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Abstract: The 1960s was an exciting era for atmospheric predictability research: a finite predictability
of the atmosphere was uncovered using Lorenz’s models and the well-acknowledged predictability
limit of two weeks was estimated using a general circulation model (GCM). Here, we delve into details
regarding how a correlation between the two-week predictability limit and a doubling time of five days
was established, recognize Lorenz’s pioneering work, and suggest non-impossibility for predictability
beyond two weeks. We reevaluate the outcomes of three different approaches—dynamical, empirical,
and dynamical-empirical—presented in Lorenz’s and Charney et al.’s papers from the 1960s. Using the
intrinsic characteristics of the irregular solutions found in Lorenz’s studies and the dynamical approach,
a doubling time of five days was estimated using the Mintz–Arakawa model and extrapolated to
propose a predictability limit of approximately two weeks. This limit is now termed “Predictability
Limit Hypothesis”, drawing a parallel to Moore’s Law, to recognize the combined direct and indirect
influences of Lorenz, Mintz, and Arakawa under Charney’s leadership. The concept serves as a bridge
between the hypothetical predictability limit and practical model capabilities, suggesting that long-range
simulations are not entirely constrained by the two-week predictability hypothesis. These clarifications
provide further support to the exploration of extended-range predictions using both partial differential
equation (PDE)-physics-based and Artificial Intelligence (AI)—powered approaches.

Keywords: predictability limit; chaos; Lorenz models; doubling time; extended-range predictions;
general circulation model

1. Introduction

Although a predictability limit of approximately two weeks for weather is widely
acknowledged, there is ongoing exploration regarding the feasibility of subseasonal-to-
seasonal (S2S) predictions (e.g., National Academies, 2020 [1]), encompassing timeframes
from two weeks to several months using both partial differential equation (PDE)-physics-
based and AI-powered approaches. The significance of S2S predictions is widely recognized
in various domains, including in agriculture, water resources, emergency management, en-
ergy, aviation, and maritime planning (National Research Council [2]; National Academies,
2016 [3]). Nevertheless, the feasibility of S2S predictions may require better understanding
of the meaning of the conventional two-week predictability limit.

Since the 1960s, we have observed the advance of both numerical models and data
assimilation systems that collectively produce promising, long-range simulations over
two weeks (e.g., Sonechkin et al. 1995; Mukougawa et al., 2005; Shen et al., 2010, 2011;
Shen 2019b; Krishnamurthy and Sharma 2017; Krishnamurthy 2019; Judt 2018, 2020 [4–12]).
Such advances create a gap between the well-acknowledged two-week predictability limit
and the practical capabilities of models, necessitating a reevaluation of the two-week limit.
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Our study is not focused on establishing a theoretical foundation for S2S predictions.
Instead, we reassess the genesis of the two-week limit and clarify some misunderstanding
regarding the limit by revisiting predictability studies conducted during the early phase
of the Global Atmospheric Research Program (GARP) in the 1960s. We then present
further insights to mitigate the constraints imposed on S2S predictions by this limit. The
forthcoming discussion will encompass findings indicating that the determination of
the two-week limit lacked robustness during the 1960s and that the definition of the
predictability limit has since evolved.

To provide a foundation for subsequent discussions, we first provide Lorenz’s updated
perspective on predictability limits from the 1990s and 2000s by summarizing the recent
study of Shen et al. (2023b [13]) who reviewed relevant literature, including Lorenz
(1993) [14] and Reeves (2014) [15]. Lorenz’s updated perspective, as outlined in Table 1,
indicates that while the concept of finite predictability was suggested by Lorenz’s models,
the two-week predictability limit was established during the 1960s using a doubling time
of five days based on a General Circulation Model (GCM). A doubling time of five days
implies that small errors typically take approximately five days to double. While the
findings in Table 1 that are supported by our recent papers are summarized below, the new
insights of the Lorenz 1963 and 1969 models are presented in Section 2.

Table 1. Important concepts for predictability limits.

Contents References

Lorenz’s View

A. The Lorenz 1963 model qualitatively revealed the essence of finite
predictability within a chaotic system, such as the atmosphere.
However, the Lorenz 1963 model did not determine a precise limit for
atmospheric predictability.

B. During the 1960s, using real-world models, the two-week predictability
limit was originally estimated based on a doubling time of five days.
Since then, this finding has been documented in Charney et al. (1966)
[16] and has become a consensus.

Shen et al. (2023b,
2022a [13,17])

Predictability Limit
Hypothesis

• Much like Moore’s Law in the realm of computing, the Predictability
Limit Hypothesis, specifically the two-week predictability limit, is an
empirical association based on practical modeling and idealized chaotic
modeling from the 1960s. It stands as a limited set of observed findings
and as a reasonable extrapolation from early modeling results in the
1960s, rather than constituting fundamental physics.

Concluding remarks in
this study

Although a doubling time was used to estimate the predictability limit during the
1960s and in subsequent years, other time scales have been applied for predictability
estimates using real-world and/or theoretical models. As summarized in Table 2, various
definitions of predictability include use of the saturation time, Lyaponov exponent, and
anomaly correlation coefficients (ACC). The doubling and saturation times are illustrated
in the Supplementary Materials.

Table 2. Various time scales and concepts for predictability estimates.

Term Remarks

Doubling time The doubling time (or e-folding time) represents the time for a
specific mode with a growth rate to increase by a factor of 2 (or e). Charney et al. (1966) [16]

Saturation time
Saturation time is defined as the time for the perturbation

(e.g., root-mean square error) to become saturated (i.e., reaching a
time-independent constant).

Lorenz (1969d) [18]

Turnover time ( τk)

Turnover time represents the time for a parcel with velocity vk to
move a distance of 1/k, with vk being the velocity associated with

wavenumber k. The turnover time is further used to indicate the time
that an error at one wavenumber spreads to another wavenumber, a

movement within the spectral space.

Vallis (2006) [19];
Lloveras et al. (2022) [20]
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Table 2. Cont.

Term Remarks

Lyapunov exponent
A global Lyapunov exponent represents the long-term average of

local growth rates that vary with time. Its reciprocal indicates the time
scale for error growth.

Shen et al. (2022a) [17]

Anomaly correlation
coefficients (ACC)

The maximum time duration associated ACC when 0.6 is defined as
the predictability limit.

This definition has been used by
operational centers for several decades

(e.g., Owens and Hewson 2018 [21];
Lin, Shen et al., 2003 [22]).

In regard to the use of a global positive Lyapunov exponent for predictability assess-
ments, as discussed by Shen et al. (2022a) [17] and other researchers, a global Lyapunov
exponent is determined by the long-time average of time-varying local Lyapunov exponents
(i.e., time-varying local growth rates). As a result, while the existence of a global Lyapunov
exponent may imply finite predictability in chaotic systems, its averaged characteristics may
not effectively establish an upper limit on predictability (e.g., Lorenz 1996, 2006 [23,24]).
See a concise mathematical review in Shen (2024) [25].

