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Abstract: Aerosol acidity is a critical factor affecting atmospheric chemistry. Here, we present a
study on annual, monthly, and daily variations in PM2.5 pH in Shanghai during 2010–2020. With
the effective control of SO2 emissions, the NO2/SO2 ratio increased from 1.26 in 2010 to 5.07 in 2020
and the NO3

−/SO4
2− ratio increased from 0.68 to 1.49. Aerosol pH decreased from 3.27 in 2010 to

2.93 in 2020, regardless of great achievement in reducing industrial SO2 and NOx emissions. These
findings suggest that aerosol acidity might not be significantly reduced in response to the control
of SO2 and NOx emissions. The monthly variation in pH values exhibited a V-shape trend, mainly
attributable to aerosol compositions and temperature. Atmospheric NH3 plays the decisive role in
buffering particle acidity, whereas Ca2+ and K+ are important acidity buffers, and the distinct pH
decline during 2010–2016 was associated with the reduction of Ca2+ and K+ while both temperature
and SO4

2− were important drivers in winter. Sensitivity tests show that pH increases with the
increasing relative humidity in summer while it is not sensitive to relative humidity in winter due
to proportional increases in H+

air and aerosol liquid water content (ALWC). Our results suggest that
reducing NOx emissions in Shanghai will not significantly affect PM2.5 acidity in winter.

Keywords: PM2.5; pH; diurnal variation; driving factor; Yangtze River Delta

1. Introduction

Aerosol acidity is a critically important indicator affecting human health and atmo-
spheric chemistry. Aerosol acidity can affect chemical reactions; for example, the main
oxidation pathway of SO2 is related to the acidity of the aerosol [1,2]. With the increase
in acidity, the solubility of transition metal ions (such as Fe2+ and Mn2+) increases in at-
mosphere aerosol, the number of cations involved in the oxidation reaction increases, and
then the ability to catalyze the oxidation of SO2 is enhanced [3]. On the contrary, in neutral
and alkaline atmospheres, the solubility of metal ions is low, the ability of metal ions to
catalyze the oxidation of SO2 decreases, and the oxidation of SO2 by O3 and NOx becomes
the main way [4]. In addition, when the solubility of metal ions increases with the acidity
of aerosols, the toxicity of aerosols is enhanced, which then affects the ecosystem [5–7].
Recently, significant correlations were confirmed between the pH value, water-soluble Fe,
the concentration causing 20% inhibition of cell viability (IC20), and the concentration of
exposure substance corresponding to a 1.5-fold increase in reactive oxygen species genera-
tion relative to control (EC1.5), indicating the strong impact of acidity on aerosol toxicity by
increasing toxic equivalent concentrations of metals [8]. In addition, aerosol acidity can in-
fluence the acid-catalyzed heterogeneous reactions in the atmosphere, leading to a potential
multiplication of secondary organic aerosol (SOA) mass [9,10]. Furthermore, aerosol acidity
controls the phase distribution of semi-volatile compounds, such as HNO3/NH4NO3 and
HCOOH/HCOONH4 systems [11,12].
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Over the past decade, the Chinese government has implemented strict air pollution
control strategies, such as the Air Pollution Prevention and Control Action Plan (2013–2017)
and the three-year action plan for winning the blue-sky defense battle (2018–2020), leading
to a significant reduction in PM2.5 and great changes in aerosol chemical compositions.
In the Yangtze River Delta (YRD), the proportion of sulfate in PM2.5 was reduced from
18% to 14% between 2011 and 2018, while the proportion of nitrate increased from 24% to
29% [13,14]. Similarly, the concentration of PM2.5 in Beijing significantly decreased from
88 µg m−3 in 2011 to 26 µg m−3 in 2020, and the mass ratio of NO3

−/SO4
2− in PM2.5

increased from 0.88 to 1.70 during the same period [15].
The acidity of atmospheric particles has been extensively studied before. Based on

model predictions that the aerosols were moderately acidic, Liu et al. (2017) questioned
the role of the aqueous oxidization of SO2 by NO2 in sulfate productions in haze events in
China [16]. For the highly acidic aerosols in Canada, aerosol pH has different responses to
the changes in chemical composition in different seasons [17]. An observation in a northern
city in China showed that aerosol pH values ranged between 0.33 and 13.6, and were highly
dependent on the source contributions of water-soluble ions such as coal combustion,
mineral dust, and vehicle exhaust [18]. Similarly, Sharma et al. (2022) highlighted the
important role of SO4

2−, NH3, and K+ in determining aerosol pH [19]. Fu et al. (2022)
suggested that seasonal pH changes were mainly determined by aerosol compositions in
Shanghai and reducing NH3 emissions by 20% could not effectively mitigate winter PM2.5
pollution but significantly increased particle acidity [20].

