environments [14–17]. It is therefore essential to illuminate the functional
differences and differences in growth performance-related functional traits between IPs
and native plants to identify the intrinsic mechanisms that determine whether an IP is
successfully invaded.

In general, nitrogen (N) is the main nutrient limiting plant growth in several terrestrial
ecosystems [18–21]. Therefore, the capacity of IPs to obtain N is a pivotal element in
determining their success in colonizing diverse habitats. More importantly, it is evident
that IPs exhibit a greater capacity for N acquisition compared to native plants, due to their
high availability and utilization of N [22–25]. In addition, the invasiveness and invasion
intensity of numerous IPs are significantly related to the level of available N in soil [26–29].
Nevertheless, atmospheric N deposition may significantly disrupt the level of available
N in soil and the interactions between IPs and native plants, which may influence the
colonization of IPs.

In recent years, there has been a notable increase in atmospheric N deposition, which
is largely attributed to the release of N-containing compositions into the atmosphere as a
consequence of the excessive combustion of fossil fuels, unreasonable and/or unsuitable
production and consumption of N-containing fertilizers, and the fast expansion of animal
husbandry and cultivation [30–33]. Presently, East Asia (predominantly China) has one of
the three maximum rates of atmospheric N deposition globally [31,34–36]. In addition, other
parts of the globe are also experiencing more serious atmospheric N deposition problems,
such as Europe and the United States [33,37–39]. Nevertheless, it has been demonstrated
that atmospheric N deposition may promote the invasiveness of several IPs, which in turn
leads to the acceleration of the colonization of IPs by increasing the level of available N in
soil [40–43]. However, atmospheric N deposition encompasses a multitude of different N
components, including nitrate (NO3-N), ammonium (NH4-N), urea (CO(NH2)2-N), etc.,
and that the relative proportions of these N components in atmospheric N deposition may
also be subject to change contingent on the alterations in energy policy and the composition
of energy sources employed [31,34–36]. Nevertheless, atmospheric N deposition containing
different N components can result in alterations in the level of available N in soil and the
interactions between IPs and native plants. Such variations may result in differences in the
functional differences between IPs and native plants. This could have a significant impact
on the colonization of IPs. Therefore, there is a compelling rationale for investigating the
effects of atmospheric N deposition containing different N components on the functional
differences between IPs and native plants, with the aim of elucidating the mechanisms that
facilitate the success of IPs in the context of atmospheric N deposition, particularly in the
context of different N components. Nevertheless, the current state of knowledge in this
field is not sufficiently detailed.

This study aimed to elucidate the effects of artificially simulated N deposition con-
taining different N components (including nitrate (NO3-N), ammonium (NH4-N), urea
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(CO(NH2)2-N), and mixed N with NO3-N:NH4-N:CO(NH2)2-N = 1:1:1) on the functional
differences between the Asteraceae IPs Bidens pilosa L. and the Asteraceae native plant
Pterocypsela laciniata (Houtt.) Shih. The study was conducted over a four-month period
using a pot-competitive co-culture experiment. Bidens pilosa is a member of the Asteraceae
family, and the species number of IPs belonging to this family that have been introduced
to China is higher than that of any other family at the family level [5,6]. Bidens pilosa is
native to tropical America and was introduced to China in ~1857 with imported crops
and vegetables. In particular, the species number of IPs sourced from America is higher
than that sourced from other countries and/or districts in China [5,6]. However, B. pilosa
has been identified as a significant threat to ecosystem structure and function, particularly
in terms of the loss of native biodiversity in China, and B. pilosa has been classified as a
harmful IP in China [2,44–46]. The two Asteraceae plants occupy similar habitats, including
agroecosystems, wasteland, and areas adjacent to the main road in China. Additionally,
the two Asteraceae plants also share similar lifestyles, with erect herbs being a common
feature. Furthermore, they exhibit comparable plant heights, reaching up to ≈2–3 m. More
importantly, the two Asteraceae plants frequently co-occur in the same habitats, such as
agroecosystems, wasteland, and areas adjacent to the main road, etc. Furthermore, the
distributions of the two Asteraceae plants in China are among the areas most affected by
atmospheric N deposition [31,34–36].

