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Abstract: Air pollution (AP) exposures have been associated with autism (ASD), schizophrenia (SCZ),
and attention deficit hyperactivity disorder (ADHD), male-biased neurodevelopmental disorders
that are linked to alterations in brain fronto-striatal neurotransmitter systems. The current study
sought to assess how developmental exposures of mice to inhaled ambient ultrafine particle (UFP)
air pollution, considered its most reactive component, alters fronto-striatal functional correlations.
Mice were exposed via inhalation to concentrated ambient UFPs from postnatal days (PND) 4–7 and
10–13. Frontal cortex, striatum, and serum were collected at PND14 and PND50 to evaluate both
acute and persistent effects. UFP-induced changes, more extensive and persistent in males, included
elimination of frontal cortical kynurenine correlations with striatal neurotransmitter function, persis-
tent immunosuppression of approximately 50%, and striatal neurotransmitter turnover correlations
with serum corticosterone. More limited effects in females did not show persistence. Collectively,
these findings depict an apparently physiologically-integrated UFP-induced persistent male-biased
vulnerability to brain fronto-striatal system dysfunction that could contribute to behavioral deficits
associated with neurodevelopmental disorders. Further studies are needed to ascertain the interac-
tive physiological mechanisms of male fronto-striatal vulnerability and their relation to behavioral
impairments, mechanisms of apparent female compensation, and specific contaminants of AP that
underlie this vulnerability.

Keywords: ultrafine particles; fronto-striatal system; kynurenine; glutamate; neurodevelopment

1. Introduction

An accumulating body of evidence indicates that prenatal exposure to air pollution
(AP) has adverse impacts on brain and neurodevelopment. Findings have included such
consequences as neurodevelopmental delays [1], impaired cognitive functions [2], behavior
problems [3], and memory and attention-related impairments [2], as well as structural
alterations in the brain [4,5]. Such effects in children have been described across a range of
extant ambient exposure concentrations, with levels of PM2.5 (particulate matter ≤ 2.5 µm
or less) exposures, where reported, being as low as 11 µg/m3 [6]. These effects of AP
likely contribute to the corresponding increase in evidence that AP increases risks for neu-
rodevelopmental and psychiatric disorders [7,8] that, to date, as supported by systematic
reviews, include autism spectrum disorder (ASD) [9,10] and attention deficit hyperactivity
disorder (ADHD) [11,12], as well as schizophrenia (SCZ) [13]. Questions remain as to
specific periods of gestational vulnerability.

While distinct conditions, these neurodevelopmental and psychiatric disorders also
share multiple characteristic features [14] and male-biased prevalence rates, and can
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be highly co-morbid [15,16]. Other shared characteristics include ventriculomegaly, hy-
pomyelination, interhemispheric dysconnectivity [17], and cytokine alterations [18–20], as
well as behavioral impairments including cognitive and impulsivity deficits [21,22].

Correspondingly, studies from our laboratory in mice have demonstrated that impacts
of inhaled air pollution, specifically concentrated ambient ultrafine particulate (UFP) matter,
considered the most reactive component of air pollution, can reproduce many of these
shared features of neurodevelopmental disorders when exposures occur during the early
postnatal period, a time period considered equivalent to the human third trimester for
brain development [23]. Exposures to concentrated ambient ultrafine particle air pollution
for 4 h/day from postnatal days 4–7 and 10–13, for example, have resulted in effects
that include ventriculomegaly [24], hypomyelination [25], cytokine alterations [24], and
impulsive behaviors [26,27] that were male-biased, consistent with the male bias in the
prevalence of these neurodevelopmental disorders [28] that likely reflects sex differences in
the trajectories of brain development and regional network integration [29].

Another shared feature of ASD, ADHD, and SCZ is the modification of brain fronto-
striatal systems. Frontal cortical systems develop an organization of parallel networks
with subcortical regions, including both dorsal and ventral striatum [30], within which
interactive actions of glutamatergic, dopaminergic, and serotonergic neurotransmitters
serve to mediate behavioral functions [31]. As a network of distinct but overlapping
systems, fronto-striatal circuits are critical to the mediation of multiple behavioral processes,
such as rewarded behaviors and cognitive functions [32,33], i.e., behavioral domains that
are modified in these neurodevelopmental disorders [34–36].

With respect to specific neurochemical changes within these systems, alterations in
glutamatergic signaling in fronto-striatal circuitry are reported in individuals diagnosed
with ASD that appear to be related to inhibitory control [37,38]. In the case of ADHD, an
insufficient GABAergic response of the fronto-striatal circuitry has been linked to reduced
attention control [39], and glutamatergic dysfunction to hyperactivity and impulsivity, in
adult ADHD [40]. Functions such as timing and attention and working memory deficits
in SCZ have been reported to be likely due to dysfunction of dopamine and GABA in
cortico-striatal circuitry [41]. Alterations in glutamatergic functioning and an excitatory–
inhibitory imbalance are seen in ASD [42] and are prominent in SCZ [43] and ADHD [40].
In addition, dopaminergic system alterations are involved in these neurodevelopmental
disorders [44,45], with methylphenidate, a dopamine reuptake blocker, used in the treat-
ment of ADHD [46]. Alterations in dopaminergic systems have also been proposed as a
basis for ASD [47,48] and have long been considered to contribute to SCZ [49]. In addi-
tion, alterations in serotonergic function characterize each of these neurodevelopmental
disorders, including the hyperfunction of serotonergic pathways in SCZ [50]. Reductions
in brain serotonin levels have recently been described in ASD [51], while studies using PET
imaging have shown alterations in interregional molecular associations of the serotonin
transporter in individuals with attention deficit disorder [18].

