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Abstract: This study leverages the relationships between the Great Plains low-level jet (GP-LLJ) and
the circumglobal teleconnection (CGT) to assess the enhancement of 30-day rainfall forecast in the
Northern Great Plains (NGP). The assessment of 30-day simulated precipitation using the Climate
Forecast System (CFS) is contrasted with the North American Regional Reanalysis, searching for
sources of precipitation predictability associated with extended wet and drought events. We analyze
the 30-day sources of precipitation predictability using (1) the characterization of dominant statistical
modes of variability of 900 mb winds associated with the GP-LLJ, (2) the large-scale atmospheric
patterns based on 200 mb geopotential height (HGT), and (3) the use of GP-LLJ and CGT conditional
probability distributions using a continuous correlation threshold approach to identify when and
where the forecast of NGP precipitation occurs. Two factors contributing to the predictability of
precipitation in the NGP are documented. We found that the association between GP-LLJ and CGT
occurs at two different scales—the interdiurnal and the sub-seasonal, respectively. The CFS reforecast
suggests that the ability to forecast sub-seasonal precipitation improves in response to the enhanced
simulation of the GP-LLJ and CGT. Using these modes of climate variability could improve predictive
frameworks for water resources management, governance, and water supply for agriculture.

Keywords: drought; extended rainfall; sub-seasonal predictability; low-level jet; circumglobal
teleconnection; EOF; CFS; NARR

1. Introduction

Six major U.S. climate model development institutions (NOAA GFDL, NCAR, NASA
GISS, DOE ACME, NASA GMAO, and NCEP CFS—list of acronyms in Table S1) have
coordinated efforts to better understand the sources of climate predictability for more than
a decade [1]. The motivation behind these modeling efforts is to improve operational sub-
seasonal forecasts (30- and 60-day) [2]; however, climate predictability at such temporal lead
times is still a major challenge [3–7]. Of particular interest is the sub-seasonal forecasting
skill and predictability of precipitation in the United States Northern Great Plains (NGP)
during late spring and early summer, May through July [8]. During this season, extended
precipitation events, or their absence, may lead to natural disasters, such as the 1993 flood
in the Midwest or the 1988 and 2012 droughts (Figures 1 and 2), which are considered some
of the costliest events in the history of the United States, with estimated damages of USD 20
and 40 billion, respectively [9,10]. Losses in the NGP included drops in corn yields of about
30% for Nebraska, Iowa, Minnesota, and Illinois, which affected local farming and regional
economies [11]. These states lie in the U.S. Midwest, where the corn economy is valued
at about USD 50 billion [12]. This region is also considered a production hub for corn,
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soybean, cattle, and halves in the United States [13,14], making climate diagnostics and
prognostics crucial to food and bio-fuel production and water resources security [15–22].
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iability of the Great Plains low-level jet (GP-LLJ) [24–26]. The GP-LLJ is the maximum 
wind frequency in the west region of Oklahoma–Kansas. During summer, NGP precipi-
tation and the GP-LLJ are linked through the transport of moisture from the Gulf of Mex-
ico, the region’s primary source of moisture. The GP-LLJ can be identified using wind data 
from rawinsonde stations [24] and wind profiler observations [26]. Wind at 900 mb is in 
several retrospective reanalyses [27], such as NCEP-NCAR [28] and the North American 
Regional Reanalysis (NARR) [29]. The GP-LLJ, which has its maximum annual cycle dur-
ing May through July (with a peak in July), facilitates efficient moisture transport through 
an extensive plains surface center at 900 mb and along 95° W [27].  

Rainfall variability of the Northern Great Plains is also linked to large-scale atmos-
pheric teleconnections [27,30,31]. At 200 mb, the association between the GP-LLJ index 
and geopotential height (HGT) shows a positive strength center over Tennessee, acting 
over the country’s eastern half, and a Rossby-wave train pattern [32]. This geopotential 
height pattern matches the interannual variability characteristic of the atmospheric cir-
cumglobal teleconnection (CGT) [33]. Observation and modeling indicate that CGT affects 
summer precipitation in the United States [30,31]. The CGT pattern with one center of 
action located over North America is essential in driving the variability of summer pre-
cipitation over the Northern Hemisphere [33]. The authors [30] showed that the CGT pat-
tern affects the rainfall distribution during the summer. This evidence can be a source of 
predictability for precipitation in North America and East Asia. Further, [31] found two 
CGT climatic modes that affect North America’s summer precipitation in the Southern 
and the Northern Great Plains. The pattern in the Northern Great Plains is responsible for 

Figure 1. Summer precipitation anomaly (∆P) of the 1993 July–August (JA) season. Precipitation units
are in mm/day and the climatology is used from the 1950–2013 period. The dataset is from [23], and
the box defines a region (37.5◦–45◦ N; 103◦–90◦ W) for a precipitation index used in the next figures.
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Figure 2. (a) Precipitation climatology (P) in bars for the Northern Great Plains–Midwest region
(MW = 37.5◦–45◦ N; 103◦–90◦ W). The precipitation associated with the 1993 flood and 1988 drought
is shown as a black line to illustrate the monthly changes compared to the 1981–2010 climatology.
(b) Interannual variability of late spring–early summer (May through August) precipitation over the
Northern Great Plains–Midwest region (37.5–45◦ N; 103–90◦ W). The 1993 historical flood event is
highlighted, as well as other major wet (red arrows) and dry (blue arrows) years since 1950. The
dataset is from [23].
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Precipitation variability in the NGP has been related to the spatial and temporal vari-
ability of the Great Plains low-level jet (GP-LLJ) [24–26]. The GP-LLJ is the maximum wind
frequency in the west region of Oklahoma–Kansas. During summer, NGP precipitation
and the GP-LLJ are linked through the transport of moisture from the Gulf of Mexico,
the region’s primary source of moisture. The GP-LLJ can be identified using wind data
from rawinsonde stations [24] and wind profiler observations [26]. Wind at 900 mb is in
several retrospective reanalyses [27], such as NCEP-NCAR [28] and the North American
Regional Reanalysis (NARR) [29]. The GP-LLJ, which has its maximum annual cycle during
May through July (with a peak in July), facilitates efficient moisture transport through an
extensive plains surface center at 900 mb and along 95◦ W [27].