Changes in the aerosol chemical composition may change aerosol acidity. A model
simulation showed that PM2.5 pH increased from 4.4 to 5.4 during haze episodes in Beijing
when the molar ratio of NO3

−/SO4
2− increased from 1 to 5 [21]. In contrast, another

observation in Beijing showed that PM2.5 pH in winter and autumn decreased significantly
with elevated TNO3 [22]. Model simulations showed that aerosol acidity strongly decreased
over Europe and North America in recent decades while it increased over Asia [1]. This
assumption was supported by observations in Guangzhou [23] and Beijing [24]. However,
Zhou et al. (2022) reported that aerosol acidity increased in Shanghai in recent decades [25].

An in-depth analysis of aerosol pH changes is crucial for understanding long-term
trends in aerosol pH and dominant drivers of pH variations, helping to predict pH in
the future and formulate air pollution control strategies. This study investigated annual,
monthly, and daily variations in PM2.5 pH in Shanghai during 2010–2020. The main
objectives of this study are (1) to elucidate the long-term trends in aerosol pH in highly
urbanized areas over ten years; and (2) to explore the role of meteorological conditions and
chemical compositions in driving pH changes.

2. Methods
2.1. Measurement Site and Instrumentation

The observation in this study was carried out in the downtown area of Shanghai during
2010–2021. The samples from 2010 to 2013 were collected on the roof of the No. 4 Teaching
Building in the main campus of Fudan University (121.50◦ E, 31.30◦ N), and the samples
from 2014 to 2021 were collected in the Pudong New Area Environmental Monitoring
Station (121.54◦ E, 31.23◦ N), less than 10 km away from Fudan University (Figure S1). The
two sites are surrounded by commercial and residential buildings, representing Shanghai’s
densely populated urban areas. There may be a small difference in aerosol composition
between the two measurement sites.

A Monitor for Aerosols and Gases in Air (MARGA, ADI 2080, Metrohm Applikon
B.V., Barendrecht, The Netherlands) with a time resolution of 1 h was used to determine
aerosol SO4

2−, NO3
−, Cl−, NH4

+, Na+, K+, Ca2+, and Mg2+, and their gas precursors NH3,
HCl, and HNO3. Due to the lack of MARGA data in 2012–2013, filter-based sampling with
a time resolution of 24 h was used instead. Data were not available for 2011. Detailed
information on MARGA was reported previously [20]. In brief, the water-soluble gases
were absorbed by a wet rotating denuder while the water-soluble ions in the aerosols were



Atmosphere 2024, 15, 1004 3 of 14

extracted using a steam jet aerosol collector. The collected gas and aerosol samples were
analyzed online using a dual-channel ion chromatograph. Technical specifications for
QA/QC followed local standards in the YRD region (DB31/T 310006-2021), which regulate
that the correlation coefficients (r) for all targeted ions are larger than 0.995 [20]. The
method detection limit of all components was 0.10 µg per cubic meter of air or better, except
for K+ (0.16 µg m−3), Mg2+ (0.12 µg m−3), and Ca2+ (0.21 µg m−3) [26]. For filter-based
sampling, QA/QC parameters for the determination of inorganic ions were previously
reported [27]. Hourly meteorological data (temperature, relative humidity (RH), wind
speed, and wind direction) were released by the China Meteorological Administration
website. Hourly concentrations of PM2.5, PM10, SO2, NO2, CO, and O3 were provided by
Pudong Environmental Monitoring Center.