Similarly, as described above, early postnatal exposures of mice to inhaled concen-
trated ambient UFP lead to alterations in brain neurotransmitter levels. These include
changes in levels of glutamatergic, serotonergic, and dopaminergic neurotransmitters in the
frontal cortex and in the striatum, with outcomes dependent upon brain region, sex, and
the UFP exposure concentration [24,52] as well as potential co-occurring risk factors [53].
However, what remains unclear is how these neurotransmitter changes are related between
the frontal cortex and striatal regions and thereby potentially relate to fronto-striatal func-
tion. Such an understanding is ultimately requisite to predicting behavioral aberrations
and defining the mechanisms of UFP-induced behavioral toxicity.

The current study therefore sought to further advance the understanding of UFP
exposures on brain fronto-striatal systems’ development and trajectory across time. For
that purpose, correlational patterns of changes in the brain’s frontal cortex and striatal neu-
rotransmitter systems were determined both immediately after postnatal UFP exposures,
i.e., acutely at postnatal day 14 (PND14), and again at PND50 to determine the persistent
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effects through development, potential reversibility of early changes, and/or latent onset
of effects in response to earlier exposures. To determine these relationships, multivariate
correlation analyses of the frontal cortex with striatal neurotransmitters at each time point
were examined.

Inflammation is a shared risk factor for neurodevelopmental and psychiatric dis-
orders [54–56], and inflammation can also be related to activation of the hypothalamic–
pituitary–adrenal (HPA) axis [57]. Air pollution is an inflammatory stimulus that has been
shown to influence inflammation-related proteins, even in young children [58], that is also
associated with HPA axis activation [59]. Consequently, as cytokine and corticosterone
changes have also been found to be critical to fronto-striatal systems in terms of brain
development and function and thus to indirectly influence behavioral functions [60,61],
measures of peripheral cytokines and corticosterone were also examined in relation to
neurotransmitter changes.

2. Materials and Methods
2.1. Animals

C57BL6/J mice were kept, bred, and exposed as previously described [24–26,62].
Briefly, mice were bred monogamously, the pups were housed solely with the dam and
were weaned on postnatal day (PND) 25. Mice were housed in standard mouse caging with
1/8′′ high performance bedding (BioFresh, Ferndale, WA, USA), under a 12 h light-dark
cycle maintained at 22 ± 2 ◦C, and fed standard Purina rodent chow, at the University
of Rochester Medical Center. Following weaning, mice were pair-housed by sex and
treatment group for the duration of the study. To preclude litter-specific effects, only
single pups/sex/litter were used for each endpoint in these studies. Sample sizes were
n = 10–12 per sex per treatment group. All mice were used and treated via protocols
approved by the University of Rochester Institutional Animal Care and Use Committee and
Committee on Animal Resources (Protocol number 102208/2010-046E), and in accordance
with NIH guidelines. Mice were euthanized at either PND 14 or PND50 when brain tissue
and serum were harvested for various analyses. Group mean ± standard error body
weights at PND14 in grams were 6.23 ± 0.17, 6.02 ± 0.17, 6.24 ± 0.18, and 6.42 ± 0.15
for female Air, female UFP, male Air, and male UFP, respectively, and did not differ by
treatment group.

2.2. Exposure

Pups were placed in small groups by litter in compartmentalized whole-body exposure
chambers and exposed to filtered air (Air) or concentrated ambient ultrafine particles
(UFPs) air pollution using the Harvard University Concentrated Ambient Particle System
(HUCAPS) fitted with a size-selective inlet and a high-volume ultrafine particle (≤100 nm)
concentrator (10–20×) that takes in outdoor air at 5000 L per minute and concentrates the
ambient UFP component, as previously described [24,26,52,63]. Exposures lasted for 4 h
per day from 0700–1100 for 4 days per week from PND (postnatal day) 4–7 and PND10–13,
with exposure timing corresponding to peak vehicular traffic outside the intake valve of the
HUCAPS instrumentation (Monday–Thursday). PND 4–14 is considered equivalent to the
human third trimester for brain development [23]. A condensation particle counter (TSI,
Shoreview, MN, 3022A) provided particle counts. Mass concentration was calculated using
idealized particle density (1.5 g/cm3). A Scanning Mobility Particle Sizer (SMPS) was used
to determine particle size distribution and median particle diameter + geometric standard
deviation. The flow of UFP-enriched and filtered air was maintained at 35–40% relative
humidity and 77–79 ◦F. Ultimate exposure concentrations are dependent upon air pollution
levels at the time of exposure. In the current studies, the exposure mass concentrations from
these exposures averaged 44 µg/m3 and the average particle size was 87.7 nm (Figure 1).
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Figure 1. Group mean ± SE values for particle size, particle mass concentration (µg/m3), and particle
counts (µg/m3) across days of concentrated ambient UFP exposures.

2.3. Neurotransmitter Analyses

Frontal cortex and striatal concentrations of various neurotransmitters were quanti-
fied by the University of Rochester Mass Spectrometry Core: DA (dopamine), DOPAC
(3,4-dihydroxyphenylacetic acid), HVA (homovanillic acid), Tyr (tyrosine), Glu (Gluta-
mate), GABA (γ-aminobutyric acid), Gln (glutamine), Kyn (kynurenic Acid), 5-HT (sero-
tonin), 5-HIAA (5-Hydroxyindoleacetic acid), and Trp (tryptophan). Tissues were thawed,
weighed, diluted in 75 µL of ice-cold acetonitrile (50%, v/v), and homogenized for 10 s via
ultra-sonication (SLPe digital sonifier, Branson Ultrasonics Corp., Danbury, CT, USA). The
homogenate was centrifuged at 10,000× g (4 ◦C) for 20 min. The resulting supernatant was
collected and centrifuged at 10,000× g (4 ◦C) for 20 min, after which the new supernatant
was collected and stored at −80 ◦C until analysis.

