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Abstract: Presently, the harm to human health created by air pollution has greatly drawn public
attention, in particular, vehicle emissions including nitrogen oxides as well as particulate matter.
How to predict air quality, e.g., pollutant concentration, efficiently and accurately is a core problem in
environmental research. Developing a robust air quality predictive model has become an increasingly
important task, holding practical significance in the formulation of effective control policies. Recently,
deep learning has progressed significantly in air quality prediction. In this paper, we go one step
further and present a neat scheme of masked autoencoders, termed as masked air modeling (MAM),
for sequence data self-supervised learning, which addresses the challenges posed by missing data.
Specifically, the front end of our pipeline integrates a WRF-CAMx numerical model, which can
simulate the process of emission, diffusion, transformation, and removal of pollutants based on atmo-
spheric physics and chemical reactions. Then, the predicted results of WRF-CAMx are concatenated
into a time series, and fed into an asymmetric Transformer-based encoder–decoder architecture for
pre-training via random masking. Finally, we fine-tune an additional regression network, based on
the pre-trained encoder, to predict ozone (O3) concentration. Coupling these two designs enables
us to consider the atmospheric physics and chemical reactions of pollutants while inheriting the
long-range dependency modeling capabilities of the Transformer. The experimental results indicated
that our approach effectively enhances the WRF-CAMx model’s predictive capabilities and outper-
forms pure supervised network solutions. Overall, using advanced self-supervision approaches, our
work provides a novel perspective for further improving air quality forecasting, which allows us to
increase the smartness and resilience of the air prediction systems. This is due to the fact that accurate
prediction of air pollutant concentrations is essential for detecting pollution events and implementing
effective response strategies, thereby promoting environmentally sustainable development.

Keywords: air quality prediction; deep learning; self-supervised learning; Transformer; O3

1. Introduction

Air pollution is one of the main environmental issues that has a severe effect on
public health [1–3]. Urbanization, industrialization and fossil fuel consumption are the
main causes of severe air pollution issues. In particular, transportation is a significant
contributor to fossil fuel consumption and is associated with devastating health impacts,
such as respiratory and cardiovascular diseases, and even death [4–6]. During the past few
decades, air quality forecasting has become a research hotspot in controlling air pollution.
Air pollutant concentration information is crucial for preventing human health issues
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and strengthening environmental management. Therefore, researchers employ various
strategies to predict air pollutant concentrations. These methods can be grouped into two
categories [7,8]: (i) deterministic methods based on hypothesis theory and prior knowledge
and (ii) statistical methods based on capturing characteristics from data (see Figure 1,
left-hand side).
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Figure 1. Left: Traditional air prediction pipeline. Right: The proposed masked air modelling
framework for improving air quality prediction.

Predicting air pollutant concentrations (APCs) is influenced by various complicated
factors. The generation of air pollutants involves intricate chemical reactions in the atmo-
sphere. Besides, meteorological factors (e.g., wind speed, temperature, relative humidity,
wind direction) influence not only the diffusion of air pollutants, but also photochemical
reactions and subsequent concentration changes. Temperature affects atmospheric and ven-
tilation conditions; relative humidity and precipitation alter the deposition characteristics
of particulate matter; and wind speed facilitates the diffusion and spread of pollutants [9].
Overall, meteorological forecast deviation, complex chemical processes, uncertainties in
pollutant emission inventories, and imperfect parameterization of physical processes in the
model lead to errors between the predicted results and measured values [10,11]. Develop-
ing a robust model for predicting APCs remains challenging due to inaccurate or missing
observations.

To address the above issues, a promising direction lies in data-driven air quality fore-
cast with Artificial Intelligence (AI) models, in particular, deep learning such as Transformer.
Transformer [12] is a deep learning model primarily applied in natural language processing
tasks. It relies on self-attention mechanisms to process sequential data, enabling it to capture
dependencies regardless of their distance in the input sequence. The data-driven simulation
optimization can automatically identify patterns and regularities in data. However, this
requires a large amount of labeled data. Recently, self-supervised learning via masked au-
toencoding has been proven to be a promising scheme for learning generalized pre-trained
representations [13,14]. For example, BERT [13] uses masked language modeling, achieving
state-of-the-art results in tasks like text classification and question answering. Nevertheless,
self-supervised pre-training has not been fully explored in APCs. In fact, due to limited or
missing observations, masked autoencoding that removes a portion of the air quality data
and learns to predict the removed content is natural and applicable in air quality prediction.
We propose a composite model that integrates WRF-CAMx model and a neat scheme of
masked autoencoders to accurately predict air pollutant O3 concentrations (see Figure1
Right), which is one of the highest risk factors for global premature mortality [15–17]. The
main contributions of this research are as follows:

1. We propose a hybrid air quality prediction pipeline, which does not only simulate
atmospheric physics and chemical reactions of pollutants, but also inherits the long-
range dependency modeling capabilities of the Transformer.

Figure 1. Left: Traditional air prediction pipeline. Right: The proposed masked air modeling
framework for improving air quality prediction.

Predicting air pollutant concentrations (APCs) is influenced by various complicated
factors. The generation of air pollutants involves intricate chemical reactions in the at-
mosphere. Furthermore, meteorological factors (e.g., wind speed, temperature, relative
humidity, wind direction) influence not only the diffusion of air pollutants, but also photo-
chemical reactions and subsequent concentration changes. Temperature affects atmospheric
and ventilation conditions; relative humidity and precipitation alter the deposition char-
acteristics of particulate matter; and wind speed facilitates the diffusion and spread of
pollutants [9]. Overall, meteorological forecast deviation, complex chemical processes,
uncertainties in pollutant emission inventories, and imperfect parameterization of phys-
ical processes in the model lead to errors between the predicted results and measured
values [10,11]. Developing a robust model for predicting APCs remains challenging due to
inaccurate or missing observations.

To address the above issues, a promising direction lies in data-driven air quality fore-
cast with Artificial Intelligence (AI) models, in particular, deep learning such as Transformer.
Transformer [12] is a deep learning model primarily applied in natural language processing
tasks. It relies on self-attention mechanisms to process sequential data, enabling it to
capture dependencies regardless of their distance in the input sequence. The data-driven
simulation optimization can automatically identify patterns and regularities in data. How-
ever, this requires a large amount of labeled data. Recently, self-supervised learning via
masked autoencoding has been proven to be a promising scheme for learning generalized
pre-trained representations [13,14]. For example, BERT [13] uses masked language model-
ing, achieving state-of-the-art results in tasks like text classification and question-answering.
Nevertheless, self-supervised pre-training has not been fully explored in APCs. In fact, due
to limited or missing observations, masked autoencoding that removes a portion of the
air quality data and learns to predict the removed content is natural and applicable in air
quality prediction. We propose a composite model that integrates WRF-CAMx model and a
neat scheme of masked autoencoders to accurately predict air pollutant O3 concentrations
(see Figure 1, right-hand side), which is one of the highest risk factors for global premature
mortality [15–17]. The main contributions of this research are as follows:
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1. We propose a hybrid air quality prediction pipeline that not only simulates atmo-
spheric physics and chemical reactions of pollutants, but also inherits the long-range
dependency modeling capabilities of the Transformer.

2. We design an asymmetric Transformer-based encoder–decoder architecture as a
promising scheme of masked air modeling, which yields a nontrivial and meaningful
self-supervisory sequence representation learning task.

3. In terms of hour-by-hour simulation performance, the proposed MAM can effectively
boost the WRF-CAMx and purely supervisory learning models’ predictive capabil-
ities, which provides more than 26 percent (correlation coefficient) of performance
improvements.

2. Related Work

According to the features of existing research, air quality forecasting strategies can be
grouped into two major categories: deterministic methods and statistical methods.