2.2. ISORROPIA II

ISORROPIA II is a computational and efficient aerosol thermodynamic equilibrium
model, which has been widely used to calculate the thermodynamic equilibrium in the
aerosol NH4

+-SO4
2−-NO3

−-Cl−-Na+-Ca2+-K+-Mg2+-H2O system and the corresponding
gas precursor [28]. ISORROPIA II operates in two modes: forward mode and reverse mode.
In the forward mode, the input variables are temperature, RH, and the concentrations
of TNH3 (NH3 and NH4

+), TNO3 (HNO3 and NO3
−), TCl (HCl and Cl−), SO4

2−, Na+,
Ca2+, K+, and Mg2+. In the reverse mode, the input variables are ambient temperature,
RH, and the concentrations of SO4

2−, NO3
−, Cl−, NH4

+, Na+, Ca2+, K+, and Mg2+. The
output of both modes is aerosol liquid water content (ALWC), hydrogen ion content, and
the concentration of species in the gas and aerosol phases [29]. The forward model predicts
aerosol composition and gas-particle partitioning much more accurately than the reverse
model, because the forward model uses gas and aerosol inputs, effectively limiting the
impact of measurement errors [30]. Therefore, our study chose to run the forward mode
and assumed that the aerosol was metastable with no solid precipitation. Aerosol pH is
defined as follows:

pH = −log10γH+ H+
aq = −log10

(
γH+ H+

air
ALWC

)
(1)

where γH+ refers to the activity coefficient of hydrogen ion (assumed to be 1). H+
aq (mol

L−1) and H+
air (ng m−3) are the concentrations of H+ in aqueous particles and ambient air,

respectively. ALWC (µg m−3) is the water uptake by inorganic species.
Overall, nitrate in the particle phase was underestimated when RH was lower than

40% since urban particles possibly dehydrate at RH below 40% [20]. When RH is above
95%, ALWC may grow exponentially with RH, resulting in large uncertainties of pH [31].
Therefore, samples collected at RH > 95% and RH < 40% were discarded in the study.

3. Results and Discussion
3.1. Long-Term Variations in the Nitrate-to-Sulfate Ratio

Figure 1 shows the decade changes in SNA (sulfate, nitrate, and ammonium) and
corresponding gas precursors from 2010 to 2020. The annual variation in atmospheric
SO2 showed a distinct downward trend, from an average of 28.8 ± 10.8 µg m−3 in 2010
to 7.1 ± 2.8 µg m−3 in 2020. In contrast, the long-term trend in atmospheric NO2 was
relatively flat, with an average of 38.7 µg m−3 in 2010 and 36.1 µg m−3 in 2020. As a result,
the atmospheric ratio of NO2/SO2 increased from 1.26 in 2010 to 5.07 in 2020. Like their
gas precursors, the sum concentration of sulfate plus nitrate decreased from approximately
20 µg m−3 to less than 12 µg m−3, a decline of 40%. The lower SNA concentration in
2010 relative to the following years might be attributed to different sampling locations.
The mass ratio of nitrate to sulfate (NO3

−/SO4
2−) increased from 0.68 to 1.49, with a

ratio below 1.0 before 2015. Ye et al. (2021) reported that NO3
−/SO4

2− in rainwater
increased from approximately 0.3 to above 1.0 during the same period [32], consistent
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with the aerosol NO3
−/SO4

2− ratio. The lower ratio of NO3
−/SO4

2− in rainwater might
be associated with the in-cloud reactions of SO2. It is worth noting that the ratio of
NO3

−/SO4
2− was always less than that of NO2/SO2 due to the longer atmospheric life

of SO2. These variations can be attributable to the non-proportional reduction of SO2 and
NOx emissions. As illustrated in Figure S2, industrial SO2 emissions in Shanghai were
reduced from 2.2 × 105 tons in 2010 to 5.2 × 103 tons in 2020, indicating that the industrial
desulfurization and clean energy substitution strategies have achieved great success. Since
the reduction in industrial NOx emissions was almost offset by the increasing number of
on-road vehicles, NOx pollution shifted from industry-dominated to vehicle-dominated
in 2016. Generally, the total emissions of acidic pollutants were significantly reduced.
Meanwhile, the concentration of Ca2+ dropped by 76% during the observation period,
indicating the significant achievement in the control of soil dust and the weakened capacity
to neutralize atmospheric acidity. These findings suggest that aerosol acidity might not be
significantly reduced in response to the control of SO2 and NOx emissions.
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Figure 1. Annual average concentrations of major ions and acidic gas pollutants during 2010–2020.