Stock solutions of DA, DOPAC, HVA, Glu, GABA, Glu, Kyn, 5-HT, 5-HIAA, and Trp
(Sigma Aldrich, St. Louis, MO, USA) were made at 5 mg/mL in ddH2O, with the exception
of Tyr, which was made in 0.2 M HCl. A standard mixture was created in ddH2O, with
analyte concentrations varying in accordance with prior range-finding studies, in order to
account for region-specific variations in endogenous neurotransmitters. This stock solution
was derivatized using 13C6 benzoyl chloride (BzCl, Sigma Aldrich) using a method adapted
from Wong et al. [64], to create internal standards for each individual neurotransmitter.
The derivatized internal standard mixture was aliquoted and frozen at −80 ◦C for long
term storage. Internal standard aliquots were thawed, then diluted in 50% acetonitrile
with 1% sulfuric acid prior to being added to the samples. Prior to analysis, samples were
derivatized following the same procedure. In brief, samples were centrifuged at 16,000× g
for 5 min to remove debris, then 20 µL of the resulting supernatant was placed in a clean
LoBind tube (Eppendorf, Leipzig, Germany). Next, 10 µL of 100 mM sodium carbonate,
10 µL of 2% BzCl in acetonitrile, and 10 µL of the respective internal standard were added
in sequence. Then, 50 µL of ddH2O was added to reduce the organic concentration prior to
injection. Samples were centrifuged once more to pellet any remaining protein, and the
supernatant was added to a clean autosampler vial.

LC-MS/MS analysis was carried out by a Dionex Ultimate 3000 UHPLC coupled
to a Q Exactive Plus mass spectrometer (Thermo Fisher, Waltham, MA, USA). Analytes
were separated on a Waters Acquity HSS T3 column. The mobile phases were (A) 10 mM
ammonium formate in 0.1% formic acid and (B) acetonitrile. The flow rate was set to
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400 µL/min and the column oven was set at 27 ◦C. After 5 µL of each sample was injected,
the analytes were separated using a 12 min multi-step gradient. The Q Exactive Plus
was operated in positive mode, and a parallel reaction monitoring method (PRM) was
used to detect derivatized molecules. Fragment ions were extracted with a 10 ppm mass
error using the LC Quan node of the XCalibur software (4.3, Thermo Fisher). Endogenous
analyte peak areas were compared to those of each internal standard to determine relative
abundance. Further normalizing abundance to the wet weight of the tissue yielded mass
specific concentrations of the neurotransmitters (ng/g).

2.4. Serum Cytokines and Corticosterone

Serum cytokines (IL-1α, IL-1b, IL-2, IL-6, INF-γ, and TNFα) were measured using Bio-
Rad, Mouse Cytokine Group l (Bio-Rad, Hercules, CA, USA; which has been discontinued).
The kit was run according to the manufacturer’s Bio-Plex Pro Assays protocol and run on a
Bio-Plex 200 (Bio-Rad, Hercules, CA, USA). Samples were run in duplicate and counter-
balanced across the plate based on sex and treatment group. Sample replicates with CVs
higher than 15% were excluded from analysis. Serum corticosterone levels (Arbor Assays,
Ann Arbor, MI, USA) were measured in duplicate using commercially available enzyme
immunoassay kits according to manufacturer’s specifications.

2.5. Statistical Analyses

Data were analyzed using JMP Pro17. Changes in brain neurotransmitter levels
(normalized to tissue weight) and serum cytokine levels were analyzed separately by sex
and time point using two factor ANOVAs with treatment group and time point (PND14 or
PND50) as factors, with post hoc comparisons conducted if significant interaction effects
were found. To assess fronto-striatal function, i.e., the relations between frontal cortical
and striatal neurotransmitters as well as the relations of cytokines and corticosterone with
neurotransmitters, multivariate correlation analyses based on Pearson coefficients were
utilized. Statistically significant effects were defined as p ≤ 0.05 and marginally significant
effects as p ≤ 0.10.

3. Results
3.1. Trajectory of Brain Fronto-Striatal Neurotransmitter Functions

Frontal Cortex—Changes in frontal cortical glutamatergic neurotransmitters (Figure 2;
Table 1) were primarily reflective of time point, with significant increases between PND14
and PND50 in levels of glutamate turnover (glutamine/glutamate) and of reductions
in GABA in females, while males also showed increases in glutamate turnover (glu-
tamine/glutamate), as well as reductions in levels of glutamate and of GABA across
this time period. Females did show significantly reduced levels of glutamate in response
to UFP exposures at PND14, which persisted to PND50 (main effect of UFP, F(3, 35) = 2.4,
p = 0.022).

In the case of frontal cortical serotonergic function (Figure 3; Table 1), females showed
time point-related significant reductions in levels of tryptophan and kynurenine and in-
creases in both 5HT and 5HIAA between PND14 and PND50, but these changes were not in-
fluenced by UFP exposures. Males likewise demonstrated reductions between PND14 and
PND50 in levels of tryptophan and kynurenine, but UFP exposure resulted in a persistent
reduction in levels of tryptophan (main effect of UFP: F(3, 39) = 2.19, p = 0.034). In addition,
UFP exposure in males resulted in a latent increase of >50% in levels of serotonin (5HT) as
observed at PND50 (UFP × Time Point, F(3, 39) = 2.18, p = 0.035).

Changes across time points were also found in frontal cortical dopaminergic neuro-
transmitter systems (Figure 4; Table 1), including reductions in levels of tyrosine, HVA,
HVA/DA, and DOPAC/DA, and marginally in DOPAC, along with increases in the ratio of
DA/tyrosine and marginally of DA in females, as confirmed by significant effects of Time
Point in the statistical analyses. While UFP exposure reduced levels of frontal cortical tyro-
sine in females at PND14, recovery was seen by PND50 (UFP × Time Point, F(3, 35) = 2.58,
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p = 0.014). However, a latent reduction of >30% was found in UFP-exposed females in the
DA/tyrosine ratio at PND50 (UFP × Time Point, F(3, 35) = −2.06, p = 0.046). In males, time
point-related reductions in tyrosine, HVA, HVA/DA, and DOPAC/DA, and corresponding
increases in DA and DA/tyrosine occurred between PND14 and PND50. However, no
consistent changes in responses to UFP exposures were found.
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Figure 2. Group mean ± SE levels (ng/mg/tissue weight) at PND14 and PND50 of frontal cortex
glutamatergic neurotransmitters in female (top row) and male (bottom row) mice exposed to concen-
trated ambient UFPs. Sample sizes were n = 10–12/sex/treatment group. Symbols and lines show
effects of UFP-treated mice, while shaded gray area represents filtered air control. Time Point = main
effect of time point in the analysis of variance; UFP = main effect of UFP exposure in the analysis of
variance.