Rainfall variability of the Northern Great Plains is also linked to large-scale atmo-
spheric teleconnections [27,30,31]. At 200 mb, the association between the GP-LLJ index
and geopotential height (HGT) shows a positive strength center over Tennessee, acting over
the country’s eastern half, and a Rossby-wave train pattern [32]. This geopotential height
pattern matches the interannual variability characteristic of the atmospheric circumglobal
teleconnection (CGT) [33]. Observation and modeling indicate that CGT affects summer
precipitation in the United States [30,31]. The CGT pattern with one center of action located
over North America is essential in driving the variability of summer precipitation over
the Northern Hemisphere [33]. The authors [30] showed that the CGT pattern affects the
rainfall distribution during the summer. This evidence can be a source of predictability for
precipitation in North America and East Asia. Further, [31] found two CGT climatic modes
that affect North America’s summer precipitation in the Southern and the Northern Great
Plains. The pattern in the Northern Great Plains is responsible for 16% of the early summer
(June–July) variability, as evidenced by the application of empirical orthogonal function
(EOF) analyses [30]. These authors showed that the maximum strengthening of the CGT
during July matches the maximum transport of low-level moist air from the Gulf of Mexico
into the Great Plains. How these two components of U.S. climate variability (the CGT and
the low-level jets) affect the predictability of summer precipitation over the NGP region is
of significant interest to this study.

Although NGP precipitation variability has been extensively studied for several
decades [24,26,27], the predictability in the sub-seasonal range is still a challenge [34,35].
The authors [36] reported that the Climate Forecast System’s (CFS) rainfall forecasting
skill is limited at ranges beyond the two-week lead time. An improved initial state in the
tropical atmosphere CFS version 2 concerning its predecessor version 1 has been translated
into significant improvements in the 15-day range precipitation forecast. A multi-model
ensemble prediction seems promising, at least for some variables, such as sea surface
temperature [3,36]. Still, comparisons among several models from major national modeling
centers and CFS reveal a similar skill for precipitation [36]. Further understanding of the
regional-to-global modes of variability, such as the GP-LLJ and CGT and their interaction,
can help improve sub-seasonal forecasts, especially in agricultural landscapes reliant on
precipitation forecasts for crops.

The following questions arise: How strong is the link between the GP-LLJ and CGT in
a modeling framework concerning the evolution of summer precipitation over the Northern
Great Plains? Furthermore, how does precipitation predictability vary when the internal
dynamics of a GCM capture these two modes of climate variability? In other words, can
the interaction between the GP-LLJ and CGT influence precipitation predictability within
a prognostic 30-day range? We hypothesize that the forecast skill of precipitation over
the NGP can be better assessed if GP-LLJ and CGT’s patterns of variability at the daily to
sub-seasonal and daily scales are adequately simulated by the model used. We consider
that the GP-LLJ’s regional scale and the CGT’s large-scale circulation could reveal the
underlying mechanisms responsible for improving sub-seasonal predictability in the NGP.
The objectives are threefold, as follows: (1) estimate the GP-LLJ and CGT indices based on
NARR and CFS diagnostic and CFS forecast products for at least 30 years; (2) estimate the
correlation threshold to assess the unconditional and conditional causality between NGP
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precipitation and the GP-LLJ and CGT indices; and (3) evaluate the 30-day forecast skill of
the CFS-based daily precipitation forecast products for NARR data using the conditional
association between NGP precipitation and the GP-LLJ and CGT indices. We selected the
30-day length based on the CFS’s reported limited 20-day forecast skill [36] and NOAA’s
Climate Prediction Center efforts to provide 30-day precipitation outlooks [2]. Then, the
performance of CFS-based precipitation forecasts was evaluated with the GP-LLJ and CGT
simulation for the extended wet and drought events of 1993 and 1988, respectively.

The paper’s organization is as follows: Section 2 describes the sources of data, and
Section 3 describes the methodology, which explains the estimation of GP-LLJ and CGT
indices, correlation thresholds, and associations between precipitation estimates and the
forecast products. Section 4 analyzes the results, and Section 5 discusses the paper’s central
thesis.

2. Materials and Methods
2.1. Data

The following three data sources were selected to capture the observed, simulated,
and forecasted atmospheric conditions: gridded precipitation, reanalysis, and retrospective
forecasting from CFS.

2.1.1. Observed Gridded Precipitation Products

Daily precipitation values from two datasets were used for climate diagnostics and
CFS’s ability to simulate the sub-seasonal variability and predictability over the Northern
Great Plains region. (1) The gridded grided precipitation at 1/16◦ spatial resolution [23]
was derived from approximately 20,000 NOAA Cooperative observed stations, gridded
using the synergraphic mapping system method [37], and scaled monthly to match the
long-term mean from the parameter-elevation regressions on independent slopes model
(PRISM) [38]. (2) The Climate Prediction Center (CPC) unified gauge-based analysis
precipitation data [39] were also used to compare results to a modeling simulation with
coarser resolution [40]. CPC-unified precipitation, in its native 0.25◦ × 0.25◦ resolution,
covers the conterminous United States. Both precipitation datasets have daily resolution
and cover the NGP.

2.1.2. NARR Reanalysis

The NARR was used to validate the forecasts. We used the meridional wind at
900 mb (V900) to compute the GP-LLJ index, and HGT at 200 mb was used to calculate
the CGT index (see below). The NARR integrates the assimilation of observed hourly
precipitation [29], which becomes crucial at daily and sub-seasonal scales to identify the
GP-LLJ and its atmospheric response at 200 mb geopotential height.