The structure of a deterministic model is predefined according to certain theoretical
assumptions and prior knowledge. Thus, deterministic methods utilize a set of equations
describing the atmospheric physical and chemical processes to simulate diffusion with
meteorological and other data inputs [7]. Various representative air quality models have
been proposed to simulate the complex changes in atmospheric pollutants. The Community
Multiscale Air Quality (CMAQ) model [18–20], Weather Research and Forecasting model
coupled with the Chemistry (WRF–Chem) model [21,22], the Chemical Lagrangian Model of
the Stratosphere (CLaMS) [23], and the Comprehensive Air Quality Model with Extensions
(CAMx) [24,25] are typically employed in air pollutant concentration forecasting and are
widely used in scenario and policy analyses. Although the theoretical understanding
of pollutant diffusion mechanisms continues to be enriched and refined, deterministic
models are typically associated with sophisticated a priori knowledge, such as determining
a model structure using theoretical assumptions and estimating parameters empirically,
where the predictive performance is limited [26–28]. Furthermore, the accuracy of such
methods depends on the abundance of information and data about emission sources.
In general, these errors usually fall into two major types: (i) the inherent biases from
parameterizing physical processes and discretizing differential equations reduce simulation
accuracy and (ii) the internal variability driven by the sensitivity to the initial conditions,
such as meteorological fields and emissions.

Unlike deterministic models, statistical methods can avoid using complex theoreti-
cal models, gradually emerging in air pollution prediction [29]. Statistical methods aim
to capture patterns and regularities between input data and predictive variables, with-
out relying on explicit knowledge of the underlying physical and chemical processes in
the atmosphere [7,30]. Statistical methods are typically divided into classical statistical
methods and machine learning methods. Classic statistical methods establish a certain
statistical relationship (e.g., AutoRegression Integrated Moving Average [31], or Geograph-
ically Weighted Regression [32]) by analyzing the forecast and monitoring data within the
same time period. Traditional machine learning methods include Support Vector Machine
(SVM) [33,34], multilabel classifier based on Bayesian [35], Random Forest [36], hidden
Markov model [37], Boosted Regression Trees [38], and XGBoost [39]. In summary, statisti-
cal forecasting methods analyze the statistical regularity of pollutants and then predict the
pollution trend. However, statistical models tend to severely degrade when simulating ex-
treme episodes. This is due to the fact that the training data are limited in the representation
of complex meteorological phenomena and nonlinear patterns [40].

As an emerging research branch of statistical methods, deep learning is able to ef-
fectively capture potential nonlinear relationships from data, and its nonlinear relation-
ship’s forecast ability is superior to that of traditional statistical methods. Typical deep
learning networks for forecasting air pollution concentrations include Multilayer Percep-
tron (MLP) [41], Recurrent Neural Network (RNN) [42], Generative Adversarial Network
(GAN) [43], Long Short-Term Memory (LSTM) neural network [44], CNN-LSTM model [45],
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LSTM variants [46], etc. Deep learning methods show satisfactory performance in extracting
latent pattern and inherent features from data [47]. Since emission, diffusion, conversion,
and removal of air pollutants are dynamic processes that evolve over time, air pollutant
prediction is transformed into a time series data forecasting task, and is used to capture the
spatiotemporal feature of pollutants.

3. Method

The proposed algorithm consists of two parts: (1) The Weather Research and Forecasting–
Comprehensive Air Quality Model with Extensions (WRF-CAMx) model, and (2) a neat
scheme of masked autoencoders that reduces uncertainty and improves simulation accuracy.
The implementation details are shown in Figure 2.
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region has consistently attracted considerable attention. For these factors, the YRD region is
selected as the research area. The meteorological fields of three successive nested domains
with horizontal resolutions of 27 km (d01), 9 km (d02) and 3 km (d03) were simulated by
WRF model version 3.9 [25]. The outer domain covers the Chinese mainland, the middle
domain covers the eastern part of China, and the inner domain covers the YRD region.
CAMx employs a two-layer nested grid with resolution and grid center points identical
to the second and third layers of WRF. Each layer of the CAMx grid has slightly smaller
coverage than the WRF grid to reduce the influence of boundary fields on simulation
results [48–50].

3.1.2. Model Building

The Global Final Analysis data provided by the National Centers for Environmental
Prediction (NCEP) provides the initial and boundary conditions for the WRF model, with
a spatial resolution of 1◦ × 1◦ and a time interval of 6h. Meteorological data output
from the WRF model and emission inventory were inputted into the CAMx version6.5
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3.1. WRF-CAMx Modeling

The Weather Research and Forecasting (WRF) model provides hourly weather simula-
tion data for subsequent missions. The Comprehensive Air Quality Model with Extensions
(CAMx) model is applied to simulate pollutant concentrations, and the WRF output is
processed together with the emission inventory as its input. The time resolution of the
model forecast results is 1 h.