Table 1. Summary of effects of UFP exposures.

FEMALE MALE
PND14 PND50 PND14 PND50

FC Neurotransmitters
Glutamine
Glutamate ↓ ↓
GABA
Gln/Glu
Glu/GABA

Tryptophan ↓
Kynurenine
5HIAA
5HT ↑
5HIAA/5HT

HVA
DOPAC
DA
NE
Tyrosine ↓
HVA/DA
DOPAC/DA
DA/Tyrosine ↓
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Table 1. Cont.

FEMALE MALE
PND14 PND50 PND14 PND50

STR Neurotransmitters
Glutamine ↓ ↓ ↓
Glutamate
GABA ↓
Gln/Glu ~↓ ~↓
Glu/GABA

Tryptophan ↓ ~↓ ~↓
Kynurenine ↓ ↓
5HIAA ↓ ↓
5HT
5HIAA/5HT ↓

DOPAC ↓
DA
NE ↑
Tyrosine ↓
DOPAC/DA ↓
DA/Tyrosine ↓

Cytokines
IL1-α
IL1-β ↓ ↓
IL-2
IL-6 ↓ ↓
IL-10
IFN-γ ↓ ↓
TFN-α ~↓ ~↓

~ = marginally significant effect.

Striatum—Time point-related changes in levels of glutamatergic neurotransmitters
(Figure 5; Table 1) were not particularly evident in the striatum between PND14 and
PND50 in either sex. However, UFP-induced changes were found in females that included
significant reductions at PND14 in both the levels of glutamine and of GABA, but both
had recovered to filtered air control levels by PND50 (glutamine: UFP × Time Point, F(3,
35) = 2.47, p = 0.019; GABA: F(3, 35) = 2.29, p = 0.028). Males likewise evidenced changes
in striatal glutamatergic function in response to UFPs that included reductions in levels
of glutamine and marginally of glutamate turnover, but unlike changes in females, these
effects were persistent and still evident at PND50 (glutamine: UFP, F(3, 38) = 2.46, p = 0.019;
glutamine/glutamate: UFP, F(3, 38)1.85, p = 0.073).

Changes in striatal serotonergic function were seen in response to UFP in both sexes
(Figure 6; Table 1). In the case of females, UFP marginally altered levels of tryptophan and
5HT and significantly reduced levels of 5HIAA. Levels of both tryptophan (marginally)
and of 5HIAA were reduced by UFP at PND14, but in both cases had recovered to fil-
tered air control values by PND50 (tryptophan: UFP × DAY, F(3, 35) = 1.97, p = 0.057);
5HIAA: UFP × Time Point, F(3, 35) = 2.91, p = 0.006). Similar but non-significant trends
were seen with kynurenine and with levels of 5HT. In the case of males, significant reduc-
tions were found in levels of tryptophan, kynurenine, 5HIAA, and 5HIAA/5HT. In the
case of 5HIAA and of 5HIAA/5HT, these effects were seen at PND14 but had recovered
by PND50 (5HIAA: UFP × Time Point, F(3, 39) = 2.4, p = 0.021; 5HIAA/5HT: UFP × Time
Point, F(3, 39) = 2.17, p = 0.036). In the case of both tryptophan and kynurenine, however,
these effects were persistent and evident at both PND14 and PND50 (tryptophan: UFP (F(3,
39) = 1.86, p = 0.071); kynurenine: UFP (F(3, 39) = 2.37, p = 0.023).
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Figure 3. Group mean ± SE levels (ng/mg/tissue weight) at PND14 and PND50 of frontal cortex
serotonergic neurotransmitters in female (top row) and male (bottom row) mice exposed to concen-
trated ambient UFPs. Sample sizes were n = 10–12/sex/treatment group. Symbols and lines show
effects of UFP-treated mice while shaded gray area represents filtered air control. Time Point = main
effect of time point in the analysis of variance; UFP = main effect of UFP exposure in the analysis of
variance; UFP × Time Point = interaction effect of time pint by UFP exposure; * significantly greater
than filtered air control.
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Figure 4. Group mean ± SE levels (ng/mg/tissue weight) at PND14 and PND50 of frontal cortex
dopaminergic neurotransmitters in female (top row) and male (bottom row) mice exposed to concen-
trated ambient UFPs. Sample sizes were n = 10–12/sex/treatment group. Symbols and lines show
effects of UFP-treated mice while shaded gray area represents filtered air control. Time Point = main
effect of time point in the analysis of variance UFP × Time Point = interaction effect of day by UFP
exposure; ~ = marginally significant, p ≤ 0.10; * = statistically significant at p ≤ 0.05; bracket indicates
significant difference between UFP DOPA level at PND14 vs. PND50.
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Figure 5. Group mean ± SE levels (ng/mg/tissue weight) at PND14 and PND50 of striatal gluta-
matergic neurotransmitters in female (top row) and male (bottom row) mice exposed to concentrated
ambient UFP. Symbols and lines show effects of UFP-treated mice while shaded gray area represents
filtered air control. Sample sizes were n = 10–12/sex/treatment group. Time Point = main effect of
time point in the analysis of variance; UFP = main effect of UFP exposure in the analysis of variance;
UFP × Time Point = interaction effect of Time Point by UFP exposure; ~ = marginally significant,
p ≤ 0.10; * = statistically significant at p ≤ 0.05; bracket indicates significant difference between UFP
and filtered air control.