The following questions were proposed for this study: (1) Does B. pilosa exhibit higher
values of the key functional traits (e.g., plant height, leaf area, and leaf nitrogen and chloro-
phyll contents) compared to P. laciniata? (2) Does artificially simulated N deposition confer
a competitive advantage to B. pilosa over P. laciniata? (3) Which component of artificially
simulated N deposition exerts the greatest influence on the competitive advantage of
B. pilosa?

2. Materials and Methods
2.1. Experimental Design

Bidens pilosa (Figure S1) was designated as the target IP. Pterocypsela laciniata (Figure S2)
was proposed as the native species. Seeds of both plants were collected in October 2022 from
Zhenjiang, Jiangsu, China (32.15–32.16◦ N; 119.52–119.53◦ E). The selected ecosystems were
classified as wastelands. Bidens pilosa was the only invasive plant species in the sampled
communities. It is likely that the selected B. pilosa individuals were naturally dispersed
in the sampled communities. The native plant species in the sampled communities are
dominated by herbaceous plants, such as Setaria viridis (L.) P. Beauv., Echinochloa crus-galli
(L.) P. Beauv., Arthraxon hispidus (Trin.) Makino, and Artemisia argyi H. Lév. and Vaniot.
The geographical location of the sampling area is provided in Figure S3. Zhenjiang has
a humid subtropical monsoon climate, and in 2022 the average annual temperature in
Zhenjiang was ~17.1 ◦C, and an average monthly temperature reached a maximum of
~28.1 ◦C in July and a minimum of ~3.7 ◦C in January [47]. In 2022, the annual sunshine
hours in Zhenjiang were ~1909.0 h, and the monthly average sunshine hours reached a
maximum value of ~208.2 h in December, and a minimum value of ~125.9 h in August [47].
The annual precipitation in Zhenjiang in 2022 was ~1164.1 mm, and the average monthly
precipitation reached a maximum value of ~432.1 mm in July, and a minimum value of
~2.7 mm in December [47].

A pot competitive co-culture experiment was conducted to examine the growth of
B. pilosa and P. laciniata (Figure S4). Pasture yellow soil (manufacturer: Shenzhibei Sci. &
Technol. Co., Ltd., Baishan, China; pH value: ~6.3; soil electrical conductivity: ≤3 ms/cm;
organic content: ≥30%; ~3 kg/planting basin) was used as culture substrate. The reason for
using pasture yellow soil as a culture substrate was to minimize the potential for previous
introduction of IPs, as well as to reduce the risk of contamination from atmospheric N
deposition in natural soils. The seeds of both plants were placed in garden pots (top diam-
eter 25 cm; height 16.5 cm). Six uniformly sized, vigorous of B. pilosa and/or P. laciniata
seedlings were cultivated in each garden pot. The following treatments were employed:
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(1) six B. pilosa seedlings were planted in each garden pot, representing a monoculture of
B. pilosa; (2) three B. pilosa seedlings and three P. laciniata seedlings were planted in each
garden pot, representing a co-culture of B. pilosa and P. laciniata; (3) six P. laciniata seedlings
were planted in each garden pot, representing a monoculture of P. laciniata. All garden pots
were treated with artificially simulated N deposition, specifically (1) nitrate (potassium
nitrate (KNO3, AR, ≥99%; Aladdin®, Shanghai, China); inorganic nitrogen); (2) ammonium
(ammonium chloride (NH4Cl, GR, ≥99.8%; Sinopharm Chemical Reagent Co., Ltd., Shang-
hai, China); inorganic nitrogen); (3) urea (CO(NH2)2, BC, ≥99.5%; Sangon Biotech Co.,
Ltd., Shanghai, China; organic nitrogen); (4) mixed N (nitrate:ammonium:urea = 1:1:1), at
5 g N m−2 yr−1. Sterile distilled water was used as the control (0 g N L−1). The content of
artificially simulated N deposition, which contained different N components, replicated the
actual content of natural atmospheric N deposition (i.e., 5 g N m−2 yr−1) in the southern
Jiangsu, China [34,35,48,49]. The proportions of the three monomers in the N mixture were
designed to simulate the actual proportions of natural atmospheric N deposition (i.e., equal
mixing) in the southern Jiangsu, China [50–52]. The present study tested a range of plant-
ing type combinations (i.e., monocultural B. pilosa, co-cultivated B. pilosa and P. laciniata,
and monocultural P. laciniata) and N component combinations (i.e., nitrate, ammonium,
urea, and mixed N). Three replicates were arranged for each treatment. Seedlings of both
plants were cultivated in the greenhouse at Jiangsu University, Zhenjiang, Jiangsu, China
(32.2061◦ N, 119.5128◦ E) under natural light from April to July 2023 for ~4 months. The
design of this experiment is shown in Figure 1.
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Following ~4 months of pot competitive co-culture experimentation, all individuals of
B. pilosa and P. laciniata were collected to determine their functional indices, biochemical
constituents, and osmolytes indices of B. pilosa and P. laciniata, as well as the relative
dominance index of B. pilosa.