In comparison, the current approach for predictability estimates of the real-world
models is to use anomaly correlation coefficients (ACC, e.g., Pegion et al., 2019 [26];
Lin et al., 2003 [22]), which are widely used to valuate AI-powered models as discussed in
Section 3.2. Based on the ECMWF Forecast User Guide (Owens and Hewson 2018 [21]),
ACC represents “the spatial correlation between a forecast anomaly relative to climatology, and
a verifying analysis anomaly relative to climatology.” When the ACC value dips below 0.6,
the result suggests that the positioning of synoptic scale features becomes irrelevant for
forecasting. Thus, predictability determined by doubling time during the 1960s and by the
ACC in recent years should be compared with caution.

The above suggests that the two-week limit determined by a doubling time of 5 days
should not be perceived as a definitive ceiling for atmospheric predictability. Such a limit
does not inherently establish an upper threshold on the limit estimated by the ACC. To
reinforce this idea and to achieve our goals, we (1) provide a historical account of how a
doubling time of five days was determined and extrapolate to estimate a predictability
limit of two weeks, and (2) propose a concept that acknowledges the direct contribution of
the GCM, as well as the indirect influence of Lorenz’s chaotic models, in determining the
doubling time and, consequently, the predictability limit. Our work is partly intended as a
scientific history for recognizing Lorenz’s pioneering work and as the additional support
for exploring atmospheric predictability beyond two weeks using both PDE-physics-based
and AI-powered systems.

2. A Review of the Studies in the 1960s for New Insights

During the 1960s, Lorenz published significant papers concerning predictability limits
within the atmosphere. Since then, his notable work Lorenz (1963) [27] has garnered substantial
citations across various fields (Gleick, 1987 [28]; Stewart (2002) [29]; Lorenz, 1993 [14]) and his
study Lorenz (1969d) [18] has been frequently cited in Meteorology. In fact, in a single year,
1969, Lorenz published six papers (Lorenz 1969a, b, c, d e, f [18,30–34]). Five of these papers
specifically discussed estimations of predictability limits. These five studies from 1969, together
with relevant works by Lorenz himself, and other colleagues (such as Charney et al., 1966 [16];
GARP 1969 [35]; Smagorinsky 1969 [36]; Lorenz 1970, 1972, 1984a, 1985 [37–40], 1993 [14]),
are revisited and summarized to reiterate the fact that while the 1963 and 1969 models
suggest finite predictability, the two-week limit was suggested based on a doubling time of
5 days by Charney et al. (1966) [16].

Below, we reviewed a comprehensive final report by Lorenz for the Air Force Research
Laboratories, Office of Aerospace Research (Lorenz 1969a [30], hereafter referred to as L69a),
as well as a section on the “theoretical limits of predictability” in Charney et al. (1966) [16].
Our discussions begin with a layout of the L69a report, which consists of the following
four parts:



Atmosphere 2024, 15, 837 4 of 23

(1) Three approaches for atmospheric predictability (Lorenz 1969b [31]);
(2) Atmospheric predictability as indicated by numerical experiments (Charney et al. 1966 [16]);
(3) Atmospheric predictability as revealed by naturally occurring analogues (Lorenz 1969c [32]);
(4) The predictability of a flow which possesses many scales of motion (Lorenz 1969d [18]).

The first part (Lorenz 1969b [31]) was published by the Bulletin of the American
Meteorological Society (BAMS) and, here, is referred to as the L69 BAMS study. The
study summarized the findings of a predictability limit, or a doubling time, using three ap-
proaches from three other parts (i.e., Charney et al. 1966 [16]; Lorenz 1969c [32], 1969d [18]).
The three approaches are as follows:

(a) A dynamical approach using atmospheric general circulation models;
(b) An empirical approach based on natural “analogues”, defined below;
(c) A dynamical-empirical approach that applied a system of 21, linear, 2nd-order ordi-

nary differential equations (ODEs) with coefficients estimated using an atmospheric
kinetic energy spectrum.

The model in the dynamical-empirical approach is the so-called Lorenz 1969 model.
The atmospheric kinetic energy spectrum was applied to provide upper bounds
in order to constrain unbounded growth in the linear 1969 model, yielding saturation
times (as defined in Table 2) over different wavelengths. Over the past 15 years, the
Lorenz 1969 model has regained significant attention after recent revisits of, for example,
Rotunno and Synder (2008) [41], Durran and Gingrich (2014) [42], Palmer et al. (2014) [43],
Sun and Zhang [44] and Shen et al. (2022a,b) [17,45].

We present an overview of findings obtained through the aforementioned approaches,
together with insightful comments on these methodologies. For ease of reference and to
enable meaningful discussions, seven figures were reproduced or derived from previous
studies. Promising simulations reported in Smagorinsky (1969) [36] as well as recent AI-
enabled studies are also presented. Comments on doubling times of ~two–three days are
additionally provided in the Supplementary Materials.

2.1. The Doubling Time of 5 Days and Its Extrapolation for Two-Week Predictability

In the 1960s, to estimate the predictability limit, the GARP’s panel chaired by Char-
ney conducted numerical experiments using different GCMs. Three models, including
the Leith, Mintz–Arakawa, and Smagorinsky models (Leith 1965 [46]; Mintz 1964 [47];
Smagorinsky 1963 [48]), were used for simulations. As discussed, such an approach was
referred to as the dynamical approach. As outlined in Figure 1, major findings from the
selected GCMs were as follows: (i) no systematic growth rates within the Leith model;
(ii) a doubling time of 5 days within the Mintz–Arakawa model; and (iii) a doubling time
of 10 days and 6–7 days during the first and second 30 days, respectively, within the
Smagorinsky model.

Based on a doubling time of five days from the Mintz–Arakawa model, the panel
reached the following conclusion (Charney et al. 1966) [16]:

“We may summarize our results in the statement that, based on the most realistic of
the general circulation models available, the limit of deterministic predictability for the
atmosphere is about two weeks in the winter and somewhat longer in the summer.”

Subsequently, the above conclusion yielded the following statement:

“the limit of deterministic predictability, i.e., the limit of predictability of synoptic-scale
motions, is about 2–3 weeks.”