3.2. Variation Trend in Aerosol pH
3.2.1. Annual Variations in Aerosol pH

Figure 2 shows the long-term trend in aerosol pH in Shanghai over the decade from
2010 to 2020. The aerosol acidity showed an overall enhanced trend, with the annual
average pH decreasing from 3.27 in 2010 to 2.93 in 2020. We should point out that the
potential contributions of secondary organic aerosols to water uptake and organic acids to
H+ are not considered in this study, contributing to uncertainty in aerosol pH assessment.
In contrast to the atmospheric sulfate and nitrate decrease by 40% over the decade, aerosol
acidity increased by 0.34 units pH, supporting the idea that aerosol acidity responded
nonlinearly to SO2 and NOx emission control. Similar to our results, an annual pH decline
rate of around 0.04 units was reported previously [25]. The small discrepancies between the
two studies could be attributed to different sampling locations and statistical methods. The
pH of rainwater increased by 0.8 units during the same period [32], possibly because rain
droplets can scavenge alkaline coarse particles. The median pH for each year was generally
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higher than the mean, indicating that the distribution of hourly pH was skewed to the
lower pH direction. The changing trend in aerosol pH displays a two-stage shape, with a
distinct decrease during 2010–2016 and a weaker variation from 2016 to 2020. Meanwhile,
the concentration of Ca2+ decreased from 0.85 µg m−3 to 0.13 µg m−3 from 2010 to 2016
while it remained around 0.1 µg m−3 from 2016 to 2020, indicating that the nonvolatile
cations were important drivers affecting the decade aerosol pH variations.
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Figure 2. Annual variation in aerosol pH during 2010–2020 in Shanghai. The shaded area shows the
range of 25% to 75% of the hourly observational data.

Table 1 summarizes aerosol pH in different measurement sites over the world. The
overall aerosol pH in Shanghai (3.1 ± 0.6) was comparable to Nanjing (3.3 ± 0.1) and
Wuhan (3.0 ± 1.0) in the middle and lower reaches of the Yangtze River, but significantly
lower than that of Beijing (4.2 ± 0.4) and Tianjin (4.9 ± 1.4) in North China. Intriguingly,
these aerosols with high loadings of sulfate and nitrate were weakly acidic while the
aerosols were highly acidic (pH ≈ 1.0) in less-polluted Alabama and Crete where sulfate
and nitrate loadings were much lower, indicating that aerosol acidity was not necessarily
consistent with the mass loadings of sulfate and nitrate. As shown in Table 1, aerosol
pH was positively correlated with the concentration of atmospheric NH3, suggesting that
ammonia was the major driving factor affecting global particle acidity distributions. Wang
et al. (2016) attributed the difference between highly acidic London smog in 1952 and less
acidic Beijing aerosols in 2012 to NH3 levels [33]. The lower pH in Guangzhou than in
Shanghai might be attributed to higher temperatures. These findings indicated that aerosol
pH was much more sensitive to the amount of atmospheric NH3 available for neutralizing
acidic sulfate and nitrate. In addition, nonvolatile cations such as Na+, K+, Ca2+, and
Mg2+ could affect aerosol acidity when their concentrations were significant relative to
anions [34]. To validate the central role of NH3, aerosol pH in Pasadena and Beijing was
re-calculated by inputting the average NH3 concentration in Shanghai (5.4 µg m−3). The
re-calculated pH increased from 2.7 to 4.0 in Pasadena as the NH3 concentration increased
from 0.8 to 5.4 µg m−3 and decreased from 4.2 to 3.5 in Beijing as the NH3 concentration
decreased from 18.3 to 5.4 µg m−3, confirming that both ammonia and alkaline nonvolatile
cations were important buffers of aerosol acidity.
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Table 1. Concentrations of major inorganic ions and aerosol pH in different measurement sites
worldwide (unit: µg m−3).

