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Abstract: The adequate representation of interactions between the land surface and the atmosphere
is of crucial importance in modern numerical weather prediction (NWP) systems. In this context,
this study examines how errors in the planetary boundary layer (PBL) depend on the quality of
near-surface prediction over land for medium-range NWP. Two series of 10-day forecasts from
Environment and Climate Change Canada (ECCC)’s global deterministic prediction system were
evaluated: one similar to what is currently used in ECCC’s operational systems and the other with
improved land surface modeling and land data assimilation. An objective evaluation was performed
for the 2019 summer season in North America, with a special emphasis on three specific areas:
northern Canada, the central US, and the southeastern US. The results indicate that the impact of
the new land surface package is more difficult to interpret in the PBL than it is at the screen level.
The error differences between the two experiments are quite distinct for the three regions examined.
As expected, random errors (standard deviations) for air temperature and specific humidity in the
PBL are directly linked with their own random errors at the screen level, with correlation coefficients
decreasing from a value of one at the surface to values of about 0.2–0.3 a few kilometers above the
surface. Less expected, however, is the fact that random errors in the lower atmosphere also strongly
depend on changes in air temperature biases at the surface. Warmer near-surface conditions lead
to increased random errors for air temperature in the lower atmosphere, in association with the
development of the deeper PBL, with greater spatial variability. This finding is of particular interest
when evaluating new configurations of NWP systems for implementation in national meteorological
and environmental prediction centers.

Keywords: land–atmosphere interactions; numerical weather prediction; planetary boundary layer;
near-surface prediction; medium range; bias

1. Introduction

A wide range of studies performed in the last few decades have conclusively demon-
strated the substantial impact that the land surface has on the quality of numerical weather
prediction (NWP) in the lower atmosphere. Not surprisingly, numerical predictions close
to the surface, for instance, at the screen level, located two meters above the surface,
are quite responsive to the lower boundary condition provided by land surface schemes,
e.g., [1–3]. Gains in near-surface NWP have been reported in association with more realistic
surface description fields [4,5], physically more appropriate land surface modeling [6,7],
and more sophisticated approaches to land data assimilation, combined with the inclusion
of observations from new sensors [8–10].
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In contrast, fewer studies have presented the impact of land surface changes on the
operational numerical prediction of planetary boundary layer (PBL) and tropospheric char-
acteristics. A few of them have reported substantial improvements in their PBL forecasts
that could be attributed to modifications in their land surface packages, i.e., for land surface
modeling or land data assimilation. This was the case two decades ago in [11,12] with their
inclusion of the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land surface
scheme and sequential land data assimilation in Canada’s regional deterministic prediction
system. More recent results are presented in [9], which show substantial improvements
in the lower troposphere (1000–900 hPa layer) due to the implementation of a moderately
coupled land–snow–atmosphere assimilation method in the US National Oceanic and
Atmospheric Administration (NOAA)’s High-Resolution Rapid Refresh (HRRR) model. In
other studies, such as [2,10], the benefits of improving the land surface representation are
less conclusive.

Changes in the representation of land surface processes and initial conditions in
NWP models can have a considerable influence on the evolution of the surface layer,
boundary layer, and, possibly, the free troposphere. These processes and initial conditions
are dominant factors in the determination of the amount of heat, water, and momentum
transferred between the land surface and the atmosphere. Interactions between the land
surface and the atmosphere have been under investigation for a few decades, notably in
the context of the Global Land–Atmosphere Coupling Experiment [13,14] and of the Global
Energy and Water Exchanges (GEWEX) initiative for Local Land–Atmosphere Coupling
(LoCo) [15].

Changes in soil conditions related to either wetness, roughness, or vegetation influence
surface turbulent exchanges of momentum, heat, and water with the atmosphere. These
fluxes are determining factors controlling the diurnal evolution of the PBL, which, in
turn, has some impact on entrainment processes and on the production of clouds and
precipitation. This chain of processes has been well described and examined in the context
of LoCo-related studies, e.g., [16,17]. How well an NWP model’s atmosphere “reacts”
and “interacts” with the land surface essentially determines whether a more realistic
representation of the land surface will lead to better atmospheric forecasts in the PBL and
above, e.g., [18].