2.1.3. CFS

The retrospective and forecast CFS connected observations to modeling diagnostics
and prognostics. The model skill assessment under known boundary conditions used
the same variables from the global CFS retrospective reanalysis (CFS-RR) [41]. The CFS
reforecast (CFS-R) skill assessment used fields similar to the CFS-RR dataset. We computed
forecasts of 30-day precipitation from the CFS reforecast [36] obtained from the National
Centers for Environmental Prediction (NCEP) in its reforecast version. The CFS refore-
cast was from the NOAA National Operational Model Archive and Distribution System
(NOMADS) [42]. The 9-month CFS-R simulations were used on the existing period from
1982 through 2009. For all cases presented here, we took the 12Z initialization from 1 May
through 1 September each year. We applied a similar analysis for CFS in forecast mode to
assess the predictability skill. The approach explored whether the model using the same
reanalysis as initial conditions shows an adequate representation of 30-day precipitation of
the NGP associated with the dominant statistical modes of GP-LLJ variability.



Atmosphere 2024, 15, 858 5 of 21

2.2. Methodology

The GP-LLJ and CGT patterns of variability were obtained using EOF analyses on
900 mb meridional wind and 200 mb HGT, respectively. The correlations between pre-
cipitation and the GP-LLJ and CGT used the historical precipitation distribution and the
meridional wind’s temporal PC and the HGT fields, respectively (as observed in Figure 3).
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Figure 3. (a) Spatial empirical orthogonal function (EOF1) pattern of 900 mb meridional wind from
the North American Regional Reanalysis (NARR) obtained from daily fields from 1 May through
1 September 1993, with an explained variance of 30%. (b) Spatial correlation patterns among the
temporal principal component (PC1; from the top figure) and both daily precipitation and (c) daily
200 mb geopotential height (HGT). Oblique lines represent significant values at the t-test 95% level of
confidence.

2.2.1. The GP-LLJ Index

Before assessing the predictability skill of the modeling products in forecast mode,
we evaluated whether the CFS model using boundary conditions from the reanalysis
version (CFS-RR) adequately represented the dominant statistical modes of GP-LLJ vari-
ability associated with NGP precipitation. We defined the GP-LLJ temporal index as the
temporal principal component (PC) from 900 mb meridional wind during the summer
MJJA. We defined the spatial patterns as EOFs and the temporal patterns (or time series)
as PCs [43]. The GP-LLJ is usually defined as the maximum wind frequency in a 95◦ to
100◦ west region on the Oklahoma–Kansas border at 37◦ N [24]. We followed a similar
EOF approach described in [27,32], using the 900 mb meridional wind anomaly (∆V) to
assess the intraseasonal and interannual variability GP-LLJ. We applied the GP-LLJ EOF
analysis over anomalies ∆V = V − V, where V = 1

n ∑n
i=1 vi is the seasonal mean average of

MJJA for each year. Thus, the analysis removed the seasonal mean, and the higher EOFs
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explain the sub-seasonal variability. EOF analyses characterize the statistical modes of
variability of the GP-LLJ [44]. The GP-LLJ statistical modes of variability were obtained
from both 1-day and 5-day time series sampling frequencies over the domain (15◦–50◦ N;
110◦–75◦ W) for the sub-seasonal and interannual scales, respectively. Both the daily and
5-day fields were previously band-pass filtered on the sub-seasonal scale (10- to 60-day).
This band-pass filtering process was performed independently each year using a length
from 1 May through 1 September. For the interannual variability, we computed the 5-day
sampling frequency after band-pass filtering for each year from 1982 to 2014. The filtering
approach helped show whether the CFS-RR at the sub-seasonal scale could simulate the
variability of the GP-LLJ as the first EOF mode described by the NARR. As in [27], the EOF1
and EOF2 show the GP- LLJ wet and dry modes of variability, respectively. The GP-LLJ
index was defined as the temporal principal component (PC) of the NARR and the CFS
from 900 mb meridional wind during the summer MJJA. The spatial patterns in this paper
were denominated as EOFs and the temporal patterns (or time series) as PCs [43].

2.2.2. The CGT Index

The NGP precipitation response to upper-level atmospheric was evaluated using spa-
tial and temporal correlations between the GP-LLJ temporal index and 200 mb geopotential
height (HGT) anomalies. Also, we applied the EOF analysis to a 200 mb geopotential height
to identify the CGT large-scale atmospheric pattern linked with the temporal variability and
spatial distribution of precipitation and the GP-LLJ. This study explored the spatiotemporal
variation of the HGT and the CGT index. The first pattern of variability emerged from
the spatiotemporal variability of the CGT index, which was reconstructed by the HGT’s

EOF2 and PC2 (
∼

HGT = EOF2 × PC2). The second pattern of variability emerged from the
EOF1 of 10- to 60-day band-pass-filtered HGT anomalies for all cases. These patterns of
variability enabled the systematic evaluation of CGT as the dominant pattern of variability.
The consequent correlations and EOF maps (see Section 3.1) represent the spatial coherence
of variability between observations and simulations, quantified by the spatial correlation
between a limited domain. To systematically identify the CGT as the dominant mode
of variability for each simulation, we applied a 10- to 60-day band-pass filter. This step
guaranteed that EOF1 is CGT’s dominant statistical mode [45]. The multi-taper method
(MTM) identifies the significant spectral peaks in the temporal PCs and time series [46].

2.2.3. The Thirty-Day Forecast of the CFS

The forecasts of 30-day precipitation, computed from the CFS reforecast [36], revealed
significant insights. The nine-month CFS simulations were used for the entire period from
1982 through 2009, which is the study period. We computed a precipitation index (NGP
precipitation) to compare observed and simulated precipitation; the NGP precipitation is
defined as the average precipitation over the NGP region (37.5◦–45◦ N and 103◦–90◦ W; see
the box in Figure 1). We used the initialization at 12Z from 1 May through 1 September each
year for all the CFS cases. To assess the predictability skill of CFS-R (in forecast mode), we
used a correlation analysis between the observed and simulated GP-LLJ and CGT indices.
We analyzed the forecast skill of precipitation based on the GP-LLJ and the CGT indices for
a 30-day timespan. Here, both retrospective and reforecast simulations applied the same
analyses. For the reforecast cases, we used a 90-day window to compute the statistical EOF
of v-wind and HGT and ensure the integration of the sub-seasonal signals. We used the
Pearson correlation between the CFS and observed NGP daily precipitation to evaluate the
simulation skill.