No. Location SO42− NO3− NH4
+ NH3 pH Reference

1 Shanghai, CN 8.3 ± 6.6 8.5 ± 10.8 5.6 ± 5.7 5.4 ± 3.7 3.1 ± 0.6 This study
2 Nanjing, CN 23.2 ± 0.7 16.9 ± 1.7 5.3 ± 0.6 / 3.3 ± 0.1 [35]
3 Wuhan, CN 10.1 ± 6.1 10.2 ± 9.2 8.0 ± 5.9 9.9 ± 5.4 3.0 ± 1.0 [36]
4 Guangzhou, CN 9.9 ± 5.9 4.0 ± 4.3 3.8 ± 3.0 8.7 ± 5.8 2.5 ± 0.7 [37]
5 Beijing, CN 7.7 ± 7.5 13.6 ± 16.1 7.4 ± 7.8 18.3 ± 7.8 4.2 ± 0.4 [22]
6 Tianjin, CN 8.9 ± 1.3 10.7 ± 2.8 6.9 ± 1.8 / 4.9 ± 1.4 [18]
7 Alabama, US 1.7 ± 1.2 0.1 ± 0.1 0.5 ± 0.3 0.4 ± 0.3 1.0 ± 0.5 [38]
8 Pasadena, US 1.9 ± 0.7 3.7 ± 1.5 1.8 ± 0.7 0.8 ± 0.6 2.7 ± 0.3 [11]
9 Crete, GR 2.3 ± 1.6 0.1 ± 0.1 0.8 ± 0.6 / 1.3 ± 1.1 [39]

10 Harrow, CA 7.2 ± 1.1 0.5 ± 0.4 2.0 ± 0.2 1.7 ± 0.2 2.5 ± 1.5 [40]
11 Indo-Gangetic Plain, India 18.6 ± 5.8 1.1 ± 0.8 20.3 ± 5.2 / 3.0 ± 0.2 [19]
12 Cabauw, NL 2.2 ± 0.3 4.3 ± 1.2 1.8 ± 0.3 7.4 ± 2.8 3.6 ± 0.3 [41]
13 Po Valley, Italy 1.8 ± 1.1 8.2 ± 5.9 3.3 ± 2.0 / 3.7 ± 0.6 [42]

CN: China; US: United States; CA: Canada; GR: Greece; NL: Netherlands.

3.2.2. Seasonal Variations in Aerosol pH

Figure 3 illustrates the long-trend in seasonal pH values from 2010 to 2020. The
monthly variation in pH values exhibited a V-shape trend, decreasing from February and
increasing from September. Aerosol pH in August was the lowest (with an average of
less than 2.5) and the fluctuation range was the largest. From a seasonal perspective,
aerosol pH followed the order of winter > spring > autumn > summer, indicating that
ambient temperature was an important driver for pH variation. In this study, the seasons
from spring to winter are defined as the period from March to May, June to August,
September to November, and December to February, respectively. Similar seasonal pH
trends were reported previously [17,22,36,38,43]. As indicated by Equation (1), aerosol pH
depends on H+

air and ALWC, which are functions of pollutant concentrations, temperature,
and RH. Elevated ALWC by increasing RH can dilute H+

aq and increase pH as well as
promoting nitrate formation via nighttime N2O5 hydrolysis. The approximately one-unit
difference in pH between winter and summer was mainly attributed to aerosol compositions
because a doubling ALWC in winter increases aerosol pH by only 0.3 units [20]. Although
temperature is not a parameter in Equation (1), it greatly affects the photooxidation rate of
SO2 and NOx and the gas-particle partitioning of semi-volatile NH4NO3 and NH4Cl, with
an indirect effect on aerosol acidity. During 2010–2015, the seasonal average pH showed a
steady downward trend in winter while remaining stable in summer and autumn, resulting
in a decline in the seasonal pH difference from 1.14 to 0.72. Interestingly, the seasonal
difference in pH returned to approximately 1.0 in 2016–2020. In addition, the seasonal
average pH was unexpectedly high in the summer and autumn of 2015. The mechanisms
driving seasonal pH variations will be discussed in the next sections.