3.1.1. Simulation Domain

The Yangtze River Delta (YRD) region, one of China’s most industrialized regions,
is located on the eastern coast of China. The YRD region is composed of 41 cities in the
Shanghai municipality, Zhejiang, Jiangsu and Anhui provinces. The air quality issue in
the YRD region has consistently attracted considerable attention. For these factors, the
YRD region is selected as the research area. The meteorological fields of three successive
nested domains with horizontal resolutions of 27 km (d01), 9 km (d02), and 3 km (d03)
were simulated by WRF model version 3.9 [25]. The outer domain covers the Chinese
mainland, the middle domain covers the eastern part of China, and the inner domain
covers the YRD region. CAMx employs a two-layer nested grid with resolution and grid
center points identical to the second and third layers of WRF. Each layer of the CAMx grid
has slightly smaller coverage than the WRF grid to reduce the influence of boundary fields
on simulation results [48–50].

3.1.2. Model Building

The Global Final Analysis data provided by the National Centers for Environmental
Prediction (NCEP) provides the initial and boundary conditions for the WRF model, with
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a spatial resolution of 1◦ × 1◦ and a time interval of 6 h. Meteorological data output
from the WRF model and emission inventory were inputted into the CAMx version 6.5
model to simulate air pollutant concentrations. The emission inventory of the YRD region
provided by the Shanghai Academy of Environmental Sciences was adopted within the
inner domain, with a resolution of 4 km. The Multi-resolution Emission Inventory for China
(MEIC) developed by Tsinghua University was adopted within the other two domains, with
a spatial resolution of 0.25 ◦ × 0.25◦ (http://meicmodel.org.cn) [51,52]. According to the
principle of conservation of total emissions, bilinear interpolation was used to interpolate
the involved emission inventories to a resolution that matches each nested layer of the
CAMx model. The essential parameterization schemes of the WRF-CAMx model are listed
in Table 1 [48].

Table 1. The parameterization schemes of the WRF-CAMx model.

Physical parameterization scheme

Longwave radiation RRTM scheme
Shortwave radiation Goddard scheme

Land surface Noah land surface model
Cumulus parameterization Kain–Fritsch scheme
Planetary boundary layer YSU scheme

Chemical parameterization scheme

Gas-phase chemical mechanism CB05
Particulate matter chemistry SOAP/CF

Dry deposition Wesely model
Wet deposition Seinfeld and Pandis model

3.2. Masked Air Modeling
3.2.1. Problem Statement

Given the WRF-CAMx simulation results {D0, D1, · · · , Dh−1} of meteorology and air
quality for the past (h) time periods, we aimed to predict the real air quality concentration
for the next time period (Oh). In other words, our goal is to find a mapping for predicting
Oh, which can be written as

fθ

(
D0, D1, · · · , Dh−1

)
= O∗

h , (1)

where O∗
h denotes the predicted value for the next time period of the input sequence, and θ

indicates learnable parameters. To infer θ, a popular practice is to directly optimize the error
between Oh and O∗

h . However, limited data annotation may result in poor generalization of
the model. Therefore, in this work, we focus on leveraging the self-supervised model to
learn good sequence representation, then fine-tune downstream tasks, i.e., the prediction of
air pollutant O3 concentration.

Note that O3 concentration is confirmed to exhibit a causal relationship with the
air pollution data, e.g., SO2, NO2, PM2.5, and meteorological data. Specifically, wind
direction determines the direction of dispersion; higher wind speeds accelerate dispersion;
and relative humidity and temperatures typically affect the rate of atmospheric chemical
reactions. Therefore, four meteorological parameters (temperature, relative humidity, wind
direction, and wind speed) and four air pollutant concentrations simulated by CAMx
(SO2, NO2, PM2.5, and O3) are selected as the model input in the research, and we set the
time span of the sequence to 12 h. We will detail our masked air modeling in the rest of
the section.

3.2.2. Masked Autoencoders for Context Understanding

Masked language and image modeling, which aims to hold out a portion of the input
and train networks to predict the masked content, have made great progress on natural

http://meicmodel.org.cn
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language processing (NLP) and computer vision (CV) communities. The preponderance of
evidence continues to indicate that this self-supervised learning can produce generalized
pre-trained representations for various downstream tasks.