2.2. Determination of Plant Indices

The functional traits closely related to the growth performance of B. pilosa and P. lacini-
ata, including plant height, ground diameter, leaf dimensions, green leaf area, specific leaf
area, leaf chlorophyll and N contents, and biomass, were determined. The biomass stability
index of both plants and the relative dominance index of B. pilosa were also quantified.
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Similarly, biochemical constituents, and osmolytes indices of both plants were determined.
The ecological significance, measuring method, and the corresponding references of the
analyzed indices in this study are presented in Table S1.

2.3. Statistical Analysis

Shapiro–Wilk’s test and Bartlett’s test were employed to determine the extent of
departure from the normality and the homogeneity of the examined variances, respectively.
The statistical analysis of the differences in the values of the functional indices, biochemical
constituents, and osmolytes indices of B. pilosa and P. laciniata, as well as the relative
dominance index of B. pilosa among different treatments was conducted using the one-way
analysis of variance (ANOVA) with the Duncan’s test. Two-way ANOVA was employed to
evaluate the effects of plant species and N component on the functional indices, biochemical
constituents, and osmolytes indices of B. pilosa and P. laciniata. The effect size of each factor
was also evaluated using Partial Eta Squared (η2), which were calculated to be used in a
two-way ANOVA. p ≤ 0.05 was considered to represent a statistically significant difference.
Statistical analyses were conducted using IBM SPSS Statistics 26.0 (IBM, Inc., Armonk,
NY, USA).

3. Results and Discussion

Plant height, ground diameter, leaf width, green leaf area, and biomass of co-cultivated
P. laciniata were significantly lower than those of monocultural P. laciniata (p < 0.05;
Figures 2–4). Thus, the sunlight capture capacity, plant supporting capacity, leaf pho-
tosynthetic area, and plant growth competitiveness of co-cultivated P. laciniata were found
to be significantly lower than those of monocultural P. laciniata. Hence, the growth perfor-
mance of P. laciniata may be significantly reduced under co-cultivation conditions compared
to monoculture condition. The diminished growth performance of P. laciniata under co-
cultivation conditions may be attributed to the decreased availability of nutrients (especially
N) resulting from the intensified interspecific competition under co-cultivation conditions.
Our previous studies have also provided evidence to support this conclusion [53–56]. More
importantly, no significant differences were detected in the growth performance of B. pilosa
between the monoculture and co-cultivation conditions in the majority of cases (p > 0.05;
Figures 2–5). Accordingly, the competitive advantage of B. pilosa is not affected by culti-
vation type. Consequently, B. pilosa exhibited a more pronounced competitive advantage
compared to P. laciniata, especially under co-cultivation conditions.