3.2.3. Diurnal Variation in Aerosol pH

Figure 4 illustrates the diurnal variation in aerosol pH along with ALWC and the mass
ratio of NO3

−/SO4
2−. Overall, aerosol pH began to decrease in the early morning, reaching

the minimum values at noon, followed by a continuous increase in the afternoon and high
values at night, further supporting the temperature dependence on aerosol acidity. In
summer, the average pH values at night were approximately 0.4–0.7 units larger than those
at noon. With the strongest acidity, the aerosol noon minimum dropped to nearly 2.1 in 2016.
Similar to summer, aerosol pH in winter showed a V-shaped diurnal trend but the diurnal
range was much narrower. In 2020, the daily variation in aerosol pH narrowed to below
0.3 units. Contrary to our results, the diurnal variation in aerosol pH over the southeastern
United States was approximately one unit larger in winter than in summer [38], indicating
that the diurnal pH trends are highly related to the regional pollution background.
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Both ALWC and NO3
−/SO4

2− followed a similar diurnal pattern as pH, indicating
that they provided an additive effect on pH variation. As ALWC is a function of RH and
the total amount of hygroscopic aerosols, ALWC generally peaked in the early morning
and rapidly decreased after sunrise. ALWC at noon was reduced by 50–70% relative to
the early morning, corresponding to a pH increase of 0.3–0.5 units, indicating that ALWC
was the main driver for the strong diurnal pH variation. The flat diurnal pattern of the
NO3

−/SO4
2− ratio in 2010 indicates an insignificant effect of chemical composition on the

diurnal trend in pH, providing a reasonable explanation for the narrowest diurnal variation
in pH.

From the perspective of aerosol composition, sulfate and nitrate are regarded as the ma-
jor driving factors of diurnal patterns in pH [38]. When sulfate and nitrate are neutralized
primarily by ammonium, the concentration of H+ is controlled primarily by the thermody-
namic equilibrium between particle-phase NH4

+ and gaseous NH3. As (NH4)2SO4 is less
volatile than NH4NO3, the elevated sulfate leads to a much greater increase in H+

air than
that of TNO3. NH4NO3 tended to evaporate with increasing temperature and decreasing
ALWC during the daytime. In contrast, uptake on humid particles was favored at night
due to its dissociation being highly sensitive to temperature and RH changes, resulting in a
V-shaped diurnal pattern. The NO3

−/SO4
2− ratio in winter was significantly larger than

in summer, which can be partly responsible for the weaker acidity of winter aerosols.

3.3. Quantitative Analysis of pH Drivers
3.3.1. Effect of Alkaline Buffers on Interannual pH Variations

As aforementioned, ammonia is the major alkaline buffer for aerosol pH globally while
nonvolatile cations exhibit a non-negligible impact on aerosol pH when their concentrations
become significant. In this study, temperature, relative humidity, and concentrations of
chemical composition were averaged for each summer and winter (Table S1). Figure 5
illustrates the aerosol pH predicted by the average concentrations and the buffer effect
of NH3 and nonvolatile cations on summer and winter aerosols. The aerosol pH values
predicted by the averaged concentrations of chemical composition and meteorological
parameters are close to those averaged by hourly pH values, indicating that they can
represent the typical pH trends. The inserted images represent the predicted aerosol pH
values by setting the concentration of NH3 to zero while the other variables are fixed at
their average values. It is worth noting that aerosol pH would be below zero in the absence
of NH3, emphasizing the decisive role of NH3 in buffering particle acidity. Similar to NH3,
aerosol pH is predicted by inputting the concentrations of Ca2+ and K+ as 0 while other
variables are fixed (Table S2). The buffering effects of Ca2+ and K+, ∆pH, are obtained
by comparing the pH decline when the concentrations of Ca2+ and K+ are set to 0. Ca2+

and K+ are tracers of crustal dust and biomass burning, respectively. Coal combustion is
another important source of K+ in many Chinese cities [20]. The buffing effect of Ca2+ was
more significant than K+ before 2013, but K+ remained higher in 2014–2015. The combined
buffing effect of Ca2+ and K+ decreased by 0.4 units of pH during the winter of 2010–2016,
corresponding to the aerosol pH decline during this period, indicating that the reduction in
acidic pollutant emissions was largely offset by the reduction in alkaline buffers. During
2016–2020, the buffing effect of nonvolatile cations could be ignored in summer while the
buffing effect of K+ remained at approximately 0.4 units pH in winter. Long-range pollutant
transport from north China contributes greatly to the increase in K+ concentration and
PM2.5 pollution in Shanghai because the prevailing wind direction in Shanghai varies from
northwest to northeast in the winter [26,44]. The increase in K+ in winter was possibly
related to the transportation of biomass burning and coal combustion pollutants under the
regime of prevailing winds from the north. In contrast to aerosol pH below zero in the
absence of NH3, the largest buffering effect of nonvolatile cations was less than 0.6 units
pH, emphasizing the decisive role of NH3 in buffering particle acidity.
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aerosol pH based on the annual average parameters. The column chart illustrates the buffer effect
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NH3 to zero.