Significant interest in this pre-training paradigm arose following the success of some
milestones, e.g., BERT [13] and MAE [14]. However, self-supervised pre-training has not
been fully explored in air quality forecasting (AQF). In fact, due to inaccurate or missing
observations, the scheme that removes a portion of the air quality data and learns to predict
the removed content is natural and applicable in air quality prediction. In this work, we
attempt to explore the potential of this pre-training strategy in AQF, and refer to this as
masked air modeling (MAM). This practice does not only directly solve the problem of
missing data, but also promises to provide excellent representation for prediction tasks
through fine-tuning.

Formally, the proposed MAM is a framework of neutral learning paradigm. In this
work, following MAE, we leverage a simple Transformer-based autoencoder as an instance
to reconstruct the missing signal, given its partial observation. To this end, we randomly
select time-continuous samples [x1, x2, · · · , xn] (where xi = [Di] ∈ R8) from the dataset
to serve as our sequence input, and mask (i.e., remove) a subset of sequence without
replacement based on a uniform distribution. Our training strategy is straightforward.
One reason it is straightforward is that the input to the MAM encoder is only on visible
unmasked vectors, where the MAM encoder is a ViT [53], including alternating layers of
multi-headed self-attention (MSA) and MLP blocks:

P0 = [xg; x1E; x2E; x3E; · · · ; xmE] + Epos, (2)

P∗
i = MSA(FN(Pi−1)) + Pi−1, (3)

Pi = MLP(FN(P∗
i )) + P∗

i , (4)

i = 1, · · · , L − 1, L (5)

where xg is the learnable global token; FN(·) is the normalization layer, which is applied
before network blocks (L is the number of blocks); E ∈ RK×D and Epos denote trainable
linear projection parameters and position embeddings, respectively. Another reason it is
straightforward is that decoder input is the full set of tokens, including (i) encoded visible
features and (ii) mask tokens, i.e.,

Q =
[
[pg

L||p1
L]; [p

g
L||X1]; · · · ; [pg

L||Xn−m]
]
+ Dpos, (6)

where PL = [pg
L; p1

L; · · · ; pm
L ] is the encoder output, and X = [X1; X2; · · · ; Xn−m] denotes a

learnable vector sequence indicating mask tokens, and [·||·] is the concatenation operation.
Finally, Q will be fed into another series of Transformer blocks to predict the missing
data. The decoder is only used during pre-training to address the missing data problem.
Therefore, the architecture of the decoder can be flexibly designed. It is important to notice
that unlike the original ViT model, we attach the extra learnable embedding pg

L to sequence
representations, thus enhancing the interaction of local and global features. In the original
ViT, pg

L often acted as a class embedding for the final classification tasks.

3.2.3. Learning Prediction Representation

In order to fulfill air quality prediction, we remove the pre-trained MAM decoder
and introduce a predictor, which is applied to the sequence features extracted from the
pre-trained MAM encoder. The predictor also consists of alternating layers of MSA and
MLP blocks, but here, the extra learnable embedding serves as a “regression token” Z , i.e.,
prediction representation, which is fed into a regression head implemented by an MLP
with one hidden layer. During the training phase, the parameters of the encoder are frozen,
and only the predictor is trainable, which allows us to facilitate a direct inheritance of
the encoder’s powerful context modeling capabilities acquired during the pre-training.
In addition, the pre-trained encoder–decoder provides a data augmentation method: the
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practice involves performing random masking on input sequences, wherein the masks are
different for each iteration and so they generate new training samples.

3.2.4. Loss Function

Our approach consists of two targets, namely reconstruction and prediction; both
belong to regression tasks. Therefore, in this work, we use simple element-wise mean-
squared error (MSE) loss to optimize our model, and we find that this works well in
our experiments.

Lrecon =
∣∣∣
∣∣∣FD(FE(x))− x

∣∣∣
∣∣∣
2

2
, (7)

Lpred = ||FP(FE(x))− y||22, (8)

where x = [x1, x2, · · · , xn] denotes input sequence; y indicates ground truth label; and
FE, FD, and FP are the encoder, decoder, and predictor, respectively. More complex loss
functions are worth exploring, but we will leave that to future works.