2.2.4. Spatial and Temporal Attributions

The selected simulations of the GP-LLJ are those with statistically significant Pearson
correlation coefficients between the GP-LLJ index of the NARR and the CFS-R for a 30-day
range after the forecast initialization. We used the spatial correlation between the PC1 of the
900 mb meridional wind and the geopotential height to diagnose CGT at 200 mb. Changes
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in PC1—in the 30-day Hövmoller diagram over the 40◦–50◦ N latitudinal average—support
the statistical significance of the correlations as one of the criteria for pattern emergence
from the principal components analysis. The second criterion is that all cases from 1982
to 2009 show the significant cases that occurred when the GP-LLJ and CGT correlate with
the already characterized patterns using the retrospective reanalysis cases. While the
individual t-statistics test estimated the local significance at each grid point, the collective
significance was evaluated using the method of field significance [47]. The implementation
of this method used randomization of every grid point, with 1000 Monte Carlo sampling,
to compute a non-parametric distribution to assess the collective significance of the spatial
patterns.

Correlation threshold selection
We selected the cases in which the correlation was statistically significant and reached

values higher than the estimated correlation threshold selection according to a non-parametric
approach. The selection used a non-parametric distribution constructed by randomizing
the original sequence of the time series using a bootstrap approach [44]. This distribution
is the null distribution for testing the selected threshold. A bivariate normal distribution
for two variables like GP-LLJ index and NGP precipitation is used, as follows:

f (x, y) =
1

2πσxσy
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)

[(
x − µx

σx

)2
+

(
y − µy

σy

)2
− 2ρ

(
x − µx

σx

) (
y − µy

σy

)]}
, (1)

which explores all the possible conditional realizations. The dimensional variables x and y
define the function f (x, y), the mean µx and µy, and the standard deviations σx and σy, and
ρ is the correlation between x and y. Considering the hypothesis that overlapping GP-LLJ
and CGT enhance the predictability of NGP precipitation, we use a multidimensional
normal distribution of order three. In other words, this testing assesses the conditional
probability of an event happening when another two events have already occurred (e.g., a
correlation higher than the threshold value between precipitation and GP-LLJ and CGT).
The multivariate normal distribution equation is as follows:

f (x) =
1

(2π)
K/2

√
det[Σ]

exp
[
−1

2
(x − µ)T [Σ]−1(x − µ)

]
, (2)

where µ is the K-dimensional mean vector of x, and [Σ] is the covariance matrix of x [44].

3. Results
3.1. Diagnostics of NGP Precipitation, GP-LLJ, and CGT

Our thesis states that concurrent multi-scale climate phenomena improve the pre-
dictability of 30-day precipitation, or its absence, linked to extended wet or drought
phenomena in the NGP area. We tested the proposed sub-seasonal predictive framework
for the precipitation event in 1993 and the consequent flooding event in the NGP. Also, we
tested the sub-seasonal predictability of precipitation deficits characteristic of droughts,
such as the 1988 event in the same area.

3.1.1. Geospatial Precipitation Pattern Attributions

The spatial distribution of the GP-LLJ and CGT and the associated precipitation across
the NGP area were analyzed using NARR data (Figure 3). The EOF analysis showed the
spatiotemporal patterns of these variables for the 900 mb meridional wind (V900). The
associated temporal PC1 is correlated with precipitation and a 200 mb geopotential height.
The V900 EOF1 shows the GP-LLJ and represents only 30% of the explained variance
for 1993. The core of the GP-LLJ—along with Texas, Oklahoma, and Kansas—shows the
same pattern as in other studies [24,27,32,43]. The spatial pattern of correlation (between
precipitation and the V900 PC1, Figure 3b) shows a statistically significant positive relation
in the north-central United States (Nebraska, Iowa, Minnesota, South Dakota, and North
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Dakota) with correlation values higher than 0.4 (p < 0.05). This pattern coincides with
the region of the maximum precipitation anomaly in Figure 1 and shows the association
between the GP-LLJ and NGP precipitation. Simultaneously, the 200 mb HGT correlated
with the V900 PC1 showed a high positive anomaly region over the Great Lakes, part of a
wave pattern resembling the CGT. As noted by [30,31], this wave pattern reveals a large-
scale linkage between continental patterns of precipitation anomalies and the variability
of the westerly upper jet stream. The HGT pattern indicated by a complementary EOF
analysis with 200 mb HGT anomalies (Figures 4 and S1 with a global domain) that the
matching patterns obtained from a second approach using the EOF2. The complementary
EOF analysis on the 200 mb HGT showed the CGT as the second dominant pattern (11%
of explained variance). Next, we evaluate whether CFS-RR, in a reanalysis mode, can
reproduce similar variability for the GP-LLJ and the CGT.
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Figure 4. Spatial pattern of the empirical orthogonal function mode 2 (EOF2) from 200 mb geopotential
height anomalies (∆HGT) from the North America regional reanalysis (NARR) obtained from daily
fields from 1 May through 1 September (MJJA), 1993, with an explained variance of 11%.

3.1.2. Sub-Seasonal Modes of Variability

The dominant temporal scales of the GP-LLJ, CGT, and NGP precipitation were
analyzed with power spectra to identify the temporal ranges of variability (Figure S2).
Also, we suggest whether CFS-RR in a reanalysis mode can reproduce the GP-LLJ and CGT
variability patterns. The GP-LLJ index (V900 PC1) had a dominant 6-day spectral signal,
the GCT index (HGT200 PC2) showed a band at 10–60 days, and precipitation presented
both. This result indicates that the dominant temporal modes vary in the daily (6 days)
and sub-seasonal (10–60 days) scales, which are statistically significant at the 95% level of
confidence (Figures S2 and S3). In Figure 5, the Hövmoller diagram for 1993 along 102◦–90◦

W depicts the relationship among precipitation (shaded), the GP-LLJ index (magenta line),
and the CGT index (green line). It reveals the coherent variability of the GP-LLJ index
at a high frequency and the CGT at a low frequency. With arrows, Figure 5 highlights
CFS precipitation’s forecast cases, with a correlation above 0.35 (compared with observed
precipitation). These instances coincide with the maxima of EOF’s meridional winds at
900 mb and EOF’s 200 mb geopotential height. This result illustrates cases in which the
magnitude of the GP-LLJ index and the phase transition indicated by the CGT index might
play an essential role in the predictability skill of NGP precipitation.
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Figure 5. Longitudinal-time Hövmoller diagram of observed precipitation for the 1993 summer
season. The latitudinal average is taken over 40◦ N–50◦ N. Superimposed solid lines are the GP-LLJ
index (magenta) and CGT index (green), which were obtained using empirical orthogonal function
analysis using the North American Regional Reanalysis (NARR). Big arrows and horizontal lines are
added to indicate the cases of high CFS precipitation correlation.