The functional differences between IPs and native plants may be of critical impor-
tance in determining the success of IPs. More importantly, the results demonstrated that
IPs exhibited a more pronounced competitive advantage over native plants, which were
recruited by the higher values of key functional traits, such as plant height, leaf area, photo-
synthetic capacity, nutrient use efficiency, and environmental tolerance, etc. Consequently,
Ips demonstrated superior growth performance than native plants, even under stressful
environments [11,14–16]. Similarly, the plant height, leaf chlorophyll and N contents, and
plant peroxidase activity of B. pilosa were significantly higher than those of P. laciniata
under both monoculture and co-cultivation conditions (p < 0.05; Figures 2, 3 and 6). More
importantly, plant species significantly affected all functional indices (except ground di-
ameter) (p < 0.00001; Table S2). Thus, B. pilosa exhibited a more pronounced competitive
advantage in comparison to P. laciniata. The pronounced competitive advantage of B. pilosa
is likely attributable to its stronger sunlight capture capacity, leaf photosynthetic capacity,
and enzymatic defense capacity under stress to oxidative stress compared to P. laciniata.
However, leaf length of B. pilosa was found to be significantly shorter than that of P. laciniata
under both monoculture and co-cultivation conditions (p < 0.05; Figure 3). Thus, the leaf
photosynthetic area of B. pilosa was found to be significantly smaller than that of P. laciniata
under both monoculture and co-cultivation conditions. Accordingly, the leaf photosyn-
thetic area does not appear to be a determining factor in the strong competitive advantage
exhibited by B. pilosa. In other words, B. pilosa can obtain a strong competitive advantage
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mainly by means of partial key functional traits, e.g., stronger sunlight capture capacity, leaf
photosynthetic capacity, and enzymatic defense capacity under stress to oxidative stress.
The significantly functional differences between B. pilosa and P. laciniata permit B. pilosa to
gain a stronger competitive advantage and to occupy more ecological niches in the habitats,
which support the niche differentiation hypothesis (i.e., invasive and native species tend to
exhibit functional divergence, resulting in invasive species exhibiting distinct functional
traits compared to native species, thereby enabling the former to successfully invade new
habitats via the higher growth competitiveness) [57–60] and the Darwin’s naturalization hy-
pothesis (i.e., invasive species that are phylogenetically unrelated to native species should
be more successful, as they can exploit the unoccupied ecological niches in the invaded
communities) [61–64]. Accordingly, the “Master-of-some” strategy (i.e., invasive species
are more competitive in favorable habitat, such as the increased resource availability), in
contrast to the “Jack-of-all” strategy (i.e., invasive species are more competitive in stressful
habitats, such as the decreased resource availability) or “Jack and master” strategy (i.e.,
invasive species are more competitive in both unfavorable and favorable habitats) [65–67],
serves to enhance the competitive advantage of B. pilosa, especially under atmospheric
nitrogen deposition.

Atmosphere 2024, 15, x FOR PEER REVIEW 6 of 17 
 

 

 

 
Figure 2. Plant height and ground diameter of B. pilosa and P. laciniata under monoculture and co-
cultivation conditions, respectively ((a), plant height; (b), ground diameter). Bars (mean and 
standard error, n = 3) with different lowercase letters representing statistically significant differences 
(p ≤ 0.05). Abbreviations: PL, monocultural P. laciniata; NiPL, monocultural P. laciniata treated with 
nitrate; AmPL, monocultural P. laciniata treated with ammonium; UrPL, monocultural P. laciniata 
treated with urea; MixPL, monocultural P. laciniata treated with mixed N; BP, monocultural B. pilosa; 
NiBP, monocultural B. pilosa treated with nitrate; AmBP, monocultural B. pilosa treated with 
ammonium; UrBP, monocultural B. pilosa treated with urea; MixBP, monocultural B. pilosa treated 
with mixed N; PLBP(PL), co-cultivated P. laciniata; NiPLBP(PL), co-cultivated P. laciniata treated 
with nitrate; AmPLBP(PL), co-cultivated P. laciniata treated with ammonium; UrPLBP(PL), co-culti-
vated P. laciniata treated with urea; MixPLBP(PL), co-cultivated P. laciniata treated with mixed N; 
PLBP(BP), co-cultivated B. pilosa; NiPLBP(BP), co-cultivated B. pilosa treated with nitrate; Am-
PLBP(BP), co-cultivated B. pilosa treated with ammonium; UrPLBP(BP), co-cultivated B. pilosa 
treated with urea; Mix AmPLBP(BP), co-cultivated B. pilosa treated with mixed N. 