Striatal dopaminergic function was also influenced by UFP exposures (Figure 7;
Table 1), primarily in females. Specifically, this included effects that showed recovery be-
tween PND14 and PND50 in terms of reductions in PND14 levels of tyrosine (UFP × Time
Point, F(3, 35) = 2.39, p = 0.022) as well as of >40% in DOPAC (3, 35) = 2.1, p = 0.043). In
contrast, latent effects of UFP exposure in females were seen in both elevated levels of >70%
in NE at PND50 (UFP × Time Point, F(3, 34) = 2.04, p = 0.049) as well as in reductions of the
DA/tyrosine ratio (UFP × Time Point, F(3, 35) = −2.27, p = 0.03). In contrast, while males
showed reductions in levels of tyrosine, DOPAC, and DOPAC/DA, along with increases in
the levels of NE and of the DA/tyrosine ratio between PND14 and PND50, UFP effects were
limited to a significant reduction in the DOPAC/DA ratio at PND14 that had recovered to
filtered air control levels by PND50 (UFP × Time Point, F(3, 38) = 2.57, p = 0.014).
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Figure 6. Group mean ± SE levels (ng/mg/tissue weight) at PND14 and PND50 of striatal seroton-
ergic neurotransmitters in female (top row) and male (bottom row) mice exposed to concentrated
ambient UFP. Symbols and lines show effects of UFP-treated mice while shaded gray area represents
filtered air control. Time Point = main effect of time point in the analysis of variance; UFP = main
effect of UFP exposure in the analysis of variance; UFP × Time Point = interaction effect of day by
UFP exposure; ~ = marginally significant, p ≤ 0.10; * = statistically significant at p ≤ 0.05; bracket
indicates significant difference between UFP PND14 from UFP PND50 level of 5HT.
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Figure 7. Group mean ± SE levels (ng/mg/tissue weight) at PND14 and PND50 of striatal dopamin-
ergic neurotransmitters in female (top row) and male (bottom row) mice exposed to concentrated
ambient UFP. Sample sizes were n = 10–12/sex/treatment group. Symbols and lines show effects of
UFP-treated mice while shaded gray area represents filtered air control. Time Point = main effect of
time point in the analysis of variance; UFP × Time Point = interaction effect of day by UFP exposure;
* = statistically significant at p ≤ 0.05.
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3.2. Interactions of Fronto-Striatal Neurotransmitter Systems

To examine potential interactive effects within fronto-striatal systems, multivariate
correlation analyses were carried out examining correlations between frontal cortex and
striatal neurotransmitter levels at both PND14 and PND50 (Figure 8).
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Figure 8. Multivariate correlation p values from correlational analyses across neurotransmitter levels
in frontal cortex and striatum from PND14 brains (top row) and PND50 (bottom row) brains of
females (left columns) and males (right columns) exposed to filtered air (left side) or concentrated
ambient UFPs (right side). FC = frontal cortex; STR = striatum; glutamatergic (Gln: glutamine, Glu:
glutamate; GABA: gamma aminobutyric acid; Gln/Glu: glutamine/glutamate; Glu/GABA: gluta-
mate/GABA), serotonergic (tryptophan; kyneurenine; 5HT: serotonin; 5HIAA: 5 hydroxyindole acetic
acid; 5HIAA/5HT: 5 hydroxyindole acetic acid/serotonin) and dopaminergic (HVA: homovanillic
acid; DOPAC: 3,4-dihydroxyphenlyacetic acid; DA: dopamine; NE: norepinephrine; Tyr: tyrosine,
HVA/DA: homovanillic acid/dopamine; DOPAC/DA: 3,4-dihydroxyphenlyacetic acid/dopamine;
DA/Tyr: dopamine/tyrosine). + = positive correlation; − = negative correlation.

PND14 Fronto-striatal Interactions—As indicated by the positive correlation pat-
terns, frontal cortex glutamatergic neurotransmitters, specifically glutamine and gluta-
mate, as well as frontal cortex serotonergic function (kynurenine, 5HTP, and 5HIAA) were
correlated with striatal neurotransmitter levels in all three classes in PND14 air-exposed
female brains. However, this pattern was altered in PND14 UFP-exposed females, where
a more pronounced effect of frontal cortical GABA control was seen, and where frontal
cortical tryptophan levels were likewise highly correlated with striatal neurotransmitter
function while correlations with frontal cortical kynurenine were no longer found. While
interactive effects of frontal cortical 5HTP were still present following UFP exposures, a
notable difference was the lack of an inhibitory control over striatal glutamate turnover
levels and the emergence of an inhibitory correlation with striatal serotonin turnover.

In the case of PND14 air-exposed male brains, neurotransmitter interactions were
prominent between frontal cortex glutamate and, in this case, GABA and all three classes
of striatal neurotransmitters; frontal cortical kynurenine and norepinephrine correlations
across striatal neurotransmitter classes were also seen in filtered air male controls. Fol-
lowing UFP exposures, however, some residual control remained with frontal cortical
GABA and with norepinephrine, while frontal cortical kynurenine correlations with striatal
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neurotransmitters were almost totally eliminated. Of note in response to UFP exposures
was also an apparent shift to striatal dopaminergic control, with significant correlations of
striatal DOPAC and DOPAC/DA with all three classes of frontal cortex neurotransmitters.

PND50 Fronto-striatal Interactions—By PND50, patterns of correlations in filtered
air control brains of both sexes differed from those seen at PND14. For filtered air control fe-
males, levels of striatal excitatory/inhibitory (glutamate/GABA) and serotonergic functions
(kynurenine, 5HT, and 5HIAA/5HT) showed interactions with all three frontal cortical neu-
rotransmitter systems. However, following UFP exposures, this striatal serotonergic control
was largely eliminated and replaced by a more prominent control by striatal glutamatergic
function, particularly over frontal cortical glutamatergic and dopaminergic function.