3.1.3. Interannual Modes of Extended Precipitation and Drought

The analysis of EOF on the wind speed at 900 mb on the CFS-RR and NARR datasets
has shown the ability of both products to capture the underlying mechanisms of precip-
itation surplus and deficit in the NGP. The patterns of interannual variability of V-900
emerge from the EOF analysis applied to the NARR and CFS-R datasets for 1979–2010
and 1979–2014, respectively (these periods coincided with the observations). In Figure 6,
the dominant EOF1 and EOF2 spatial patterns obtained from NARR and CFS-RR indicate
GP-LLJ’s wet and dry climate regimes. In our analyses, the wet mode (EOF1) and the
dry mode (EOF2) contribute 26% and 19% to the total variability, respectively, consistent
with [32]. Additional analyses reveal that the CFS-RR contributes similarly to the total
variability (Figure 6b). While the CFS-RR shows statistically similar results as the NARR,
some minor differences between both products might be due to loading the two leading
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PCs. In the CFS-RR, the explained variance for the wet mode (EOF1) is 23% and for the dry
mode (EOF2) is 18%. Based on the results above, the CFS simulates the GP-LLJ’s moisture
transport mechanisms of the Gulf of Mexico by enhancing it in the wet-EOF mode and
suppressing it in the dry-EOF mode. The results indicate that the CFS-RR simulates the
interdependence between NGP precipitation, the GP-LLJ, and the CGT, as in the 1993 flood
and 1988 drought events. The sources of predictability of extreme rainfall might be more
evident than those for drought. The latter indicates chronic or interannual water deficits,
which require further analysis. We explore the 1988 drought using the EOF1 for 850 mb
meridional wind (v850). The V850 correlated with precipitation (for coefficients between
0.45 and 0.55 during the 30-day range starting on July 15), confirming the dry GP-LLJ mode
under drought (Figure S4). In the section below, we use a modeling framework in a forecast
mode to illustrate how GP-LLJ and CGT are simulated for a 30-day precipitation forecast
time.
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Figure 6. Spatial patterns of the two dominant empirical orthogonal functions (EOF1 and EOF2) of
900 mb meridional wind for (a) the North American Regional Reanalysis (NARR) and (b) the Climate
Forecast System retrospective reanalysis (CFS-RR). Both were obtained from the periods 1979–2014
and 1979–2010. The explained variance of these EOFs is shown in percentage at the top of each graph.

3.2. Sources of NGP Precipitation Predictability

We further examined the relationship among GP-LLJ, CGT, and NGP precipitation
in a forecast mode (CFS-R) at the daily and sub-seasonal scales. A particular interest was
identifying whether precipitation predictability is enhanced when the CFS-R captures
GP-LLJ and CGT during the initialization process. As a testing example, we evaluated
the forecast skill of simulated precipitation over the NGP for 1988 and 1993 using tem-
poral correlation for a 30-day timespan (Table 1). The selection of cases was based on
unidimensional and multidimensional distributions for continuous correlation thresholds.
These analyses indicated the unconditional and conditional probability distributions for an
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improved predictive skill for NGP precipitation, GP-LLJ, and CGT. In the unidimensional
case (Figure 7), a 0.4 correlation threshold at 95% suggests that the three variables are
unlikely to be generated as a random process. When NGP precipitation is attributed to
GP-LLJ or CGT, the bi-dimensional conditional distribution indicates that the probability
of precipitation can be attributed to the occurrence of the regional- to large-scale climate
phenomena presented here (Figure 8). The third case supports the central hypothesis of this
study, meaning that the multidimensional conditional distribution—the rising probability
of NGP precipitation when both GP-LLJ and CGT occur—likely leads to improvements in
the predictive skill above a given correlation threshold (Figure 9).

Table 1. The Pearson correlation for the precipitation index (NGP precipitation), the Great Plains
low-level jet (GP-LLJ) index, and the circumglobal teleconnection (CGT) index between the Climate
Forecast System reforecast (CFS-R) and the North American Regional Reanalysis (NARR) for 30 days
of simulations. The initial simulation time is indicated in the first column, and statistically significant
results (p < 0.05) are bolded. The correlation values were aggregated for 100◦–60◦ W region, as
observed in Figure S6.

Model Initialization NGP Precipitation GP-LLJ Index CGT Index

11 May 1988 0.44 0.14 0.12

21 May 1988 0.77 0.36 0.13

25 June 1988 0.46 0.21 0.31

30 June 1988 0.37 0.39 0.57

15 July 1988 0.36 0.38 −0.33

9 August 1988 0.42 0.36 −0.39

5 July 1993 0.38 0.71 0.12

20 July 1993 0.48 0.60 0.3

9 August 1993 0.55 0.56 −0.22

14 August 1993 0.38 0.57 0.29

24 August 1993 0.45 0.01 0.12

With the attributions and the correlation threshold selected (above 0.35), we evaluated
the correlation between NGP precipitation and the modeling and forecast products. Table 1
shows the correlation between NARR (observed) and CFS-R (reforecast) precipitation for
only eleven cases. Individual precipitation cases perform well (with r > 0.35), as some
other cases show low correlation coefficients (Figure S5 shows two examples of simulated
precipitation), like what [36] reported. Table 1 also shows the correlation among the CFS-R,
GP-LLJ, and CGT for the observed and forecast precipitation datasets. The forecasting skill
of the CGT was evaluated by correlating the HGT patterns from the 100◦–60◦ W region
evolving 30 days, as shown in the Hövmoller diagram in Figure S6. This figure shows the
temporal evolution of the dominant patterns of low and high values of HGT. The HGT
emerged patterns based on EOF1 and EOF2 indicate that the CGT is the dominant mode of
variability. The forecast-based patterns and phase transitions were comparable to those in
NARR.