Such issues regarding land–atmosphere interactions appear to have played a major role
in the objective evaluation of the land surface package in [19]. This package features changes
to both land surface modeling and land data assimilation. Its testing in Environment
and Climate Change Canada (ECCC)’s Canadian Global Deterministic Prediction System
(GDPS) led to substantial improvements in the medium-range prediction of near-surface
air temperature and humidity when compared with screen-level analyses.

Although it was not shown or described in [19] or in other recent studies, an upper-
air evaluation indicates that the impact of the new land surface package on the PBL is
less conclusive, i.e., that it has considerable spatial variability in terms of its effects, both
beneficial and detrimental. In the evaluation process toward an implementation proposal of
the new land surface package at the Canadian Centre for Meteorological and Environmental
Prediction Centre (CCMEP), the decision was made more difficult by these mixed results
and by the lack of understanding as to why there was no clear correspondence between the
positive results at the surface and those in the PBL.

The main objectives of this study are thus to present this PBL extension to [19]’s
objective evaluation against analyses and to determine the physical and statistical links
between near-surface and upper-air forecast errors at the medium range. This work is based
on the evaluation of NWP forecasts against near-surface and atmospheric analyses and on
simple diagnostics documenting the evolution of the boundary layer. The structure of this
article is as follows: materials and methods are detailed in the next section, followed by a
presentation of the main results (Section 3) and a discussion of important issues (Section 4),
ending with conclusions (Section 5).
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2. Materials and Methods

In [19], an objective evaluation versus the authors’ own screen-level analyses is pre-
sented in order to determine the impact of a new land surface package on medium-range
deterministic predictions of screen-level air temperature and humidity from ECCC’s GDPS
system. The GDPS is based on the Global Environmental Multiscale (GEM) atmospheric
model, described in [20–23] for its numerical and dynamical aspects and in [24] for its
representation of physical processes. The upper-air initial conditions for GEM’s global
medium-range forecasts are provided by the 4D-EnVar assimilation system presented
by [25] and further described in [26,27].

2.1. The OP and NEW Configurations

The land surface aspects modified and tested in [19] include the mapping of land
surface characteristics, land surface modeling, and land data assimilation. These modifi-
cations account for the differences between two different GEM configurations for global
medium-range forecasting: the OP configuration, which is close to the global prediction
system currently used at ECCC for its medium-range numerical guidance, and the NEW
configuration, which is the same as OP except for changes to the land surface component.
The OP and NEW configurations are described in detail in [19]. The following is just a
brief summary.

In OP, land surface processes are represented with the ISBA land surface scheme,
presented in [11,12]. In that scheme, a two-layer force–restore approach is applied for
both soil moisture and surface temperature [28]. The land surface is modeled in NEW
with the Soil, Vegetation, and Snow (SVS) scheme, which is based on ISBA but with
several additions, such as the inclusion of multiple energy budgets at the surface [7],
new hydrology computed on several soil layers with vertical diffusive processes and the
production of surface, lateral, and base flows [29], and stomatal resistance determined with
the photosynthesis module of the Canadian Terrestrial Ecosystem Model (CTEM) [30,31].

In addition to the more sophisticated land surface modeling provided by SVS, substan-
tial changes were made to the production of the land surface initial conditions for surface
temperature, soil moisture, and snow. The initial conditions for ISBA are provided in OP by
a sequential optimal interpolation (OI) of screen-level observations, introduced by [32] and
further described in [12]. In NEW, the SVS initial conditions are produced by the Canadian
Land Data Assimilation System (CaLDAS) [33,34]. In CaLDAS, a one-dimensional ensem-
ble Kalman filter (1D-EnKF) is applied for soil moisture and surface temperature. A simpler
approach is used for snow depth based on an ensemble of OI analyses. The precipitation
forcing for the model’s first guess comes from the Canadian Precipitation Analysis System
(CaPA) [35,36]. Space-based L-band brightness temperature observations from the Soil
Moisture Active Passive (SMAP) and the Soil Moisture Ocean Salinity (SMOS) missions
are directly assimilated in CaLDAS for soil moisture. Land surface retrievals from the
Atmospheric Infrared Sounder (AIRS), CRoss-track Infrared Sounder (CRIS), and Infrared
Atmospheric Sounding Interferometer (IASI) are assimilated for surface temperature [37].