In PND50 male filtered air control brains, frontal cortical glutamine and glutamate
turnover, as well as tryptophan and kynurenine, were correlated with striatal neuro-
transmitter function across all three classes. However, following UFP exposures, corre-
lations were eliminated in the case of frontal cortical glutamine and kynurenine, and
reduced with glutamate turnover (glutamine/glutamate) as well as with frontal cortical
tryptophan, with a shift instead to more control by frontal cortical excitatory/inhibitory
(glutamate/GABA) levels.

3.3. Trajectory of Serum Cytokine and Changes

The trajectory of changes in serum cytokines from PND14 to PND50 are shown in
Figure 9 and summarized in Table 1. While IL-1a levels declined across this time frame in
females, no other effects of either Time Point or UFP exposure were found. While IL-1-a
levels also declined in males, persistent reductions were seen in levels of several serum
cytokines in UFP-exposed males. Specifically, marked reductions in IL-1b were found of
>70% (main effect of UFP, F(3, 23) = 3.19, p = 0.004). Similarly, serum levels of IL-6 were
reduced by 66–80% across this time period (main effect of UFP, F(3, 23) = 2.7, p = 0.013). In
addition, persistent reductions were found in IFN-γ (main effect of UFP, F(3, 34) = 2.57,
p = 0.015) that averaged 40–45%. Concurrently, marginal reductions of TNFa ranging from
35–45% were seen (main effect of UFP, F(3, 37) = 1.94, p = 0.061). Serum corticosterone
levels increased in both sexes between PND14 and PND50, but no significant effects of UFP
exposure were found in either case.
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Figure 9. (Top Two Panels) Group mean ± SE levels of serum cytokines at PND14 and PND50 in fe-
males (top row) and males (middle row) mice exposed to filtered air or UFPs. (Bottom Panel) Group
mean ± SE levels of serum corticosterone at PND14 and PND50 in females (left) and males (right) of
mice exposed to filtered air or UFPs. Time Point = main effect of time point in the analysis of variance;
UFP = main effect of UFP exposure in the analysis of variance; ~ = marginally significant, p ≤ 0.10; *
= statistically significant at p ≤ 0.05.

3.4. Interactions of Corticosterone with Frontal Cortex Neurotransmitters

Examination of correlations between serum cytokines and corticosterone with brain
neurotransmitters revealed a notable set of correlations between serum corticosterone
levels and frontal cortical neurotransmitters in PND14 male brains exposed to UFPs (Fig-
ure 10). Despite the absence of UFP-related reductions in serum corticosterone, a signif-
icant inverse relation was observed between serum corticosterone with frontal cortical
glutamatergic excitotoxicity (glutamate/GABA) levels, as were significant positive rela-
tionships between serum corticosterone and both serotonin (5HIAA/5HT) and dopamine
(DOPAC/DA) turnover.
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to filtered air (left) or concentrated ambient UFPs (right). (Bottom Panels) line of best fit corre-
lations between serum corticosterone and levels of frontal cortical neurotransmitters as indicated.
FC = frontal cortex; Gln: glutamine, Glu: glutamate; GABA: gamma aminobutyric acid; Gln/Glu:
glutamine/glutamate; Glu/GABA: glutamate/GABA), serotonergic (tryptophan; kyneurenine; 5HT:
serotonin; 5HIAA: 5 hydroxyindole acetic acid; 5HIAA/5HT: 5 hydroxyindole acetic acid/serotonin)
and dopaminergic (HVA: homovanillic acid; DOPAC: 3,4-dihydroxyphenlyacetic acid; DA: dopamine;
NE: norepinephrine; Tyr: tyrosine, HVA/DA: homovanillic acid/dopamine; DOPAC/DA: 3,4-
dihydroxyphenlyacetic acid/dopamine; DA/Tyr: dopamine/tyrosine). * = significant correlation, r2

and p values from correlation analyses.

4. Discussion

A growing body of literature now indicates that early developmental exposures to
AP have adverse consequences for brain development and behavior, effects very likely
to underlie the corresponding association of AP with several neurodevelopmental and
psychiatric disorders, including autism spectrum disorder, attention deficit hyperactivity
disorder, and schizophrenia [13,65,66]. The breadth of adverse AP effects suggests that
such exposures target features that are shared across neurodevelopmental and psychiatric
disorders [17], including alterations in brain neurotransmitter systems [67–71]. Correspond-
ingly, our prior studies have found that gestational and postnatal exposures of mice to
UFPs, thought to be the most reactive component of AP [24,52], produce characteristics of
neurodevelopmental disorders, including changes in brain neurotransmitter systems in the
frontal cortex and striatum.

However, what remains unclear is how AP exposures alter the relationships between
frontal cortical and striatal neurotransmitters, i.e., fronto-striatal functions which underly
many of the core behavioral aberrations seen in response to developmental AP exposures.

The current study sought to extend the understanding of the impact of developmental
UFP exposures specifically on brain fronto-striatal neurotransmitter system functions
to further advance understanding of potential mechanisms of behavioral consequences
associated with developmental AP exposures. It examined not only the immediate effects
of developmental UFP exposures, but also the trajectory of changes to determine potential
recovery of effects, persistence of effects, and those with a latent onset out to adolescence.
For that purpose, this study examined changes in patterns of correlations between frontal
cortex and striatal neurotransmitters as an index of fronto-striatal function, as well as
evaluating relationships between serum cytokines and corticosterone, known targets of
UFP exposures and interactive modulators of fronto-striatal systems in terms of brain
development and function [60,61].