3.3.2. Effects of Meteorological Parameters and Chemical Composition on Diurnal
pH Variations

The contributions of individual driving factors to diurnal pH variations are estimated in
Figure 6 and Tables S4–S7. Similar to the above section, the effect of a driving factor on aerosol
pH is evaluated by replacing this factor at 10:00, 14:00, 20:00, and 24:00 with the value at 5:00
in the morning. The reference point is set at 5:00 when aerosol pH was generally the highest.
In both summer and winter, the temperature during the day was higher than that at night,
while the humidity was just the opposite. The increase in temperature can reduce aerosol
pH by partitioning aerosol NH4NO3 and NH4Cl into the gas phase, leading to decreases in
NO3

−/SO4
2− and pH [41]. The effect of RH on aerosol pH is more complicated. On the

one hand, elevated RH can enhance ALWC which dilutes the ionic concentration. On the
other hand, the increase in ALWC favors more gaseous NH3 and HNO3 partitioning into the
particle phase. The diurnal pH variation in summer was mainly driven by temperature and
RH. Only a 7 ◦C increase in temperature is required for a 0.5 unit drop in pH, which is lower
than that in Canada [17], possibly due to the higher mass loading of secondary inorganic
aerosols in our study. As shown in Tables S4 and S6, the narrow fluctuations of dew point
temperature (Td) indicate that the diurnal RH variations were mainly driven by temperature,
further highlighting the important role of temperature in the diurnal variations in aerosol pH.
The effects of SO4

2−, TNO3, and TNH3 were much weaker than those of temperature and RH
in summer. It is worth noting that both elevated SO4

2− and decreased NO3
− in the daytime

contributed to the decreasing aerosol pH. In contrast, the main drivers of diurnal pH variation
in winter were temperature and SO4

2−. Another significant difference from summer was that
the decreasing RH could enhance aerosol pH in winter. It is worth noting that RH played a
minor role in diurnal pH patterns in winter. In summary, the diurnal variation in aerosol pH
in summer is mainly affected by temperature and RH, while the diurnal variation in aerosol
pH in winter is sensitive to both meteorological parameters and aerosol chemical composition.

For an in-depth understanding of the effect of meteorological parameters and chemical
composition on aerosol pH, sensitivity tests were performed based on two cases of summer
and winter aerosols (Figure 7). The concentration of NH4

+ decreased nonlinearly with
the increase in temperature because the concentration product of NH3 and HNO3 is an
exponential function of temperature [4]. Aerosol pH almost linearly decreased with the
increase in temperature since the concentration of H+ in ambient air

(
H+

air ) almost expo-
nentially increases with the increasing temperature. Although ALWC always increased
with the increase in RH, H+

air displayed different trends between summer and winter. In
summer, H+

air first decreased with the increase in RH which favors more gaseous NH3
partitioning into the aerosol water. In contrast, H+

air in winter increased with the increase in
RH, leading to a slight pH decrease at RH < 80%. As shown in Figure 7e,f, the concentration
of NH4

+ increased linearly with the increase of SO4
2− due to the higher affinity of H2SO4



Atmosphere 2024, 15, 1004 10 of 14

to NH3. However, the hygroscopic growth of (NH4)2SO4 was lower than that of NH4NO3,
indicating that aerosol pH decreased with the decrease of NO3

−/SO4
2−. In contrast, the

concentration of aerosol NH4
+ only slightly increased with the increasing TNO3 in summer

due to most of the TNO3 partition to the gas phase. Aerosol pH increased with the increase
in TNO3 due to the increase in NO3