When queried regarding the foundation for this statement, a report entitled “A Guide
to GARP” (GARP 1969) [35] reiterated the conclusion of Charney et al. (1966) [16] by
providing the following responses:

“This statement first appeared in the aforementioned report of the NAS/NRC Panel on
International Meteorological Cooperation, “The Feasibility of a Global Observation and
Analysis Experiment.” It is based on numerical experiments conducted by the Panel with
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the use of various general circulation models, particularly the model developed at UCLA
by Mintz and Arakawa.”
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While the two-week predictability limit was determined using the Mintz–Arakawa
model, Arakawa suggested that such a predictability statement has yielded controversy, as
documented in Lewis (2005) [49]:

“It showed, for the first time using a realistic model of the atmosphere, the existence of
a deterministic predictability limit the order of weeks. The report specifically says that
the limit is two weeks, which became a matter of controversy later. To me, there is no
reason that it is a fixed number. It should depend on many factors, such as the part of the
time/space spectrum, climate and weather regimes, region of the globe and height in the
vertical, season, etc.”

Indeed, if we consider a doubling time of five days, reducing initial error amplitudes
by half could potentially extend the predictability range by an additional five days. As a
result, continuous extensions of predictability horizons become possible by minimizing
initial errors [25], aligning with Arakawa’s viewpoint. Further elaboration on determination
of the five-day doubling time is provided below.

2.2. A Revisit of the Dynamical Approach in Charney et al. (1966)

In Charney et al. (1966) [16], the section entitled “Theoretical Limits of Predictability”
describes numerical experiments conducted with the aforementioned atmospheric GCMs.
As reported, the Leith model exhibited a transient oscillation followed by a leveling off
for errors, and thus, the model was terminated after 20 days. Errors due to computational
instability are associated with the condensation process.

By comparison, the additional two GCMs were run for an extended period (e.g., more
than 200 days). Then, an “error” perturbation in the temperature field was introduced,
and predictions were made for at least 30 additional days. These predictions were then
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compared to the evolution of unperturbed flow over the same period. Errors were deter-
mined by the differences in the simulations between unperturbed and perturbed runs. By
evaluating the growth rate of errors, representing how fast an error grows at the cost of
instability in the state of an unperturbed run, a doubling time was determined.

The Mintz–Arakawa model was integrated for upward of 284 days, with the Sun
constantly in the location for the Northern Hemisphere winter solstice. A sequence of
sea-level pressure charts for days 229–243 were presented (e.g., Figures 5–8 of Charney
et al. 1966) [16]. Error growth was sequentially analyzed, as follows. For the perturbed
run, an error was inserted on Day 234, and growth of the root-mean-square (r.m.s. or RMS)
temperature error from Day 234 to Day 264 was analyzed. The middle panel of Figure 2
displays an initial decaying error, and then, an exponentially growing rate.
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A doubling time of five days was estimated using the Mintz–Arakawa model and
applied in order to extrapolate a predictability limit of two weeks. On the other hand, as
shown on page 212 of Charney (1966) [16], as follows, larger predictability limits (e.g., 26 or
29 days) were also documented in the same report:

“we note that all predictability in the Northern Hemisphere is lost at 26 days for
the wave perturbation, 19 days for the random perturbation, and 29 days for the
localized perturbation.”

Additionally, following a 233-day simulation, the model should have already devel-
oped its own “equilibrium” state, which could not accurately represent the true atmosphere.
Otherwise, the 233-day simulation suggested a predictability limit of up to 233 days. Thus,
the estimated doubling time is inversely related to the instability of the model’s long-term
state (i.e., the state of the model following extensive simulations) rather than the initial
atmospheric state. As a result, an estimate for a predictability limit does not necessarily
represent the predictability limit of the atmosphere. In comparison, modern data assimi-
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lation systems (DAS) are capable of producing a model state that realistically represents
an atmospheric state. Thus, doubling times determined using the GCM in the 1960s and
modern models with DAS should be compared with caution.

The above findings suggest that various predictability limits depend on different
types of initial perturbations and the model’s long-term states. This dependence is further
illustrated below.

The Smagorinsky model also contained multiple experiments, with different types of
initial temperature disturbances. The top panel of Figure 4 in Charney et al. (1966) [16] is
shown in the right panel of Figure 2, and displays the time evolution of RMS errors for
60 days, from Day 260 to Day 320, for a case with a periodic wave perturbation. Alongside
this panel, we analyzed the following excerpt on page 209 of Charney et al. (1966) [16]:

“The smaller error disturbances, of amplitude 0.1◦K and 0.02◦K, show a slow but con-
tinuous growth until after about 30 days, when the doubling time reaches the value of
6 or 7 days. An examination of the actual flow patterns revealed that the motion was
primarily periodic, with a small aperiodic component. ...... After about 30 days the
vacillating regime changed to a more aperiodic behavior, and at that time the error grew
more rapidly with a doubling time of 6 or 7 days. This behavior does not resemble very
well the usual condition of the atmosphere in which strong instabilities appear always to
exist.”

The above excerpt indicates the following features within the Smagorinsky model:

• Two different growth rates appeared for the first and second 30-day periods.
• An initial smaller growth rate during the first 30-day period was associated with

quasi-period flow, but “suggested” that such a flow cannot represent the usual con-
dition of the atmosphere. An estimated doubling time of 10 days was later reported
by Lorenz (1982) [50].

• A larger growth rate, with a doubling time of six–seven days, was determined during
the 2nd 30-day period, when numerical results of the Smagorinsky model displayed a
more aperiodic response, indicating the early influence of Lorenz’s chaos study.

The presence of two distinct growth rates signifies the existence of “two regimes”
for quasi-periodic and aperiodic responses, each persisting for over 25 days. This feature
is different from results obtained using the Mintz–Arakawa model. Similarly, much like
the Mintz–Arakawa model, a doubling time of six–seven days indicates instability for the
model equilibrium state after 259-day simulations. Such a model state could not realistically
represent the atmosphere. Otherwise, a predictability of 259 days was obtained from the
259-day run.

The aforementioned features observed using the dynamical approach are summarized
in Figure 2. Our analysis reaffirmed that the predictability threshold was determined based
on a doubling time of five days over a 25-day period (e.g., the middle panel in Figure 2), and
argued that model states following simulations exceeding 200 days (in the middle and right
panels) may not reliably reflect true atmospheric conditions. Consequently, the estimated
predictability limit, which served as a baseline for promoting research during the 1960s,
warrants careful interpretation in light of recent advancements in modeling and prediction
methodologies, as well as various metrics for predictability estimates (e.g., Table 2).