4. Experiment
4.1. Ground-Level Air Pollutant Measurements

The Yangtze River Delta region includes a total of 41 cities, as shown in Figure 3. Hourly
air pollutant concentration observation data are obtained from National Urban Air Quality
Realtime Release Platform (http://www.cnemc.cn/, (accessed on 1 May 2024)). The simulated
data of the WRF-CAMx model were extracted according to the longitude and latitude of
the air quality monitoring sites and were established in correspondence with the observed
data. Air pollution concentration observation data were used as labels for the forecast data,
aiming to calculate simulation errors. The experiment involved pollutant concentration and
meteorological data from the YRD in January, April, July, and October 2021.
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4.2. Performance Metrics

In this section, we focus on the performance of MAM in predicting air pollutant
concentrations and compare it against other algorithms. Mean Bias (BIAS), Root-Mean-
Squared Error (RSME), Index of Agreement (IOA), and Correlation Coefficient (COR) are
applied to evaluate the accuracy of air pollutant concentration predictions. The evaluation
metrics are described as follows:

BIAS =
1
N

N

∑
i=1

(xi − x̂i) (9)

RMSE =

√√√√ 1
N

N

∑
i=1

(xi − x̂i)2 (10)

http://www.cnemc.cn/
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IOA = 1 − ∑N
i=1(xi − x̂i)

2

∑N
i=1(|xi − x̂|+ |x̂i − x̂|)2

(11)

COR =
∑N

i=1(xi − x)(x̂ − x̂)√
∑N

i=1(xi − x)2(x̂ − x̂)2
(12)

where N is the total number of predicted (or monitored) data. xi represents the simu-
lated value of pollutant concentration. x̂i represents the monitoring value of air pollutant
concentration. x is the mean of {x1, ..., xN} and x̂ is defined in the same way.

4.3. Results and Discussion

To verify the effectiveness of MAM, we designed a series of experiments on the
obtained air quality dataset, including simulated data and corresponding monitoring data
in the Yangtze River Delta. A 10-fold cross-validation method was applied to assess the
performance or effectiveness of various methods. The input dataset was split into ten
equally sized subsets called folds. The model was trained and tested ten times. During each
evaluation process, nine folds were used as the training set and the remaining one fold was
used for validation. This evaluation process was repeated ten times to ensure that each fold
was tested. For each assessment of the proposed model performance, BIAS (µg/m3), RSME
(µg/m3), IOA, and COR were employed as statistical indicators to quantify the accuracy of
O3 simulations.

4.3.1. Comparison with Baseline

To test the performance of our self-supervised framework, we compared our method
with the baseline (WRF-CAMx model). Cross-validation results on the air quality dataset
(i.e., O3) are shown in Figure 4. Overall, the proposed MAM performed better than the
baseline, with higher IOA and COR, and lower BIAS and RMSE. O3 concentrations varied
in different seasons. January, April, July, and October were selected to represent winter,
spring, summer, and autumn, respectively. According to the Mean Bias shown in Figure 4,
the hourly O3 concentration data simulated by WRF-CAMx in the YRD region are generally
lower than the monitoring station data. This phenomenon is more obvious in April.

Our MAM framework outperformed the WRF-CAMx model in the four months, with
a 0.10–0.26 IOA enhancement and a 0.13–0.27 COR increase, demonstrating that MAM has
a stable positive effectiveness. To be specific, compared with the WRF-CAMx model, the
RMSE of the April simulation results decreased from 40.69 to 22.87, and the IOA increased
from 0.60 to 0.86, which is the most obvious change. This may be due to a low accuracy of
the WRF-CAMx model; thus, the effect of MAM is obvious. As shown in Figure 4, in April,
there is a significant discrepancy between the simulation results of the WRF-CAMx model
and the observed data at monitoring stations. Limited knowledge of pollutant sources and
imperfect representation of physicochemical processes would pose biases in the predicted
results of the WRF-CAMx.