de

a-c b-d c-e
a-c a-c

a-c
a-c

ab

a-d

e de e

a-d

de

ab
a

a-c a-c a-c

0

20

40

60

80

100

120

PL N
iPL

A
m

PL

U
rPL

M
ixPL

BP N
iBP

A
m

BP

U
rBP

M
ixBP

PLBP (PL)

N
iPLBP (PL

）

A
m

PLBP (PL)

U
rPLBP (PL)

M
ixPLBP (PL)

PLBP (BP)

N
iPLBP (BP)

A
m

PLBP (BP)

U
rPLBP (BP)

M
ixPLBP (BP)
Pl

an
t h

ei
gh

t (
cm

)

(a)F = 5.448
p < 0.05

a-d
a

b-e

ab
a-c

d
c-e c-e c-e c-e

e

c-e

e

c-e
c-e c-e c-e

c-e
c-e c-e

0.0

0.2

0.4

0.6

0.8

1.0

PL N
iPL

A
m

PL

U
rPL

M
ixPL

BP N
iBP

A
m

BP

U
rBP

M
ixBP

PLBP (PL)

N
iPLBP (PL

）

A
m

PLBP (PL)

U
rPLBP (PL)

M
ixPLBP (PL)

PLBP (BP)

N
iPLBP (BP)

A
m

PLBP (BP)

U
rPLBP (BP)

M
ixPLBP (BP)

G
ro

un
d 

di
am

et
er

 (c
m

) (b)F = 2.796
p < 0.05

Figure 2. Plant height and ground diameter of B. pilosa and P. laciniata under monoculture and co-
cultivation conditions, respectively ((a), plant height; (b), ground diameter). Bars (mean and standard
error, n = 3) with different lowercase letters representing statistically significant differences (p ≤ 0.05).
Abbreviations: PL, monocultural P. laciniata; NiPL, monocultural P. laciniata treated with nitrate;
AmPL, monocultural P. laciniata treated with ammonium; UrPL, monocultural P. laciniata treated
with urea; MixPL, monocultural P. laciniata treated with mixed N; BP, monocultural B. pilosa; NiBP,
monocultural B. pilosa treated with nitrate; AmBP, monocultural B. pilosa treated with ammonium;



Atmosphere 2024, 15, 825 7 of 17

UrBP, monocultural B. pilosa treated with urea; MixBP, monocultural B. pilosa treated with mixed
N; PLBP(PL), co-cultivated P. laciniata; NiPLBP(PL), co-cultivated P. laciniata treated with nitrate;
AmPLBP(PL), co-cultivated P. laciniata treated with ammonium; UrPLBP(PL), co-cultivated P. lacini-
ata treated with urea; MixPLBP(PL), co-cultivated P. laciniata treated with mixed N; PLBP(BP),
co-cultivated B. pilosa; NiPLBP(BP), co-cultivated B. pilosa treated with nitrate; AmPLBP(BP), co-
cultivated B. pilosa treated with ammonium; UrPLBP(BP), co-cultivated B. pilosa treated with urea;
Mix AmPLBP(BP), co-cultivated B. pilosa treated with mixed N.

Atmosphere 2024, 15, x FOR PEER REVIEW 7 of 17 
 

 

 

 

 

ab ab

bc

a
ab

e

de de
de de

cd

a-c

cd
bc

ab

e de de de d

0
5

10
15
20
25
30
35

PL N
iPL

A
m

PL

U
rPL

M
ixPL

BP N
iBP

A
m

BP

U
rBP

M
ixBP

PLBP (PL)

N
iPLBP (PL

）

A
m

PLBP (PL)

U
rPLBP (PL)

M
ixPLBP (PL)

PLBP (BP)

N
iPLBP (BP)

A
m

PLBP (BP)

U
rPLBP (BP)

M
ixPLBP (BP)