Other differences between OP and NEW are related to the mapping of land surface
characteristics. In NEW, more recent databases are used to specify the surface properties
associated with vegetation and soil texture.

2.2. Surface Fluxes and PBL in GEM

For both ISBA and SVS, the fluxes of heat, moisture, and momentum between the
land surface and the atmosphere are described in [28,38]. These formulations are based on
classical aerodynamic equations with coefficients for thermal and momentum turbulent
exchanges obtained from Monin–Obukhov stability theory [39–41]. The surface fluxes
or the coefficients are spatially aggregated to the grid scale and are provided as a lower
boundary condition to the one-dimensional vertical diffusion scheme representing atmo-
spheric turbulence, which is based on eddy coefficients obtained from a 1.5-order turbulent
kinetic energy (TKE) closure [38,42,43]. The representation of PBL turbulent mixing is the
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same for the OP and NEW experiments. In NEW, the effect of subgrid-scale orography is
considered with [44]’s form drag, a dynamic thermal roughness length is used, the value of
the minimum Monin–Obukhov length has been modified, spatial filtering is applied to the
aggregated surface exchange coefficients, and an effective land surface state is estimated
for the flux calculations.

2.3. Vertical Profiles in GEM

An objective evaluation at the land surface is performed in the same way as in [19]
based on a comparison of model forecasts with own analyses of air temperature and specific
humidity at the screen level. In the atmosphere, the evaluation is directly performed on the
GEM computational levels. As presented in [22], GEM uses a hybrid coordinate of a log
hydrostatic pressure type. This ζ coordinate is written as

ln π = ζ + Bds (1)

in which π is the hydrostatic pressure, Bd is a vertical decay function, and s is to be
determined from the boundary condition at the surface, i.e.,

ln πs = ζs + s or s = ln πs − ζs (2)

The ζ vertical coordinate is discretized as ζ = ln
(

ηpre f

)
, where pre f is a reference pressure,

taken as 1000 hPa, and η is user-defined and varies from a low value (at the model top) to
unity (at the model surface). Therefore, at the surface, ζs = ln(pre f ). In the present study,
vertical profiles of errors and correlations are displayed on the model η levels, which can
be approximated near the surface by the ratio of atmospheric pressure to surface pressure
in a 15 km atmospheric model, such as the one used in this study.

As a rule of thumb, a vertical variation of 0.1 for the η hybrid coordinate approximately
corresponds to differences of 100 hPa in pressure and 1 km in height.

The main advantage of performing the objective evaluation directly on model levels
is that no vertical interpolation is needed, taking advantage of the fact that the η levels
and orographic height are identical in the model forecasts and in the 4D-EnVar upper-
air analyses for both OP and NEW. It should be recognized, however, that the height
and pressure are not identical, since the surface pressure is not the same. These random
variations in the model levels’ height and pressure remain small and can be considered part
of the model forecast errors. This additional error is similar to the uncertainty associated
with vertical interpolation to constant pressure or height levels typically performed in
objective atmospheric upper-air evaluations (e.g., see [45]).

2.4. Evaluation Metrics and Diagnostics

The error bias and standard deviation are estimated for each land grid point as a
function of GEM’s prediction lead time based on matched time series over the entire
list of cases available for the evaluation period. This point-by-point approach allows
for the detailed mapping of forecast errors at the screen level and in the PBL and is
most appropriate for investigating the statistical links between these errors. Numerical
predictions for OP and NEW are directly compared against their own analyses on the same
computational grids:

STDE2
i,t =

1
Nd

Nd

∑
d=1

[
( f − a)d − ( f − a)

]2

i,t
(3)

Bi,t =
1

Nd

Nd

∑
d=1

[( f − a)d]i,t (4)

in which STDE is the error standard deviation, B is the bias, d indicates the validation
dates, Nd is the number of cases (validation dates), i is model grid points, t is the forecast
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lead time, and f and a are the model forecasts and analyses being compared. The overline
in Equation (3) represents time averaging.