The relationship among the GP-LLJ, CGT, and NGP precipitation (Figures 5 and S6)
was expanded to the entire CFS-R simulations from 1982 to 2009 and synthesized in
Figures 10 and 11. These figures synthesize the 30-day correlation analyses of precipitation
between the CFS-R and NARR for all the cases. The location of the boxes represents the
forecast time of initialization and, inherently, the randomness of the cases. For MJJ only, we
found that a total of 126 cases of NGP precipitation (Figure 10; 22.9% of the total analyzed)
correlate (values higher than 0.35 and p < 0.05) in the 30-day range. For an extended MJJA,
154 cases represented 21%, indicating no significant changes. From the first set, 40.5% (51)
of cases showed correlation values higher than 0.5. We selected the threshold based on [44]



Atmosphere 2024, 15, 858 12 of 21

multidimensional probability distribution. The analysis used this pool of cases (22.9%) to
assess the CGT and the GP-LLJ’s role in NGP precipitation.
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Figure 7. Unconditional probability density functions (PDF) of the correlation values for the following
three indices: NPG precipitation (a), GP-LLJ index (b), and CGT index (c)—cyan bars. The total
number of cases for each distribution is 701, and the continuous line is the fitted normal PDF. The
x-axis represents the correlation values between the observation and reanalysis and the forecasted
value from CFS-R for each index, respectively. The null distribution (gray bars) is constructed by
bootstrap of this pool of cases and with a randomization of the original time series before computing
the correlation.



Atmosphere 2024, 15, 858 13 of 21Atmosphere 2024, 15, x FOR PEER REVIEW 13 of 22 
 

 

 
Figure 8. Conditional bi-dimensional probability distribution (2D-PDF) constructed with Equation 
(2) for the following two pairs of datasets: (a) the GP-LLJ and NGP precipitation and (b) the CGT 
index and NGP precipitation (Z200, PREC). The data represent the total available cases between 
1982 and 2009 (701 cases). 

Table 1. The Pearson correlation for the precipitation index (NGP precipitation), the Great Plains 
low-level jet (GP-LLJ) index, and the circumglobal teleconnection (CGT) index between the Climate 
Forecast System reforecast (CFS-R) and the North American Regional Reanalysis (NARR) for 30 
days of simulations. The initial simulation time is indicated in the first column, and statistically 
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and NGP precipitation (Z200, PREC). The data represent the total available cases between 1982 and
2009 (701 cases).
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The 30-day correlation analyses—the GP-LLJ indices and 200 mb HGT anomalies 
(Figure 11a,b)—are shown for the cases in which simulated precipitation was significantly 
correlated (r > 0.35; blue blocks in Figure 10), and only from May through July (MJJ). Cat-
egories for the cases were split into four groups according to the correlation value, such 
as r > 0.35, r > 0.45, r > 0.55, and r > 0.65. Of a total of 126 selected cases, 55 (43.6%) were 
able to appropriately simulate the GP-LLJ (Figure 11a) and 47 (37.3%) were able to simu-
late the CGT (Figure 11b), which is like what occurs in Table 1. These 43.6% and 37.3% 
represent the CFS’s skill to simultaneously reproduce the GP-LLJ and the CGT, showing 
their importance to the predictability of NGP precipitation. This analysis’ important ca-
veat is that the selected cases were limited to 9% of the total possible in the CFS-R (121 
cases). This sampling population could be fixed by including a multi-model analysis. 
However, this extra analysis is beyond the scope of this study.  

Figure 9. The conditional and unconditional probability distribution of correlation for the NGP
precipitation. The x-axis is the precipitation correlation values between observation and CFS-R for
1982–2009 based on 701 cases. The unconditional distribution is a one-dimensional PDF, the same
as in Figure S5a, which is added here for comparison. The conditional distribution is based on the
simultaneous occurrence of GP-LLJ and CGT threshold, computed with Equation (2) in the text. The
conditional probability is plotted for the following condition: [GP-LLJ index] r (NARR, CFS-R) > 0.4
and [CGT index] r (NARR, CFS-R) >0.4.
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(37.5°–45° N; 103°–90° W) described using blocks in two colors. The light-blue blocks represent sta-
tistically significant correlations higher than 0.35 but lower than 0.5, and the dark blue blocks rep-
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Figure 10. Thirty-day Pearson temporal correlation between observed precipitation and the Climate
Forecast System reforecast (CFS-R) precipitation for an area average over the Northern Great Plains
(37.5◦–45◦ N; 103◦–90◦ W) described using blocks in two colors. The light-blue blocks represent
statistically significant correlations higher than 0.35 but lower than 0.5, and the dark blue blocks
represent correlations higher than 0.5. Unfilled spaces have correlation values lower than 0.35. The
location of the block defines the initialization of the CFS-R. The analysis season is from 1 May through
1 September from 1982 to 2009.
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Figure 11. As in Figure 10, the Great Plains low-level jet (GP-LLJ) index correlation between the 
North American Regional Reanalysis (NARR) and the Climate Forecasting System reforecast (CFS-
R) simulations for 1982–2009. (a) Correlations are shown only for the statistically significant precip-
itation cases, as defined in Figure 10. These correlations are noted in this plot with the same light 
blue and dark blue blocks when the LLJ correlation is not significant. Statistically significant corre-
lations are classified into four groups using the following ranges: 0.35, 0.45, 0.55, and 0.65 in orange 
tones. Only cases from 1 May through 31 July were analyzed. (b) Correlation for the 200 mb geopo-
tential height index (Z200) between the North American Regional Reanalysis (NARR) and Climate 
Forecasting System (CFS) simulations. 
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Figure 11. As in Figure 10, the Great Plains low-level jet (GP-LLJ) index correlation between the
North American Regional Reanalysis (NARR) and the Climate Forecasting System reforecast (CFS-R)
simulations for 1982–2009. (a) Correlations are shown only for the statistically significant precipitation
cases, as defined in Figure 10. These correlations are noted in this plot with the same light blue and
dark blue blocks when the LLJ correlation is not significant. Statistically significant correlations are
classified into four groups using the following ranges: 0.35, 0.45, 0.55, and 0.65 in orange tones. Only
cases from 1 May through 31 July were analyzed. (b) Correlation for the 200 mb geopotential height
index (Z200) between the North American Regional Reanalysis (NARR) and Climate Forecasting
System (CFS) simulations.