Our analysis additionally indicated that some of the features reported in Charney et al.
can be found in Lorenz’s theoretical models. For example, the Lorenz 1963 model displays a
dependence of local growth rates on initial conditions (e.g., Shen et al., 2021a; 2022c [51,52]).
Similarly, the Lorenz 1965 model suggested flow-dependent predictability, indicating the
dependence of predictability limits on synoptic situations (Lorenz 1965 [53], 1984b [54];
Shen et al., 2023a [55]). The Lorenz 1969 model could produce various types of solu-
tions, including stable, unstable, and oscillatory solutions (Shen et al., 2022a) [17]. No-
tably, additional findings indicated (1) that larger predictability limits (e.g., 26 or 29 days)
appeared when different types of perturbations were used within the Mintz–Arakawa
model, and (2) applying a doubling time (either ten days or six–seven days) within the
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Smagorinsky 1963 model could lead to predictability limits exceeding two weeks, produc-
ing results consistent with that in a later study by Smagorinsky (Smagorinsky, 1969) [36].
Additional details regarding estimates of doubling times using different approaches are
provided below.

2.3. Error Doubling Times Estimated Using the Empirical Approach in Lorenz (1969c) [32]

The natural occurrence of analogues (i.e., similar weather situations) was also applied
for estimating growth rates during the 1960s (e.g., Lorenz 1969c) [32]. Specifically, the term
“analogues” is defined as follows:

“Analogues are two states of the atmosphere that exhibit resemblance to each other. Either
state in a pair of analogues can be considered equivalent to the other state plus a small
superposed ‘error.”

Thus, when two states are comparable, their differences are viewed as an error, and
error growth can be estimated by observing their evolution. Such an approach, referred to
as an empirical approach, was applied for estimating doubling times in Lorenz (1969c) [32].
Lorenz reported a doubling time of eight days. To overcome deficiency due to an insufficient
number of observations, Lorenz applied quadratic and cubic hypotheses in order to obtain
a rectified doubling time of 2.5 and 5 days, respectively (e.g., Figure 2). Please see the
comments of Smagorinsky (1969) [36] below and the Supplementary Materials regarding
this approach.

2.4. Major Findings within the Dynamical-Empirical Approach Using the Lorenz 1969 Model

Over the past few decades, numerous meteorology researchers have utilized key
discoveries from the Lorenz 1969 model (Lorenz 1969d) [18] as a standard reference point
for assessing the accuracy of model forecasts. Despite Lorenz (1993) [14] acknowledging
that the two-week predictability was extrapolated from a doubling time of five days within
the Mintz–Arakawa model, this particular work did not reference any of Lorenz’s 1969
studies. Moreover, up until 2006, Lorenz (1996, 2006) [23,24] maintained the perspective that
the predictability problem had been partially solved. Therefore, it is crucial to determine
why the meteorology community incorrectly attributes the two-week limit to numerical
results derived from the Lorenz 1969 model.

To dispel misunderstandings, below, we present significant features of the 1969 model
and its inherent limitations. As discussed in our recent papers (Shen et al., 2022a, 2023a [17,55])
and Lorenz’s own work (Lorenz 1984a [39]), the Lorenz 1969 model is described as a linear
system with specific conditions to prevent the unbounded growth of inherently unstable
solutions. This aligns with Lorenz’s description in 1984, referring to it as “a system of
second-order linear ordinary differential equations.” The linear nature of the 1969 model is
also recognized in Saiki and Yorke (2023) [56]. Hence, the 1969 model is not chaotic. This
specific statement, along with the analysis presented in this paragraph, was shared with
Prof. Tim Palmer in May 2024. Prof. Palmer has since agreed with us on this overlooked
point (personal communication).

Major features of the 1969 model are summarized as follows:

• It consists of 21, linear, 2nd-order ordinary differential equations (ODEs), derived from
a two-dimensional PDE that conserves vorticity.

• Coefficients for 21 ODEs were obtained based mode–mode interactions and an atmo-
spheric kinetic energy spectrum.

• The PDE lacks baroclinic and dissipative processes and thus the 1969 model is not a
turbulence model.

• While the 1969 model applied a modified quasi-normal approximation, its closure
possesses inconsistent characteristics (e.g., Leith 1971 [57]) and yields unphysical
outcomes (Orszag 1977 [58]; Aurell et al., 1996 [59]).

• The assumptions of “homogeneity” and “isotropy” in Lorenz (1969d) [18] do not
permit variations in climatological properties from one location to another location.
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• An eigenvalue analysis of the matrix for the 1969 system as well as relevant systems
produces a large condition number, indicating ill-condition (Shen et al., 2022a) [17].

As a result, Shen et al. concluded that the Lorenz 1969 model is a closure-based,
physically multiscale, mathematically linear, and numerically ill-conditioned system.

The above approach was referred to as the dynamical-empirical approach in the 1960s.
By applying a non-uniform spectral grid, the 1969 model could examine scale interactions
and predictability over a wide range of scales, from 38 m to 40,000 km (as listed in Table 3).
Thus, Lorenz implicitly suggested that his model may overcome the deficiency of dynamic
approaches for relatively coarse solutions that produce numerical instability or required
parameterizations. As accepted by the meteorology community and as documented in
Shen et al. (2022a) [17], major findings of Lorenz (1969d) [18] included the following:
(1) finite predictability displays a dependence on scales; (2) smaller scale processes possess
larger growth rates and smaller predictability limits; and (3) a finite time interval of reliable
prediction cannot be lengthened by reducing the amplitude of initial errors. These findings
can be seen in Table 3 and Figure 3. Specifically, using the 1969 model, Table 3 displays
a predictability limit of 16.8 (10.1) days for a wavelength of 40,000 km (20,000 km). Here,
the predictability of a specific wavelength is determined by the saturation time that is
constrained by the slope of the kinetic energy spectrum. The physical meaning of the
saturation and doubling times are different and, thus, predictability estimates using the two
time scales should, as discussed below, be compared with caution. Additional discussions
are provided in Figures S1–S3 of Supplementary Materials.

Table 3. Estimated predictability as a function of n. The first and third columns were taken
from Table 3 of Lorenz (1969d) [18], while the second column for wave numbers (wavenumber
k = 1 for the wave lenght λ = 40, 000 km) was taken from Table 1 of Lorenz (1969d) [18]. Here,
tn indicates the saturation time for the perturbation at wavenumber k = 2n−1.

n k λ tn

21 220 38 m 2.9 min

20 219 76 3.1

19 218 153 4.0

18 217 305 5.7

17 216 610 8.4

16 215 1221 13.0

15 214 2441 20.3

14 213 4883 32.1

13 212 9766 51.1

12 211 19,531 1.3 h

11 1024 39 km 2.2

10 512 78 3.6

9 256 156 5.8

8 128 312 9.5

7 64 625 15.7

6 32 1250 1.1 day

5 16 2500 1.8

4 8 5000 3.2

3 4 10,000 5.6

2 2 20,000 10.1

1 1 40,000 16.8
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2.5. A Revisit of the Lorenz 1969 Model and Its Relationship to a Chaotic Map

During the 1960s, an important study published as Lorenz (1969e) [33], henceforth
referred to as the L69e study, greatly contributed to the dissemination of related discoveries.
Published by MIT Technology Review in July 1969, this study, entitled “How much better can
weather prediction become?”, held comparable significance to the 1969 BAMS article. The
L69e study also summarized the three approaches used to determine predictability limits,
including insights from the Leith, Mintz–Arakawa, and Smagorinsky models. Unlike the
1969 BAMS article that lacked any visual representations, the L69e study incorporated two
figures, namely Figures 4 and 5, provided in this report. As discussed below, both figures
have significant impacts, but their relationship has not been well established.