As in prior studies, ambient inhalational exposures to UFPs in mice during the early
postnatal period altered brain neurotransmitter systems. Overall, effects were far more
prevalent in males than in females (Table 1), and these effects were also more evident
in the striatum than the frontal cortex, and included changes in levels of glutamatergic,
serotonergic, and dopaminergic neurotransmitters, suggesting an enhanced vulnerability
of the male striatum to UFPs. Further, when examined over time, females generally showed
recovery from such effects (PND50; Table 1), whereas a greater number of and more per-
sistent changes were found in male brains. Notable among these persistent changes were
reductions in striatal glutamate and glutamate turnover, was well as in precursors of sero-
tonergic systems, i.e., tryptophan and kynurenine. In relation to fronto-striatal function, an
involvement of striatal dopamine turnover, i.e., striatal DOPAC and DOPAC/DA, emerged
in relation to frontal cortical neurotransmitter function, while frontal cortical kynurenine
control was lost. In addition, males showed a persisting pattern of peripheral immunosup-
pression not seen in females as well as a role for serum corticosterone in modulating frontal
cortical neurotransmitter turnover, particularly excitotoxicity (GABA, glutamate/GABA),
serotonin turnover (5HIAA, 5HIAA/5HT), and dopamine turnover (DOPAC/DA). Col-
lectively, these findings are consistent not only with altered fronto-striatal function, but
additionally, the corticosterone correlations with frontal cortical neurotransmitters sug-
gests a broader physiological interaction controlling neurotransmitters. While some effects
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occurred in females, particularly reductions in striatal neurotransmitter levels, many of
the effects were not persistent, suggesting adaptation or compensation. Collectively, the
findings are of interest given the male bias in the prevalence of neurodevelopmental
disorders [28].

One notable effect in both sexes at PND14 was a UFP-induced loss of frontal cortical
kynurenine correlations with striatal neurotransmitters which in males was evident at both
PND14 and PND50. In addition, in males, persistent alterations in striatal serotonergic
systems were found, with significant reductions in striatal kynurenine levels and marginal
reductions in striatal tryptophan levels at both time points. Tryptophan metabolism occurs
particularly via the kynurenine pathway to generate kynurenine. Metabolism of kynurenine
leads to two intermediates: kynurenic acid, considered neuroprotective based on its ability
to block glutamate receptors and scavenge free radicals, while metabolism of kynurenine
via kynurenine 3-monooxygenase, an inflammation-mediated enzyme, produces neurotoxic
metabolites including quinolinic acid that can activate glutamate receptors [72] and cause
lipid peroxidation [73]. Thus, alterations in kynurenine pathway metabolism may be
significant, and an additional observation was the persistent reduction in striatal glutamate
in males.

The kynurenine pathway has also been implicated in neurodevelopmental disorders.
For example, altered kynurenine pathway metabolites have been reported in individuals
with autism [74]; however, such findings have not been consistent [75]. In the case of
autism, these effects are based on peripheral measures; information on changes in the
brain per se does not appear to have been studied. Additionally, kynurenine pathways
have been extensively studied in schizophrenia and implicated in its pathophysiology, as
the kynurenine pathway can regulate the levels of glutamate in the brain [76]. In those
studies in which brain kynurenine levels have been assessed in individuals diagnosed
with schizophrenia, however, there has typically been an increase in levels of kynurenine
or in the kynurenine/tryptophan ratio [77,78] and only a modest relationship of brain
levels to those in serum [79]. Clearly, additional studies to define the full consequences of
UFP-induced kynurenine pathway metabolism in the brain and its relationships to other
neurotransmitter changes, particularly glutamate, are warranted.

As noted, males also showed persistent reductions in levels of the striatal glutamate
precursor glutamine, as well as striatal glutamate turnover. Females showed acute reduc-
tions in frontal cortical glutamate and striatal glutamine at PND 14, but these were no
longer evident at PND50, where an overshoot of levels of glutamine and of glutamate
turnover relative to filtered air controls was observed, suggestive of a compensatory mecha-
nism of elevated function that did not occur in males. Interestingly, a recent study [80] used
translational proton magnetic resonance spectroscopy ([1H]MRS) to compare glutamate
and GABA levels in adult humans with ASD and found that glutamate concentrations
were reduced in the striatum, and, moreover, that these reductions were correlated with
the severity of the social behavioral features of autism. Reductions in glutamate, or in
particular the hypofunction of NMDA receptors, has been linked to impairments in intra-
cellular calcium homeostasis and neuronal activity as well as synaptic plasticity [81]. In
accordance with the lower levels of glutamate and glutamine at PND14 in females, females
also showed reduced levels of tyrosine in both the frontal cortex and striatum, with reduced
DOPAC seen in the striatum.

In addition, males showed persistent alterations in striatal serotonergic systems, with
significant reductions in striatal kynurenine levels and marginal reductions in striatal
tryptophan levels at both time points. Brain serotonin levels/function depends upon the
availability of tryptophan [82]. At PND14, reductions in striatal tryptophan and kynurenine
were accompanied by a reduction in striatal levels of the serotonin metabolite 5HIAA and
of serotonin turnover (5HIAA/5HT), with PND14 representing a period of critical brain
development in mice, i.e., consistent with third trimester human brain development [23].
The functional significance of changes in levels of these neurotransmitters was corroborated
by the evidence showing altered patterns of fronto-striatal correlations. Reductions in



Atmosphere 2024, 15, 853 16 of 22

tryptophan and 5HIAA were also seen in females at PND14, but the serotonergic system
showed evidence of compensation, with a subsequent overshoot at PND50 of 5HT and
5HIAA levels relative to filtered air control in females.

These findings of male-biased serotonergic dysfunction are of particular interest
with respect to the links between attention deficit hyperactivity disorder (ADHD) and
air pollution in numerous studies [11,83–86], and the ties of ADHD to serotonergic system
deficiency [87]. Early studies highlighted the critical role of serotonin in areas of frontal
cortex in the mediation of behaviors altered in ADHD, including inattention, impulsivity,
and disinhibition. The dorsomedial prefrontal cortex in particular has been reported to
be sensitive to low tryptophan levels [88]. Studies in human subjects using dietary tryp-
tophan depletion to reduce brain serotonergic function [89] have reported both impaired
instrumental and Pavlovian reversal learning [90], as well as in behavioral paradigms
assessing response inhibition [91], particularly response initiation and consequent sensi-
tivity inhibition [92]. While less appears to be known about specific striatal serotonergic
system changes in ADHD, studies in humans have reported reductions in striatal serotonin
transporter binding [93].