The 30-day correlation analyses—the GP-LLJ indices and 200 mb HGT anomalies
(Figure 11a,b)—are shown for the cases in which simulated precipitation was significantly
correlated (r > 0.35; blue blocks in Figure 10), and only from May through July (MJJ).
Categories for the cases were split into four groups according to the correlation value,
such as r > 0.35, r > 0.45, r > 0.55, and r > 0.65. Of a total of 126 selected cases, 55 (43.6%)
were able to appropriately simulate the GP-LLJ (Figure 11a) and 47 (37.3%) were able to
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simulate the CGT (Figure 11b), which is like what occurs in Table 1. These 43.6% and 37.3%
represent the CFS’s skill to simultaneously reproduce the GP-LLJ and the CGT, showing
their importance to the predictability of NGP precipitation. This analysis’ important caveat
is that the selected cases were limited to 9% of the total possible in the CFS-R (121 cases).
This sampling population could be fixed by including a multi-model analysis. However,
this extra analysis is beyond the scope of this study.

4. Discussion

We have evaluated the sub-seasonal predictability of precipitation by addressing the
following two scientific questions: How strong is the link between the GP-LLJ and CGT in
a modeling framework concerning summer precipitation over the Northern Great Plains?
Furthermore, how does precipitation predictability vary when the internal dynamics of a
GCM capture these two modes of climate variability?

The first question was answered by showing the GP-LLJ and CGT’s role in the variabil-
ity of NGP precipitation at sub-seasonal and interannual scales. As indicated by [24–26] for
summer precipitation, the link among the GP-LLJ, CGT, and NGP precipitation is strong,
as shown by the NARR and CFS-RR using EOF analysis and Pearson correlation. In both
reanalyses, the GP-LLJ contributes to the rainfall variability in the NGP on a daily scale, as
expected after the results from [26,32]. The EOF analysis of V900 for the NARR for 30 years
identifies typical patterns of spatiotemporal variability for the GP-LLJ, as expected after [27].
The EOF analysis on 200 mb HGT reveals the CGT as the second dominant pattern for
the precipitation in the NGP, which agrees with [30]. We have found that the association
among precipitation, GP-LLJ, and CGT occurs at the daily and sub-seasonal scales. Thus,
NGP precipitation responds to regional to global moisture transport mechanisms in the
lower troposphere. At the same time, the CGT at the sub-seasonal scale modulates these
mechanisms.

We used the GP-LLJ, CGT, and NGP precipitation relationship as a metric to evaluate
their role in a forecasting framework. Our analysis of precipitation depicts how the GP-LLJ
peaks coincide with major convective storms. The correlation values between both are
statistically significant, which confirms previous research using alternative techniques [26].
Similarly, the CGT index reveals a statistically significant link with GP-LLJ with a 0.5
(p < 0.05) correlation between them. Thus, the GP-LLJ, CGT, and NGP precipitation re-
lationship facilitates a metric to evaluate the 30-day predictability of precipitation. Our
proposed analysis indicates how this relationship is maintained in space (by the CGT
index) and time (by the GP-LLJ index). This process-based approach could incorporate the
predictability of the dominant drivers of precipitation into the analysis.

For the second question, we found that the 30-day NGP precipitation can lead to
more accurate forecasts when evaluated in the context of the GP-LLJ and CGT relationship
maintained in space and time. A study by [48] concluded that correct simulation of
the GP-LLJ is necessary, but more is needed to represent NGP precipitation adequately.
As hypothesized here, precipitation forecast skill increases in response to the enhanced
simulation of the GP-LLJ and CGT at daily and sub-seasonal scales. We found that the
improved performance of the CFS precipitation in a forecast mode is due to the proper
simulation of the GP-LLJ–CGT individual cases. At least 43% of the selected “good”
cases outperform when adequately representing the GP-LLJ and the CGT. Thus, it gives
an objective process-based approach to quantify the role of these two modes of climate
variability. Precipitation prediction is better when the relationship between these two
climate variables is maintained.

The CFS, in a forecast mode, simulates limited cases of 30-day precipitation (r > 0.5
[p < 0.05]). Our study has found that 126 cases (22.9% of the total analyzed) were able to
reach a 30-day precipitation correlation higher than 0.35 (p < 0.05). In addition, from this
group, 40.5% show correlation values higher than 0.5 (p < 0.05); therefore, only 9% of the
total simulated cases. A similar range of improvement can be found when the GP-LLJ
and CGT have the same thresholds. From the total 126 selected cases, 43.6% were able to
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simulate the GP-LLJ, and 37.3% of the CGT exceeded the threshold (r > 0.35, [p < 0.05]).
These 43.6% and 37.3% of the cases demonstrate the importance of the GP-LLJ and CGT link
for the predictability of NGP precipitation. Our further analysis of the multidimensional
covariance with a three-dimensional PDF confirms that high precipitation correlation
coefficients are associated with a better predictive GP-LLJ and CGT. The authors of [27]
highlighted how essential the GP-LLJ is in the NGP precipitation. However, this research
demonstrates that predictability is improved when CFS adequately simulates the GP-LLJ
and the CGT signals, but we did not explore the physical mechanism. As the temporal
variability of the CGT is higher in the range of 10–60 days, the CGT provides predictability
in these cases. However, it is essential to consider the 6-day variability of the GP-LLJ, which
plays a secondary role in extending the range of precipitation predictability to 30 days.