−/SO4
2−. In winter, aerosol pH increased slightly with

the increase in TNO3 for NO3
−/SO4

2− < 1.5. However, aerosol pH slightly decreased with
the increase in TNO3 for higher NO3

−/SO4
2−. An observation in Beijing showed that

PM2.5 pH increased with increasing NO3
−/SO4

2− [21], while another observation found
that PM2.5 pH decreased with increasing TNO3 [22]. This finding suggests that the impact
of NO3

−/SO4
2− on pH depends on the pollution background, providing a reasonable

explanation for the different trends observed in Beijing. Our results suggest that reducing
NOx emissions in Shanghai will not significantly affect PM2.5 acidity in winter.
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Figure 7. Sensitivity test of pH dependence on T (a,b), RH (c,d), SO4 (e,f), and TNO3 (g,h) dur-
ing summer and winter. The summer sample: Na+ (0.08 µg m−3), SO4

2− (10.17 µg m−3), NH4
+

(13.32 µg m−3), NO3
− (6.77 µg m−3), Cl− (1.59 µg m−3), Ca2+ (0.81µg m−3), K+ (0.31µg m−3), Mg2+

(0.09 µg m−3), RH (0.64), T (303.2 K). The winter sample: Na+ (0.3 µg m−3), SO4
2− (5.72 µg m−3),

NH4
+ (9.89 µg m−3), NO3

− (11.39 µg m−3), Cl− (1.19 µg m−3), Ca2+ (0.14 µg m−3), K+ (0.22 µg m−3),
Mg2+ (0.05 µg m−3), RH (0.65), T (284.7 K).

4. Conclusions

This study investigated the long-term trends in PM2.5 pH in response to emission
control in Shanghai. The annual average ratio of NO3

−/SO4
2− increased from 0.68 in

2010 to 1.49 in 2020, attributable to the significant reduction in SO2 emissions and the less
effective control of NOx emissions. PM2.5 acidity showed a slightly increasing trend since
the reduction in acidic emissions was partly offset by the decrease in alkaline nonvolatile
cations. The monthly variation in pH values exhibited a V-shape trend, decreasing from
February and increasing from September, mainly attributed to aerosol compositions and
temperature which controls the partitioning of HNO3/NH4NO3. The diurnal pH pattern
showed a V-shaped trend with stronger fluctuation in summer than in winter due to diurnal
variations in ALWC and NO3

−/SO4
2−. Atmospheric NH3 plays a decisive role in buffering

particle acidity, providing a plausible explanation on moderately acidic aerosols in the
Yangtze River Delta, highly polluted with NOx emissions. Ca2+ and K+ were important
buffers of particle acidity and the reduction in Ca2+ and K+ was responsible for the pH
decline during 2010–2016.

The diurnal pH variations in summer were mainly affected by temperature and RH.
The diurnal RH variations were mainly driven by temperature, underlying the decisive role
of temperature in the diurnal variations in aerosol pH. In contrast, the dominant drivers of
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diurnal pH variation in winter were attributed to temperature and SO4
2−. Sensitivity tests

showed that aerosol pH almost linearly decreased with the increase in temperature since
the concentration of H+

air almost exponentially increased with the increase in temperature.
pH increased with the increasing RH in summer while it was not sensitive to RH in winter
due to proportional increases in H+

air and ALWC. pH was not very sensitive to TNO3 in
winter, indicating that reducing NOx emissions in Shanghai will not significantly affect
PM2.5 acidity in winter.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/atmos15081004/s1, Figure S1: Geographical location of the sampling sites;
Figure S2: Annual variation of SO2 and NOx emissions; Table S1: Aerosol pH of 2010–2020 with input of
seasonal mean values; Table S2: Aerosol pH of 2010–2020 with input of seasonal mean values except for
Ca2+; Table S3: Aerosol pH of 2010–2020 with input of seasonal mean values except for K+; Table S4:
Effects of various driving factors on diurnal pH variations in the summer of 2010; Table S5. Effects
of various driving factors on diurnal pH variations in the winter of 2010; Table S6. Effects of various
driving factors on diurnal pH variations in the summer of 2020; Table S7. Effects of various driving
factors on diurnal pH variations in the winter of 2020; Table S8. Effect of elevated TNO3 on aerosol pH
in different seasons.
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