In Figure 4, Lorenz applied a difference equation, Xn+1 = 1.64 − X2
n, to illustrate the

sensitive dependence of solutions on initial conditions. Such a feature was related to insta-
bility in a nonlinear system. Lorenz (1969e) [33] believed that nonlinear instability manifests
within the atmosphere and can be exemplified through the nonlinear difference equation.
In fact, nonlinear instability is now known as chaos since the term “chaos” was not coined
until the middle of the 1970s by Li and Yorke (1975) [60]. The above difference equation
is one type of quadratic map, characterized by a nonlinear quadratic term. The Logistic
map, a specific type of quadratic map, is now understood to serve as a simple, yet effec-
tive, model for revealing chaos (by Lorenz 1964 [61]; Li and Yorke 1975 [60]; May 1976 [62];
Shen et al., 2023a [55]; Shen 2023, 2024 [25,63]). Stewart (2013) [64] listed the Logistic
map as one of 17 equations that changed the world. The relationship between the Logistic
map and the Logistic ODE is documented in Shen et al. (2023a) [55] and Shen (2024) [25].
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Figure 5 shows the dependence of finite predictability on scales. Although Figures 4 and 5
were presented as Figures 1 and 2 in the L69e study, respectively, Lorenz did not explicitly
associate the relationship between nonlinear instability in Figure 4 and finite predictabil-
ity in Figure 5. A different 1969 study (i.e., the L69d study) and subsequent studies
(e.g., Lorenz 1984a [39]) explicitly acknowledged that the L69 model is a linear system.
Furthermore, Shen et al. (2022a) [17] suggested that finite predictability in Figure 5 is likely
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associated with linear instability rather than nonlinear chaos. In fact, regarding the validity
of Figure 5 (i.e., Figure 2 of the L69e) Lorenz provided the following caution:

“(Because of numerous assumptions entering the computations these results should not
be regarded as the final word.)”

Other than the above, the L69e study suggested a range of predictability of approxi-
mately three weeks and, as shown below, emphasized the importance of proper interpreta-
tion of the predictability limit:

“We then conclude that the atmosphere possesses an intrinsic range of predictability of
perhaps three weeks. ...... However, if the hoped-for improvements are some day realized,
still further improvements will not appreciably increase the range of predictability.

Although we feel that the evidence favoring our conclusions is substantial, we must
be quick to note that they are based upon a number of assumptions which cannot be
rigorously defended. We are a long way from incorporating the true atmospheric equations
into our procedure. We are therefore somewhat reluctant to name a maximum range of
predictability without including a safety factor.”

Based on the above excerpt and our current understanding, while the qualitative
concept of finite predictability remains valid, quantitative estimates for the predictabil-
ity limit should be interpreted with caution. Moreover, to date, there has not been a
robust establishment of the association between predictability estimates derived from
saturation times in the Lorenz 1969 linear model and a doubling time of five days in the
Mintz–Arakawa model.

2.6. Impact of a Spectral Gap on Extending Predictability Horizons

In the years following 1969, to examine the impact of a spectral gap on estimates of the
predictability limit, the Lorenz 1969 model was applied in four studies (Lorenz 1970, 1972,
1984a, 1985 [37–40]). A spectral gap is indicated by a separation or gap within the spectrum
of kinetic energy (KE) (e.g., Figure 2 of Shen et al., 2023b [13]). The first two studies
were not published, but major results in the 2nd study (i.e., Lorenz 1972 [38]) appeared
in Lorenz (1985) [40]. As shown in Figure 6 (along with Figure 3 of Shen et al., 2023b [13]),
results obtained without a spectral gap are comparable to those in Lorenz (1969d) [18],
except that some extrapolations were applied. In contrast to the original 1969 study, the
inclusion of a spectral gap in the 1972 study provided a different estimate of predictability,
yielding a predictability limit of 20.6 days at a wavelength of 25,600 km, in contrast to a limit
of 16.3 days without a spectral gap. Thus, if the Lorenz 1969 model with the assumption of
a spectral gap can be rigorously verified, the range of predictability could be three weeks.
Such a limit is quantitively different from the findings obtained when using the original
Lorenz 1969 model (e.g., Lorenz 1969d) [18] and the estimated predictability limit obtained
using the Mintz–Arakawa model (Charney et al. 1966) [16].

Additionally, when using saturation time to estimate predictability horizons, rais-
ing the threshold from 90% (in Figure 6) to 95% of the saturation time can substantially
extend the predictability horizons due to the asymptotic nature of the saturation time
(Shen 2024) [25]. Table S1 in the Supplementary Materials outlines the progression of
Lorenz’s perspectives on predictability horizons from the 1960s to 2007, as summarized
in Table 1.
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Figure 6. The influence of a spectral gap on estimations of predictability limits, originating from
Lorenz’s unpublished work in 1972 (e.g., Lorenz 1985 [40]). Incorporating a spectral gap introduces
an alternative estimate of predictability, resulting in a predictability limit of 20.6 days at a wavelength
of 25,600 km. This contrasts with a limit of 16.3 days in the absence of a spectral gap. Labels “10%”
and “90%” indicate times required for RMS to reach 10% and 90% of their limiting magnitudes. The
numbers 16.3 and 20.6 are highlighted for the convenience of the readers.

2.7. Smagorinsky’s Comments on the Analysis of Lorenz (1969b) [31]

In 1969, Smagorinsky also published an important modeling study (Smagorinsky 1969) [36].
In this study, Smagorinsky reported high correlation coefficients of 0.7 and above for a 21-day
simulation, as shown in his Figure 5 [36], and suggested the following:

“With this reservation in mind we conclude from these experiments that the deterministic
limit of synoptic scale predictability is at least 3 weeks.”

Here, it is important to note that a distinct criterion, correlation coefficients, were
employed to estimate predictability horizons. When evaluating predictability limits using
different time scales (e.g., doubling time or saturation time) or methodologies (such as cor-
relation coefficients or ACC), it is important to exercise caution when drawing comparisons.
In contrast to the present “standard” that calculates ACC for multiple runs (e.g., Table 2),
the aforementioned outcome, derived from a single run in Smagorinsky (1969) [36], may
lack robustness but offers a counterexample for the two-week predictability.