Le
af

 le
ng

th
 (c

m
)

(a)F = 10.638
p < 0.05

b

a

b-e

a a

g
c-g c-g c-g

e-g c-g
b-f

d-g

bc b-d

fg d-g d-g c-g c-g

0

3

6

9

12

15

PL N
iPL

A
m

PL

U
rPL

M
ixPL

BP N
iBP

A
m

BP

U
rBP

M
ixBP

PLBP (PL)

N
iPLBP (PL

）

A
m

PLBP (PL)

U
rPLBP (PL)

M
ixPLBP (PL)

PLBP (BP)

N
iPLBP (BP)

A
m

PLBP (BP)

U
rPLBP (BP)

M
ixPLBP (BP)

Le
af

 w
id

th
 (c

m
)

(b)F = 12.775
p < 0.05

b

a

b-d

a a

e
c-e c-e de e

c-e

bc

c-e

bc
b

e de de de de

0

50

100

150

200

250

PL N
iPL

A
m

PL

U
rPL

M
ixPL

BP N
iBP

A
m

BP

U
rBP

M
ixBP

PLBP (PL)
N

iPLBP (PL
）

A
m

PLBP (PL)

U
rPLBP (PL)

M
ixPLBP (PL)

PLBP (BP)

N
iPLBP (BP)

A
m

PLBP (BP)

U
rPLBP (BP)

M
ixPLBP (BP)

G
re

en
 le

af
 a

re
a 

(c
m

2 )

(c)F = 13.753
p < 0.05

Figure 3. Cont.



Atmosphere 2024, 15, 825 8 of 17Atmosphere 2024, 15, x FOR PEER REVIEW 8 of 17 
 

 

 

 

 
Figure 3. Leaf functional traits of B. pilosa and P. laciniata under monoculture and co-cultivation 
conditions, respectively ((a), leaf length; (b), leaf width; (c), green leaf area, (d), specific leaf area, (e), 
leaf chlorophyll content; (f), leaf N content). Bars (mean and standard error, n = 3) with different 
lowercase letters representing statistically significant differences (p ≤ 0.05). Abbreviations have the 
same meanings as described in Figure 2. 

a-c a
a-c

ab

a-e
b-e b-e

c-e c-e de

a-c

b-e a-e a-d a-e
b-e b-e c-e

e de

0

300

600

900

1200

1500

PL N
iPL

A
m

PL

U
rPL

M
ixPL

BP N
iBP

A
m

BP

U
rBP

M
ixBP

PLBP (PL)

N
iPLB

P (PL
）

A
m

PLB
P (PL)

U
rPLBP (PL)

M
ixPLBP (PL)

PLBP (BP)

N
iPLBP (BP)

A
m

PLB
P (B

P)

U
rPLBP (B

P)

M
ixPLBP (BP)

Sp
ec

ifi
c 

le
af

 a
re

a 
(c

m
2 /g

) (d)F = 2.728
p < 0.05

c-e a-e

e
c-e

b-e

a
a-e

a
a-c

b-e c-e c-e c-e de c-e

ab a-c ab
a-d b-e

0

10

20

30

40

50

60

PL N
iPL

A
m

PL

U
rPL

M
ixPL

BP N
iBP

A
m

BP
U

rBP
M

ixBP

PLBP (PL)
N

iPLBP (PL
）

A
m

PLBP (PL)
U

rPLBP (PL)
M

ixPLBP (PL)

PLBP (BP)
N

iPLBP (BP)
A

m
PLBP (BP)

U
rPLBP (BP)

M
ixPLBP (BP)

Le
af

 ch
lo

ro
ph

yl
l

co
nt

en
t (

SP
A

D
)

(e)F = 3.240
p < 0.05

e-g
b-g

g
d-g c-g

ab
a-g

a
a-e

b-g d-g d-g d-g fg d-g

a-c a-d a-c
a-f b-g

0

1

2

3

4

5
PL N

iPL

A
m

PL

U
rPL

M
ixPL

BP N
iBP

A
m

BP

U
rBP

M
ixBP

PLBP (PL)