The GP-LLJ and CGT analysis suggests that its link is passed through the model
during initialization. This model ability was confirmed with the CFS evaluation using
its reanalysis version, as perfect boundary conditions enable the modeling framework
to efficiently simulate the GP-LLJ and CGT at the sub-seasonal and interannual scales.
This important outcome confirms that the well-known dilemma initialization process is
critical [49]. Thus, rainfall generation in the NGP in GCMs is not independent of the initial
conditions and might be model-dependent, so it is interesting to explore in a multi-model
version [3]. This condition may indicate substantial uncertainty in the modeling evolution
of the GP-LLJ and CGT flux, but the large-scale flow well informs a few regional weather
patterns.

Although the CFS-R, as analyzed by [36], showed meager predictability skill on aver-
age, this study showed that individual cases could reach higher skill levels when separated
by how two significant drivers simulate NGP precipitation. Improved predictability of
precipitation occurs when CFS adequately simulates the GP-LLJ and the CGT. In this
context, predictability is limited to a few cases within what [50] call “windows of opportu-
nities”. This outcome could motivate researchers to explore the initialization process of
those dominant modes of variability further or how the GP-LLJ–CGT link could be built
into the internal dynamic of the modeling framework. The author of [31] found that the
CGT has two modes of variability that influence U.S. precipitation. This study encourages
researchers to continue exploring how these two climate modes affect precipitation’s sub-
seasonal to seasonal predictability within the challenging 30-day time [51]. The combined
use of these modes of variability in a forecasting system could potentially improve pre-
dictive frameworks for water resources management and governance [19,52], phenotype
predictability [22,53], water supply and demands for agriculture [54–56], infrastructure
risk, and resilience [20,57]. Furthermore, the characterization of integrated variables, such
as soil moisture, can enhance the diagnostics and prognostics of extreme events associated
with precipitation [58–60].

5. Conclusions

This study identifies the importance of the interaction between regional (GP-LLJ) and
global-scale (CGT) sources on 30-day forecasted precipitation. Here, we documented how
these two sources contribute to the predictability of precipitation in the NGP. However, we
acknowledge that the GP-LLJ and CGT can be limited in the number of cases, and more
sources are still required to be analyzed. Additionally, our study shows promising results
for expanding the approach to a multi-variable technique (i.e., with machine learning).
Although we have found that the interaction occurs at the daily (GP-LLJ) and sub-seasonal
(CGT) scales, we did not identify which source plays a leading role in the sub-seasonal
predictability of precipitation in the Northern Great Plains. The answer to this question
may be related to the assessment of the amplitude of forecasted precipitation (for example,
extreme precipitation predictability differs from average precipitation). The analysis of
the CFS forecast suggests that the ability to accurately forecast sub-seasonal precipitation
increases when the simulations of the GP-LLJ and CGT are enhanced. These cases must
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be verified with other models or multi-model approaches (i.e., the North American Multi-
Model Experiment).

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/atmos15070858/s1: Figure S1: Spatial pattern of the empirical
orthogonal function mode 2 (EOF2) from 200 mb geopotential height anomalies (∆HGT). The HGT is
obtained from the Climate Forecast System (CFS) retrospective reanalysis. The EOF is calculated with
daily fields from 1 May through 1 September (MJJA) of 1993, with explained variance of 6%; Figure S2:
Multi-taper method (MTM) power spectrum of the temporal dominant principal components (PC) of
both 900 mb meridional wind (V-wind PC1; a) and 200 mb geopotential height anomalies (∆HGT
PC2; b) for the daily period from 1 May through 1 September 1993. MTM power spectrum of
precipitation ([P]; c) for the Northern Great Plains precipitation index averaged over the region
defined at 37.5–45◦ N; 103–90◦ W (MW). The two superimposed lines are the levels of confidence
at 95% and 99%; Figure S3: Multi-taper method (MTM) power spectrum of 200 mb geopotential
height (a), precipitation (b), and meridional wind at 900 mb (c). The spectrum is calculated for several
years indicated in the plot: 2010, 1993, 1998, 2008, and 2010. The time series of each field are averages
over different areas for precipitation (37–43◦ N; 102–90◦ W), HGT (40–60◦ N; 90–60◦ W), and V900
(25–40; 102–95◦ W). The time series are daily for the period from 1 May through 1 September 1993. The
superimposed line is the levels of confidence at the 95% level of confidence for each case; Figure S4:
Spatial pattern of the empirical orthogonal function mode 1 (EOF1) from 850 mb meridional wind
(V850mb). The V850mb was obtained from the Climate Forecast System (CFS) retrospective reanalysis
(CFS-RR). The EOF is calculated with daily fields from 1 May through 1 September (MJJA) of 1988. A
correlation of 0.54 is found between the associated V850 PC1 and the analogous NARR PC1 for a
30-day length after 15 July; this correlation is in the range of [0.45, 0.55], as defined in Figure 9. Also,
a correlation of 0.36 is found between this V850 PC1 and NGP precipitation. 1988 is considered a dry
year for the Northern Great Plains, as identified by the time in Figure 2b; Figure S5: Longitudinal-time
Hövmoller diagram of Climate Precipitation Center (CPC) precipitation averaged among 37◦ N and
43◦ N (shaded is the same precipitation plot as in Figure 3). The superimposed black line is the
CPC-observed precipitation average over the region 37◦–43◦ N, 102◦–90◦ W. The superimposed red
and blue lines are precipitation average over the same as the black line, but for Climate Forecast
System (CFS) reforecast simulations starting on 5 July (red line) and 10 July (blue line); Figure S6:
Hövmoller spatiotemporal variability of a reconstructed 200 mb geopotential height anomaly (∆HGT).
(a) Using the second empirical orthogonal function (EOF2) mode. The superimposed green line is the
PC2 associated with this mode. (b) Using the EOF1 mode with original NARR HGT data previously
filtered with a 10- to 60-day band-pass filter. (c) Using EOF1 mode 1 (also previously filtered with a
10- to 60-day band-pass filter) from the Climate Forecast System reforecast (CFS-R). Boxes represent
the region of correlation analysis; Table S1: List of acronyms.
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