The hour-by-hour time series comparison results of O3 concentration in the YRD
region (Shanghai, Zhejiang, Jiangsu, and Anhui) are shown in Figure 5. The O3 simulated
data in the YRD region are divided into four datasets based on administrative areas, and
hourly average values are validated against monitoring data. The temporal variation trend
and numerical range of the simulated concentration produced by the proposed model are
generally consistent with the observed values. Table 2 shows the forecast performance of
the proposed method in the four regions, evaluated using correlation coefficients. For the
four regions, the simulated hourly O3 concentrations in each month are compared with the
monitoring data.

In order to further analyze the effectiveness of MAM in air quality forecasting, we
validate the predicted results based on the four months of data provided by each moni-
toring site, shown in Figure 6. Correlation coefficient is used to evaluate the difference
between forecast data and monitoring data, where monitoring data are used as labels.
The correlation coefficients are visualized in the corresponding geographical locations,
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and different colors correspond to different levels of correlation coefficients. It can be
concluded that MAM achieved satisfactory accuracy in the YRD region. In detail, most of
the correlation coefficients range between 0.655 and 0.711, with the highest reaching 0.768.
From the results, the proposed MAM is clearly able to produce satisfactory prediction
accuracy for different geographical locations in the Yangtze River Delta region.
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Figure 4. Scatter density plots of cross validation results for the WRF-CAMx model (left) and our
MAM model (right). Cells with aggregate counts up to 1% of the total will be colored. Each row from
top to bottom represents the simulation results in January, April, July, and October, respectively.

4.3.1. Comparison with Baseline

To test the performance of our self-supervised framework, we compared our method
with the baseline (WRF-CAMx model). Cross validation results on the air quality dataset
(i.e., O3) are shown in Figure4. Overall, the proposed MAM performed better than the
baseline, with higher IOA and COR, lower BIAS and RMSE. O3 concentrations varied
in different seasons. January, April, July, and October were selected to represent winter,
spring, summer, and autumn respectively. As the Mean Bias shown in Figure4, the hourly
O3 concentration simulated by WRF-CAMx in the YRD region are generally lower than the
monitoring station data. This phenomenon is more obvious in April.

Figure 4. Scatter density plots of cross-validation results for the WRF-CAMx model (left) and our
MAM model (right). Cells with aggregate counts up to 1% of the total will be colored. Each row from
top to bottom represents the simulation results in January, April, July, and October, respectively.
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Our MAM framework outperformed the WRF-CAMx model in the four months, with
0.10-0.26 IOA enhancement and 0.13-0.27 COR increasement, demonstrating MAM has a
stable optimistic effectiveness. To be specific, compared with the WRF-CAMx model, the
RMSE of the April simulation results decreased from 40.69 to 22.87, and the IOA increased
from 0.60 to 0.86, which is the most obvious change. This may be due to low accuracy of
WRF-CAMx model, thus the effect of MAM is obvious. As shown in the Figure4, in April,
there is a significant discrepancy between the simulation results of the WRF-CAMx model
and the observed data at monitoring stations. Limited knowledge of pollutant sources and
imperfect representation of physicochemical processes would pose biases in the predicted
results of WRF-CAMx.

The hour-by-hour time series comparison results of O3 concentration in the YRD
region(Shanghai, Zhejiang, Jiangsu, and Anhui) are shown in Figure5. The O3 simulated
data in the YRD region were divided into four datasets based on administrative areas, and
hourly average values were validated against monitoring data. The temporal variation
trend and numerical range of the simulated concentration produced by the proposed model
are generally consistent with the observed values. Table 2 shows the forecast performance
of the proposed method in the four regions, evaluated using correlation coefficients. For
the four regions, the simulated hourly O3 concentrations in each month were compared
with the monitoring data.

Figure 5. Time series comparison. From top to bottom: Shanghai, Zhejiang, Jiangsu, and Anhui.
From left to right: January, April, July, October.

Figure 5. Time series comparison. From top to bottom: Shanghai, Zhejiang, Jiangsu, and Anhui.
From left to right: January, April, July, and October.

Table 2. Comparison of ozone prediction results. The values represent the average correlation
coefficients, and the best are highlighted in bold.