Regarding the three approaches for growth rate estimates in Lorenz (1969a, b, c, d,
e [18,30–33]), Smagorinsky additionally summarized the main points of Lorenz (1969b) [31],
as follows:

• While the Lorenz 1969 model produced a doubling time of two–three days, the model
lacked baroclinic instability.

• Within Lorenz’s analogue approach, the historical record is too short to be able to
sufficiently close analogues which only differ by a measure of small error. To overcome
deficiencies with large initial errors, Lorenz applied the so-called quadratic hypothesis
in order to obtain a doubling time of less than three days.

• Although Mintz–Arakawa’s results reported a doubling time of five days, Lorenz’s
reevaluation in 1969 (Lorenz 1969b [31], 1969e [33]) suggested a doubling time of 2.5 days.
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Further discussion regarding the interpretation of a doubling time of two–three days,
as well as the quadratic and cubic hypothesis, is presented in the Supplementary Materials.

3. Lorenz’s Updated Perspective and Recent Predictability Studies

The previous sections outlined how a doubling time of five days was estimated and
extrapolated to establish the two-week predictability limit during the 1960s. During that
time frame, Lorenz held a pessimistic perspective on the two-week predictability limit. For
example, he presented various approaches estimating a doubling time of two to three days
and argued against the accuracy of the Mintz–Arakawa model’s five-day doubling time. On
the other hand, as reported by Reeves (2014) [15] and as reviewed by Shen et al. (2023b) [13],
Lorenz’s outlook on the two-week predictability became more optimistic in the 1990s and
2000s. This shift in perspective is also evident from the fact that none of his studies from
1969 were cited when Lorenz discussed the basis for the two-week predictability limit in
his book “The Essence of Chaos,” published in 1993.

Lorenz remained somewhat pessimistic about long-range forecasting while he spoke at
the September 1981 seminar of the European Centre for Medium-Range Weather Forecasts
(Lorenz 1984b) [54]. However, he also discussed potential avenues for improvement by
considering the following: (1) slowly varying features, such as ocean surface temperature,
sea ice, snow cover, and solar radiation; and (2) atmospheric regimes, including “blocking,”
quasi-biennial oscillation, and local anomalies that show some persistence.

In 1997, Lorenz explicitly recognized the presence of extended-range predictability
concerning the El Nino-Southern Oscillation (ENSO), as indicated by the following excerpt
(Lorenz 1997) [65]:

“We must recognize, then, that some weather elements are predictable more than a month
in advance, at least in the sense that most weather situations—even some that might well
appear several years from now-are almost certain not to appear a month or two from now.

Among the most prominent features with some extended-range predictability are those
associated with the El Nino-Southern Oscillation (ENSO) phenomenon.”

3.1. Recent Advances using PDE-based and AI-powered Systems

While a doubling time of 5 days was applied to determine the two-week predictability
limit, as shown in Table 2, the saturation time has also been used for predictability estimates.
However, saturation times longer than 2 weeks have been documented (Magnusson and
Kallen 2013 [66]; Zagar and Szunyogh 2020 [67]). For instance, produced by the extended
version of the Lorenz 1965 model (Lorenz 1965) [53], Figure 1 of Krishnamurthy (2019) [10]
displayed a saturation time of about 100 days.

Recent studies have also reported reasonable predictions at time scales longer
than two weeks (e.g., Liu et al., 2009 [68]; Shen et al., 2010 [6]; Judt 2018 [11];
Krishnamurthy 2019 [10]). For example, applying ensemble forecasts to simulate strato-
spheric sudden warming (Mukougawa and Hirooka 2004) [69], Mukougawa et al. (2005) [5]
reported a lead time of more than two weeks. By examining the dependence of predictabil-
ity on regions, Judt (2020) [12] suggested that the tropics have longer predictability than
the middle latitudes and polar regions (tropics > 20 days). Using an atmosphere–ocean
coupled model (or a stand-alone model), Mishra et al. (2021) [70] reported a predictability
limit of 22 days (or 20 days) for Indian monsoon rainfall.

Compared to PDE-physics-based methods, machine learning (ML), or more broadly,
artificial intelligence (AI) methods have shown promise in improving weather predictions
(Weyn et al., 2019, 2020, 2021 [71–73]; Rasp and Thuerey 2021 [74]; Pathak et al., 2022 [75];
Bi et al., 2023 [76]; Bonev et al., 2023 [77]; Chen, Han, et al., 2023 [78]; Chen, Zhong
et al., 2023 [79]; Nguyen. et al., 2023 [80]; Lam et al., 2023 [81]; Selz and Craig 2023 [82];
Watt-Meyer et al., 2023 [83]; Bach et al., 2024 [84]; Bouallègue et al., 2024 [85];
Li et al., 2024 [86]). As shown in Table 4, these AI-powered models were trained us-
ing the ERA5 reanalysis dataset (Hersbach et al., 2018, 2020) [87,88] and CMIP6 data
(Eyring et al., 2016 [89]) and assessed using various metrics including RMSE, ACC, Contin-
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uous Ranked Probability Score (CRPS), Temporal Anomaly Correlation Coefficient (TCC),
Ranked Probability Skill Score (RPSS), Brier Skill Score (BSS), and bivariate correlation (COR).

Table 4. A list of major AI-powered systems.

Study Model’s Name AI Technology Data Simulation
Length

Evaluation
Metric Remark

Weyn et al. (2020)
[72]

Deep Learning
Weather Prediction

(DLWP)
CNN

ERA5,
1979–2018,

2◦
up to 7 days RMSE, ACC

Weyn et al. (2021)
[73] CNN

ERA5,
1979–2018,

1.4◦
up to 6 weeks

RMSE, ACC,
Continuous Ranked

Probability Score
(CRPS)

Rasp and Thuerey
(2021) [74]

WeatherBench
ResNet

Residual Neural
Network (ResNet)

ERA5,
1979–2018;

CMIP6,
climate model

simulations

up to 5 days RMSE, ACC

Bi et al. (2023)
[76] Pangu-Weather

(modified)
Vision

Transformer

ERA5,
1979–2017,

2.5◦
up to 7 days RMSE, ACC

Selz and Craig
(2023) [82] the same the same the same up to 72 h RMSE, ACC study butterfly

effect

Bouallègue et al.
(2024) [85] the same the same the same up to 10 days the same

in an
operational-like

context

Lam et al. (2023)
[81] GraphCast Graph Neural

Network (GNN)

ERA5,
1979–2018,

2.5◦
up to 14 days RMSE, ACC developed by

Google

Pathak et al.
(2022);

Bonev et al. (2023)
[75,77]