N
iPLBP (PL

）

A
m

PLBP (PL)

U
rPLBP (PL)

M
ixPLBP (PL)

PLBP (BP)

N
iPLBP (BP)

A
m

PLBP (BP)

U
rPLBP (BP)

M
ixPLBP (BP)

Le
af

 N
 co

nt
en

t (
m

g/
g) (f)F = 3.443

p < 0.05

Figure 3. Leaf functional traits of B. pilosa and P. laciniata under monoculture and co-cultivation
conditions, respectively ((a), leaf length; (b), leaf width; (c), green leaf area, (d), specific leaf area, (e),
leaf chlorophyll content; (f), leaf N content). Bars (mean and standard error, n = 3) with different
lowercase letters representing statistically significant differences (p ≤ 0.05). Abbreviations have the
same meanings as described in Figure 2.
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Figure 4. Biomass of B. pilosa and P. laciniata under monoculture and co-cultivation conditions,
respectively ((a), fresh weight; (b), dry weight). Bars (mean and standard error, n = 3) with different
lowercase letters representing statistically significant differences (p ≤ 0.05). Abbreviations have the
same meanings as described in Figure 2.
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Figure 5. The biomass stability index of B. pilosa and P. laciniata under monoculture and co-cultivation
conditions, respectively. Bars (mean and standard error, n = 3) with different lowercase letters
representing statistically significant differences (p ≤ 0.05). Abbreviations have the same meanings as
described in Figure 2.
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Figure 6. Biochemical constituents and osmolytes indices of B. pilosa and P. laciniata under monocul-
ture and co-cultivation conditions, respectively ((a), malondialdehyde content; (b), catalase activity;
(c), peroxidase activity; (d), superoxide dismutase activity). Bars (mean and standard error, n = 3)
with different lowercase letters represent statistically significant differences (p ≤ 0.05). Abbreviations
have the same meanings as described in Figure 2.
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As one of the essential nutrients required by plants, the application of exogenous N
generally results in the enhanced growth performance of plants, attributed to the increased
level of available N in soil. This is evidenced by numerous studies [68–71]. Similarly,
the application of artificially simulated N deposition led to a significant increase in plant
height, leaf width, and green leaf area of monocultural P. laciniata in the majority of cases
(p < 0.05; Figures 2 and 3). Thus, the application of artificially simulated N deposition may
be beneficial to the growth performance of monocultural P. laciniata, particularly in terms
of the sunlight capture capacity and leaf photosynthetic area.

It can be generally observed that N acquisition and utilization capacity is a crucial
factor in the success of IPs [22–25]. Hence, the application of exogenous N can facilitate the
invasiveness of IPs. In this study, the values of the relative dominance index of B. pilosa
(average value is ≈0.8995) was found to be obviously greater than 0.5 when exposed to
artificially simulated N deposition containing different N components, especially when
exposed to ammonium (the relative dominance index of B. pilosa is ≈0.9363) and mixed
nitrogen (the relative dominance index of B. pilosa is ≈0.9328) (Figure 7). Consequently,
B. pilosa demonstrated a more pronounced competitive advantage than P. laciniata under
the application of artificially simulated N deposition containing different N components,
especially when treated with ammonium and mixed N. Accordingly, artificially simulated
N deposition, regardless of N component, may be conducive to the success of P. laciniata,
especially under the deposition of ammonium and mixed N. This finding may be attributed
to the fact that B. pilosa exhibits a proclivity for ammonium uptake and utilization. In
particular, previous studies have demonstrated that other IPs also displays a preference for
ammonium uptake and utilization over other N components [42,72–74]. It is noteworthy
that the relative proportion of ammonium in atmospheric N deposition is increasing in
certain countries and regions, including China [75–77] and the United States of Amer-
ica [78–80]. Accordingly, the augmented relative proportion of ammonium in atmospheric
N deposition may further facilitate the colonization of B. pilosa via a more pronounced
competitive advantage.
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Figure 7. The relative dominance index of B. pilosa under co-cultivation condition. Bars (mean and
standard error, n = 3) with different lowercase letters represent statistically significant differences
(p ≤ 0.05). Abbreviations have the same meanings as described in Figure 2.