In addition, serotonergic dysfunction, both increases and decreases, have been impli-
cated in autism [94]. While systematic reviews have not supported alterations in peripheral
levels of tryptophan/kynurenine in autism spectrum disorder, behavioral studies have
shown differential behavioral impacts of tryptophan depletion in individuals diagnosed
with autism relative to healthy controls. For example, an early study reported increases
in repetitive and self-injurious behavior following acute tryptophan depletion in some
autistic individuals [95]. Reductions in serotonin transporter binding have been found in
adults with high-functioning autism [51] as well as in children [96], as have reductions in
density of serotonin transporters and of specific types of 5HT receptors [97]. In a study in
mice, brain serotonin depletion produced deficits in social interaction and communication
behaviors [98], features consistent with autism spectrum disorder. Interestingly, studies
have also reported reduced serotonin synthesis in males 2–5 yr of age with autism [99].
Collectively, serotonergic and dopaminergic effects might relate to peripheral levels of
amino acids, as peripheral sources of amino acids, particularly aromatic amino acids (e.g.,
tryptophan and tyrosine) are precursors to serotonin and dopamine [100,101]. Studies have
reported influences of air pollution exposure on levels of plasma amino acids [102–104].

A further observation from the current study was the persistent immunosuppression
produced by UFPs, specifically in serum levels of IL-1β, IL-6, IFN-γ, and TNF-α, again,
in males only. These data correspond to findings from our prior studies showing reduc-
tions in male hippocampal IL-6, in striatal IL-1β and in midbrain IL-1β and TNFα levels
at PND14 following exposures to a concentrated ambient UFP concentration averaging
96 µg/m3 [24]. These reductions may reflect serotonergic vulnerability to UFPs, as 5HT
receptors are prevalent in immune cells [105]. Whether similar reductions in cytokines
in brains also occurred remains to be determined. Moreover, immunosuppression is also
a component of neurodevelopmental disorders. Cytokines are also known to play key
roles in brain growth, regulation, and function both during development [106,107] and
in adulthood [108]. Indeed, pharmacological suppression of proinflammatory cytokine
activation of IL-1β, IL-6, TNF-α, and IFN-λ has been shown to significantly inhibit both
neurogenesis and oligodendrogenesis in the subventricular zone [109]. While cytokine
imbalance is well documented in SCZ, directions of results are often contradictory [19]. Of
interest with respect to the current findings are reports of reductions in serum TNF-α levels
in chronic schizophrenia patients [110]. In addition, decreased serum levels of IL-2 have
been associated with increases in positive syndrome scale scores in schizophrenia [111].
Moreover, current findings in males could suggest a subsequent inability of males to mount
immune responses against inflammation, considering that certain of these cytokines, e.g.,
IL-1 and IL-10, can have major anti-inflammatory properties [112].

In addition, male UFP-exposed PND14 brains revealed a correlation between serum
corticosterone levels and frontal cortical neurotransmitters, particularly the turnover of
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glutamate, serotonin, and dopamine. Interactions of serum corticosterone with brain
neurotransmitters have long been recognized [113], and such interactive effects occur
during the period of postnatal development used here, as indicated by studies demonstrat-
ing impacts of maternal adrenalectomy [114] and maternal metapyrone (corticosterone
antagonist) administration [115] on offspring brain neurotransmitter levels. However,
correlations in the current study occurred without an accompanying alteration in levels
of serum corticosterone in response to UFP exposures. One potential interpretation of
such effects at PND14 is a delay in the maturation of the HPA axis, which normally shows
a stress hyporesponsive period in rodents with low basal corticosterone levels until ap-
proximately PND12 [116]. Clearly, further studies are warranted to assess the basis of the
corticosterone-neurotransmitter interactions following UFP exposures.

5. Conclusions

In summary, the current findings demonstrate male-biased persistent changes in brain
neurotransmitters, particularly in the striatum, in conjunction with altered patterns of
fronto-striatal neurotransmitter correlations with marked immunosuppression following
developmental (third trimester equivalent) exposures to inhaled concentrated ambient
UFP air pollution. While acute changes were observed in females, these effects were often
recovered from by PND50 or showed significantly opposite effects, suggesting overcom-
pensation. Three changes in males suggest an integration across physiological responses
to UFP, including (1) the loss of frontal cortical kynurenine control over striatal neuro-
transmitter function, as kynurenine metabolites can influence glutamate function and
thus excitotoxicity, an effect seen in both sexes; (2) persistent immunosuppression that
could relate to altered serotonergic function; and (3) the control of striatal neurotransmitter
function by peripheral corticosterone levels. Dysfunction of fronto-striatal systems, as well
as kynurenine alterations, tend to occur across neurodevelopmental disorders, including
ASD, SCZ and ADHD, all of which are also linked to AP exposures [117]. The mechanisms
of these interactive effects cannot be discerned from the current study and will require
further efforts. In addition, it may be particularly useful to understand mechanisms by
which the female brain appears to override the effects of UFP exposures, leading to ap-
parent compensation. The current findings also emphasize the need for more granular
assessments of fronto-striatal assessment given the multiplicity of these systems and their
often overlapping structures [33]. Moreover, since different fronto-striatal systems mediate
specific behavioral functions, the correlations with particular behavioral features would be
informative. The findings from the current study also provide biological plausibility for
the epidemiologic associations between AP exposure and neurodevelopmental disorders.
Given that link, identification of the contaminant components of UFPs that underlie these
effects will ultimately be critical not only for elaborating the mechanisms of the effects, but
for purposes of public health protection through regulation.
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