FourCast
Net

Vision
Transformer with

Fourier Neural
Operators

ERA5,
1979–2018,

2.5◦
up to 1 or 2 weeks ACC

manuscript posted;
sponsored by

Nvidia

Watt-Meyer et al.
(2023) [83] ACE the same the same

FVGFS 10 years RMSE,
time-mean RMSE

ACE stands for
AI2 Climate

Emulator

Nguyen et al.
(2023)
[80]

CimaX Vision Transformer

CMIP6,
1850-current,

various;
ERA5,

1979–2018,
2.5◦

up to 1 month RMSE, ACC sponsored by
Microsoft

Chen, Zhong,
et al. (2023) [79] FuXi modified

Vision Transformer

ERA5,
1979–2018,

2.5◦
up to 15 days RMSE, ACC, CRPS

Li et al. (2024)
[86] FuXi-S2S

Enhanced FuXi base
model with other

modules

ERA5,
1950–2021,

1.5◦
up to 42 days TCC, RPSS, BSS, COR manuscript posted

14 February 2024

Chen, Han, et al.
(2023) [78] FengWu a cross-modal fusion

transformer

ERA5,
1979–2018,

2.5◦
up to 14 days RMSE, ACC

Bach et al. (2024)
[84]

hybrid dynamical
and data-driven

methods

EOF,
Neural network

architecture,
Ensemble Oscillation

Correction (EnOC)

ERA5,
1979–2018,

2.5◦ ;
IMD rainfall,

1901–2016

up to 46 days RMSE, ACC, Bivariate
Correlation Coefficient

As summarized in Table 4, by applying deep convolutional neural networks (CNNs),
Weyn et al. (2019) [71] reported lead times of 14 days. More importantly, recent advances
in AI technology, particularly transformer technology (e.g., Vaswani et al., 2017) [90]
and its variants, including the “vision transformer” (Dosovitskiy et al., 2020 [91]), have
offered significant opportunities to reduce the cost of weather predictions and revisit the
predictability limit. Table 4 lists major AI-powered systems, most of which were published
in 2023 and 2024 following the widespread recognition of transformer technology due to
its major application in ChatGPT. Among the listed AI-powered systems, as compared
to PDE-physics-based systems, all produced comparable or slightly better predictions for
conventional short-term forecasts (3–14 days). Three studies have attempted to perform
simulations at subseasonal or larger scales. Among the three studies, the ClimX system
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was reported in a conference article. The enhanced Fu-Xi system (and its base version)
was documented in a preprint article (and journal article). In the 3rd study, the hybrid
dynamical and data-driven approach was applied by Bach et al. (2024, PNAS) [84] to
successively demonstrate the potential for improving subseasonal monsoon prediction. As
derived from their study, Figure 7 displays a correlation above 0.5 over a 46-day period
in two predictions. While correlation coefficients (as depicted in Figure 7) or Anomaly
Correlation Coefficients (ACC) have recently been utilized to assess predictability horizons,
the concept of doubling time, illustrated in the Supplementary Materials, was employed in
the 1960s to estimate a two-week predictability limit.
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After submitting our manuscript in late May 2024, we discovered several addi-
tional studies employing AI-powered systems. These include, but are not limited to,
works by Bodnar et al. (2024) [92], Kochhov et al. (2024) [93], Lang et al. (2024) [94],
Mardani et al. (2023) [95], Price et al. (2024) [96], Vonich and Hakim (2024) [97], and
Wu and Xue (2024) [98], all demonstrating the swift advancements facilitated by AI. No-
tably, Wu and Xue (2024) [98] conducted a thorough review of AI-based models from
a developmental viewpoint. Lang et al. (2024) [94] described the ECMWF’s AI-based
system. Kochhov et al. (2024) [93] introduced a novel model that integrates PDEs and ML
to generate ensemble weather forecasts more accurately, as assessed by CRPS, than the
existing ECMWF model. Vonich and Hakim (2024) [97] reported a predictability of 23 days
for the Pacific Northwest heatwave.

Although the above systems have not yet established a new predictability horizon,
our suggestion in Table 1, viewing the two-week limit as a predictability hypothesis,
makes it easier for scientists to understand why the above promising results with spe-
cific weather systems are possible and encourage attempts for proving or disproving the
predictability hypothesis. More importantly, AI-powered methods provide alternative,
cost-effective approaches.

3.2. A View of Distinct Predictability Using a Generalized Lorenz Model

By guiding the choice of numerical results from real-world models, the concept of
Lorenz’s chaos, characterized by aperiodic features and instability, indeed, indirectly
influenced the establishment of the two-week predictability limit. Specifically, the key
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characteristics of Lorenz’s 1963 and 1969 models provide evidence for the existence of a
predictability limit. However, it is important to note that the underlying mechanisms or
sensitivities that lead to finite predictability differ between these models (e.g., as discussed
in Shen et al., 2021a [51], 2022a, c [17,52]).

Lorenz’s 1963 model is characterized by its limited scale and chaotic nature,
while the Lorenz 1969 model is closure-based, physically multiscale, mathematically lin-
ear, and numerically ill-conditioned. Furthermore, as elaborated on in Section 3.1.2 of
Shen et al., 2022a [17], the Lorenz 1969 ill-conditioned system tends to easily capture
numerical instability.

As discussed by Shen et al. (2023a) [55] and Shen (2023a) [63], most of Lorenz’s models
did not incorporate spatial and time-varying “backgrounds.” For example, the Lorenz 1963
model utilized time-independent parameters and the Lorenz 1969 model applied a time-
independent kinetic energy spectrum, as well as assumed homogeneity and isotropy.
To address this limitation, we employed a generalized Lorenz model (Shen 2019a [99];
Shen et al., 2019 [100]) and applied a time-varying parameter that emulates the impact of
slowly varying variables.

As illustrated by Shen et al. (2021a) [51], the Rayleigh parameter is set to a periodic
function of time that allows different types of solutions; equations for the generalized Lorenz
model are additionally provided in the Supplementary Materials of Shen et al. (2021a) [51].
Our findings revealed the coexistence of chaotic and non-chaotic properties, including nonlin-
ear oscillations (i.e., limit cycle solutions), and the coexistence of rapidly and slowly varying
solutions (Shen et al., 2021a) [51]. Such findings challenge the conventional view that the
system is solely chaotic and suggest a revised view on the dual nature of chaos and order
with coexisting short-term and long-term predictability. For example, the appearance of the
theoretical nonlinear oscillations could provide a support to the existence of oscillations
such as monsoon intraseasonal oscillation (MISO) for better predictability, as discussed
above in Figure 7 (Bach et al., 2004) [84]. The concept of attractor coexistence also helped
us uncover regional dependencies, such as blocking patterns and seasonal variations.

Furthermore, as depicted in Figure 5 of Shen et al. (2022c) [52], our generalized Lorenz
model results suggest the possibility of regime transitions between regular and chaotic solutions.
Both the previously mentioned studies and recent research (e.g., Zeng 2023) [101] support
Lorenz’s 1997 updated perspective, suggesting a possibility for the coexisting long predictability
of ENSO and short-term predictability (i.e., 2-week predictability, when applicable).