Area Model January April July October

Shanghai Ours 0.713 0.740 0.696 0.541
WRF-CAMx 0.411 0.561 0.409 0.456

Zhejiang Ours 0.765 0.741 0.753 0.646
WRF-CAMx 0.551 0.491 0.525 0.525

Jiangsu Ours 0.756 0.771 0.711 0.660
WRF-CAMx 0.545 0.568 0.534 0.554

Anhu Ours 0.731 0.735 0.711 0.615
WRF-CAMx 0.472 0.413 0.440 0.416
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4.3.2. Comparison with Supervision Models

Many supervised learning models are widely used in predicting air pollutant concen-
tration. Therefore, to evaluate the performance gain brought by the pre-training phase,
we compared our method with supervised approaches (such as Transformer (w/o MAM),
Fully connected Neural Networks (FNN), Random Forests (RF)), WRF-CAMx and Trans-
former + MAM (w/o WRF-CAMx). In this experiment, all models are tested on the dataset
mentioned above, and the performance of each machine learning model is verified by the
10-fold cross-validation method. Comparison of validation results between our method
and other models are shown in Table 3. From the results, we found that MAM pre-training
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Many supervised learning models are widely used in predicting air pollutant concen-
tration. Therefore, to evaluate the performance gain brought by the pre-training phase,
we compared our method with supervised approaches (such as Transformer (w/o MAM),
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Fully connected Neural Network (FNN), Random Forest (RF)), and WRF-CAMx and Trans-
former + MAM (w/o WRF-CAMx). In this experiment, all models are tested on the dataset
mentioned above, and the performance of each machine learning model is verified by the
10-fold cross-validation method. A comparison of validation results between our method
and other models are shown in Table 3. From the results, we found that MAM pre-training
can lead to significant improvements in both IOA and COR metrics. It is worth noting
that although the Transformer model is more advanced, it does not exhibit a significant
advantage over traditional FCN and RF models. Transformer framework often suffers poor
generalization when training on a limited dataset, since Transformer lacks certain inductive
biases such as locality.

Table 3. Performance comparison of all models. The best are highlighted in bold.

Model BIAS RMSE IOA COR

Transformer + MAM (Ours) −4.349 23.627 0.820 0.689
Transformer −6.678 25.264 0.719 0.596

FNN 29.688 37.421 0.604 0.585
RF 9.864 22.981 0.733 0.584

WRF-CAMx −12.578 32.403 0.666 0.473
Transformer + MAM (w/o WRF-CAMx) −4.971 25.171 0.746 0.611

5. Conclusions

In this paper, a deep learning model, termed as masked air modeling (MAM), is
proposed to delve into the effectiveness of self-supervised learning in air quality pre-
diction. Moreover, in order to simulate atmospheric physics and chemical reactions of
pollutants, we combine conventional atmospheric models (WRF-CAMx) with data-driven
deep learning methods. This design leverages the strengths of both approaches to enhance
simulation accuracy and predictive capabilities. The experimental results show that in
terms of hour-by-hour simulation performance, MAM can effectively boost the model’s
robustness, demonstrating its effectiveness. Accurate prediction of atmospheric pollu-
tant concentrations is crucial for formulating strategies to control air pollution, protecting
human health, and environmental management.

Even though the proposed self-supervised masked air modeling (MAM) has an advan-
tage in air quality prediction, it often requires large-scale data and computational resources
for effective pre-training [54], which may be a potential limitation. Moreover, our method
may suffer performance degradation in unseen contexts due to the domain bias between
training data and test data. At the same time, the reliance on reconstruction tasks may
not always align with downstream tasks, leading to poor generalization in real-world
applications. Transformer models can be extended to larger spatial domains, but there are
some challenges. For example, a larger spatial domain increases the number of tokens,
resulting in higher computational costs and memory usage; this is due to the fact that a
Transformer scales quadratically with the number of tokens [12]. That is, scaling to larger
spatial domains typically requires more diverse and extensive training data to capture
additional variability and complexity. The above challenges may be addressed by using
advanced initialization techniques or lightweight Transformer variants. For future work,
exploring air pollutant interactions among different locations could provide insights into
spatial dependencies and pollutant dispersion patterns. Implementing multi-source data
fusion techniques and advanced spatiotemporal models can further improve predictive
capabilities and inform effective pollution control strategies.
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