In essence, there is a pressing need to impede or even halt the colonization of B. pilosa,
especially under co-cultivation conditions and when exposed to atmospheric N deposition,
particularly when there is an increase in the relative proportion of ammonium in atmo-
spheric N deposition. The findings of this study also provide a substantial practical basis
for the environmental management of IPs, including effective early warning prevention
and control of IPs, especially when exposed to atmospheric N deposition. In particular,
it is of great importance to reduce the level of atmospheric N deposition, in particular
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the proportion of ammonium, via the alterations in energy policy and the composition
of energy sources employed. This is to minimize the competitive advantage of B. pilosa
under atmospheric N deposition, especially with an increase in the relative proportion of
ammonium in atmospheric N deposition.

4. Conclusions

In conclusion, this study aims to elucidate the functional differences between B. pilosa
and P. laciniata in the context of atmospheric N deposition containing different N com-
ponents. The principal findings are as follows: (1) The sunlight capture capacity, plant
supporting capacity, leaf photosynthetic area, and plant growth competitiveness of co-
cultivated P. laciniata were found to be significantly lower than those of monocultural
P. laciniata. (2) The sunlight capture capacity, leaf photosynthetic capacity, and enzymatic
defense capacity under stress to oxidative stress of B. pilosa were meaningfully greater than
those of P. laciniata under both monoculture and co-cultivation conditions. (3) The results of
the artificially simulated N deposition demonstrated a significant increase in plant height,
leaf width, and green leaf area of monocultural P. laciniata in the majority of cases. (4) The
values of the relative dominance index of B. pilosa were found to be significantly greater
than 0.5 in response to artificially simulated N deposition containing different N compo-
nents, especially when exposed to ammonium and mixed N. In summary, atmospheric N
deposition, especially the increased relative proportion of ammonium in atmospheric N
deposition, may facilitate the colonization of B. pilosa via a stronger competitive advantage.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos15070825/s1, Table S1 [81–96]: The ecological significances,
determination methods, and the corresponding references for the determined indices; Table S2:
Two-way ANOVA on the effects of plant species and nitrogen component on the functional indices,
biochemical constituents, and osmolytes indices of B. pilosa and P. laciniata. p values equal to or less
than 0.05 are shown in bold; Figure S1: Bidens pilosa L.; Figure S2: Pterocypsela laciniata (Houtt.) Shih;
Figure S3: The geographical location (Zhenjiang, Jiangsu, China) of the sampling area (square with
red) in this study (Map number: GS(2022)4317; produced by the Ministry of Natural Resources of
China; http://bzdt.ch.mnr.gov.cn/ (accessed on 6 June 2024)); Figure S4: The picture of some of the
garden pots used in this study.
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Abbreviations

IPs invasive plants
N nitrogen
PL monocultural P. laciniata
NiPL monocultural P. laciniata treated with nitrate
AmPL monocultural P. laciniata treated with ammonium
UrPL monocultural P. laciniata treated with urea
MixPL monocultural P. laciniata treated with mixed N
BP monocultural B. pilosa
NiBP monocultural B. pilosa treated with nitrate
AmBP monocultural B. pilosa treated with ammonium
UrBP monocultural B. pilosa treated with urea
MixBP monocultural B. pilosa treated with mixed N
PLBP(PL) co-cultivated P. laciniata
NiPLBP(PL) co-cultivated P. laciniata treated with nitrate
AmPLBP(PL) co-cultivated P. laciniata treated with ammonium
UrPLBP(PL) co-cultivated P. laciniata treated with urea
MixPLBP(PL) co-cultivated P. laciniata treated with mixed N
PLBP(BP) co-cultivated B. pilosa
NiPLBP(BP) co-cultivated B. pilosa treated with nitrate
AmPLBP(BP) co-cultivated B. pilosa treated with ammonium
UrPLBP(BP) co-cultivated B. pilosa treated with urea
Mix AmPLBP(BP) co-cultivated B. pilosa treated with mixed N
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