3.3. Proposed Future Research Directions

The “Next Generation Earth System Prediction: Strategies for Subseasonal to Seasonal
Forecasts” report by the National Academy of Sciences (2016) [3] underscores the societal
benefits of the broad implementation of subseasonal to seasonal (S2S) forecasts, which
provide predictions ranging from two weeks to twelve months ahead. The report projects
that S2S forecasts will become as commonplace as daily weather reports, playing a vital
role in sectors such as agriculture, water management, and public health. These forecasts
are pivotal in reducing risks associated with extreme weather events, thereby safeguarding
lives and reducing economic losses. The report points out a significant disparity in the
support for S2S forecasts compared to immediate weather predictions and long-term
climate projections, and it identifies substantial challenges, including the need for forecasts
that align more closely with the specific temporal and spatial requirements of users. It calls
for collaborative efforts between physical and social scientists to enhance the applicability
of S2S forecasts across various decision-making scenarios. Concurrently, as mentioned in
Section 3.2, recent advancements in AI and ML have produced promising forecasts that
extend beyond two weeks (refer to Figure 7) and have improved forecast customization
through techniques such as downscaling, as demonstrated by Mardani et al. (2023) [95],
highlighting the critical role of data scientists in this field.

Building on the insights from this report and previous research, we are optimistic that
ongoing innovations in both practical and theoretical modeling, augmented by artificial
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intelligence, will continually enhance our understanding and prediction of weather phe-
nomena. These advancements are especially beneficial for investigating pivotal phenomena
such as the butterfly effect (model sensitivities), multiscale interactions, and multistability,
which encompass feedback from numerically or physically small-scale processes, modula-
tion by large-scale systems, and predictability that varies with different types of weather
systems. To advance these efforts, we propose a series of research areas that would benefit
from an integrated approach combining PDE-based methods and AI-enhanced techniques:

1. Enhancing numerical methods by implementing variable time steps.
2. Fusing AI with ensemble forecasting to refine predictive accuracy.
3. Measuring the the sensitivity dependence on initial conditions (SDIC)—i.e. the butter-

fly effect—and chaotic behaviors in AI-driven systems.
4. Improving spatial and/or temporal resolution through AI-powered downscaling.
5. Expanding the functionality of AI models by integrating non-forecast variables.
6. Discovering multiscale processes via singular value analysis of query, key, and

value matrices.
7. Crafting conceptual models to deepen the understanding of predictability.
8. Reevaluating the boundaries of predictability horizons.
9. Evaluating how the temporal extent of reanalysis data affects the precision of

climate projections.
10. Investigating AI-based model hallucinations and their linkage to sensitive dependence

on initial conditions.

For additional details, please refer to Shen et al. (2024) [102].

4. Concluding Remarks

This study, along with our recent research (e.g., Table 1), suggests that the widely rec-
ognized two-week predictability limit was initially estimated based on a five-day doubling
time using a general circulation model, rather than being a direct outcome of Lorenz’s
chaotic models. To provide a clearer perspective on the two-week predictability limit, we
propose the following statement:

“Much like Moore’s Law in the realm of computing, the predictability limit hypothesis,
specifically the two-week predictability limit, is an empirical association based on practical
modeling and idealized chaotic modeling from the 1960s. It stands as a limited set of
observed findings and as a reasonable extrapolation from early modeling results during
the 1960s, rather than constituting fundamental physics.”

The Predictability Limit Hypothesis in Table 1 summarizes the historical context of
predictability research, encompassing real-world, theoretical models, and other approaches
from the 1960s. Our reevaluation highlights quantitative estimates of two-week predictabil-
ity using the Mintz–Arakawa model, as well as qualitative, finite predictability within
Lorenz’s 1963 and 1969 models, under the leadership of Charney et al. This concept also
aligns with Lorenz’s evolved perspective on predictability limits in the 1990s and 2000s.
Since the two-week predictability limit was derived from a five-day doubling time, the
notion of continuous improvement in predictability horizons by reducing initial errors
suggests that this limit should not be viewed as a rigid upper boundary.

Furthermore, our revisit indicates that doubling times depend on a model’s long-term
states and different approaches. Our analysis also suggest larger predictability limits
reported in the 1960s and 1970s, including 26 and 29 days when various perturbations
were introduced and 20.6 days when a kinetic energy spectral gap was included within the
Lorenz 1969 model.

Our studies, combined with our previous research (e.g., Shen et al., 2021a; 2022c [51,52]),
highlight cumulative advancements in both PDE-physics-based and AI-powered systems
since the 1960s, which have shown promising results in long-term simulations. Although
these simulations extend beyond the traditional two-week limit, they do not contradict the
Predictability Limit Hypothesis based on 1960s models. This new concept helps explain
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why the practical capabilities of current models are still consistent with the major findings
of finite predictability within Lorenz’s theoretical models.

Recognizing that weather prediction is a combined boundary-initial value problem
imposes constraints on temporal changes. This concept can also extend to examine the
predictability of seasonal, yearly, decadal, and longer climate predictions. The feasibility of
this approach was illustrated by developing a unified weather and climate model, which
led to successful short-term weather predictions in the early 2000s (e.g., Lin et al., 2003 [22];
Atlas et al., 2005 [103]; Shen et al., 2006a [104], 2006b [105], 2010 [6], 2011 [7]). In comparison,
AI-powered systems trained over several decades using ERA5 reanalysis and/or CMIP6
data can be viewed as weather-climate unified systems. Both weather and climate fore-
casts predict changes in the state of variables such as temperature and precipitation, then
compute their averages over different time scales. With weather, this can involve hourly
or daily averages, while climate focuses on yearly and longer-term statistics. Both fore-
casts essentially use the same mathematical framework (with climate involving more
nonlinear interactions) within PDE-physics-based or AI-powered systems. The question
remains whether and how the concepts discussed for short time scales can extend to climate
prediction at longer time scales.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/atmos15070837/s1, Table S1 illustrates the evolution of
Lorenz’s perspectives on predictability horizons since the 1960s. Figure S1 depicts predictability
estimates based on doubling time (Paxson and Shen 2022 [106]). Figure S2 displays RMS errors,
indicating a doubling time of 2.9 days and a saturation time of 100 days (Krishnamurthy 2019 [10]).
Figure S3 demonstrates the dependence of error growth rates on geographical locations
(Reynolds et al. 1994 [107]; Kalnay 2002 [108]). This idea is further connected to the concept of coexist-
ing attractors with distinct predictability (e.g., Shen et al., 2021b [109]) in the Supplementary Materials.
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