The evaluation is performed at the near-surface versus screen-level analyses and in
the atmosphere for each hybrid (η) GEM level versus 4D-EnVar analyses. Maps of errors
are produced, as well as vertical profiles for spatially averaged errors over a few selected
areas. Since the GEM results are evaluated here with a latitude–longitude mapping, spatial
averages feature normalization based on latitude, as in [19]:

δarea,t =
∑area δi,t cos ϕi

∑area cos ϕi
(5)

where δ stands for the spatially averaged error metric, area is for the region over which
spatial averaging is performed, and ϕ is the latitude of each model grid point i.

To understand the links between errors at the surface and in the lower troposphere
for the OP and NEW experiments, Pearson correlation coefficients between STDE error
differences in the lower troposphere and error differences at the screen level are displayed
as vertical profiles and histograms based on spatial information for specific forecast ranges.

Further physical understanding is provided by diagnostics for the PBL diurnal evolu-
tion. The PBL height is calculated at every grid point for a few selected areas for all cases
during the evaluation period, and then the values are averaged spatially over specific areas
and temporally for several forecast days. The approach is based on the vertical profiles of
potential temperature (θ), defined as

θ = T
(

ps

p

)Rd/cp

(6)

in which T is the air temperature, the surface pressure ps is used as a reference pressure, Rd
is the gas constant for dry air, and cp is the specific heat capacity at constant pressure. In
this algorithm, the model η levels are examined one by one, starting from the model top, to
detect an inversion for θ in the lowest few kilometers of the atmosphere. If no inversion
is found, a reference is set a few levels above the model surface. The first inflection point
identified above the detected inversion (or reference level) is then diagnosed as the PBL
height. The parameters involved in this simple method were optimized through tests and
trials with the visual inspection of several tens of vertical θ profiles. The objective of these
PBL diagnostics is not to provide a rigorous estimate of the PBL height (which is always a
difficult task) but rather to serve as a common basis for comparison between the OP and
NEW experiments.

2.5. Experimental Setup

The experimental setup is identical to what is described in [19], except that only the
results from the summer season are evaluated in the present study. The evaluation period
is from 16 June 2019 to 31 August 2019, with a series of OP and NEW 10-day forecasts
launched every 12 h each day, at 0000 UTC and 1200 UTC. Only the 0000 UTC runs are
evaluated here, similar to the procedure followed in [19].

For NEW, the spinup of SVS prognostic variables (soil moisture and surface tempera-
ture) is achieved with an offline open-loop run from October 2017 to 15 May 2019. This is
followed by a one-month offline assimilation cycle with CaLDAS, all the way to 16 June
2019, which is the first day of the summer evaluation period when the land surface and
upper-air data assimilation systems are weakly coupled. For OP, no special spinup is
necessary since the initial conditions from ECCC’s operational GDPS cycles are used.

3. Results

In this section, medium-range prediction errors of air temperature and specific humid-
ity at the screen level and in the PBL are presented and discussed for both the OP and NEW
experiments. These errors and their differences between the two experiments are displayed
as maps and vertical profiles over North America and over three specific areas. The diurnal
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cycle of PBL errors is investigated, and correlations between error differences in the PBL
and at the screen level are described.

Figure 1 shows maps of medium-range forecast errors at the screen level and at hybrid
level η = 0.85 (approximately 1.5 km above the surface) for the air temperature and specific
humidity predicted by the NEW experiment. Forecast errors are temporally averaged for
summer 2019 forecasts valid between 78 h and 144 h based on model outputs and analyses
every 6 h. The air temperature forecast error map at the screen level (Figure 1’s upper-left
panel) displays larger errors in the central US and the Canadian prairies (on the order
of 2.5 K), in northern Canada (with values close to 3.0 K in northern Yukon), and in the
southeast US. For specific humidity (upper-right panel), screen-level errors are larger over
the US’s central and southern areas, with values on the order of 1.5 g kg−1.

Figure 1. Maps over North America of NEW’s STDEs at screen level (upper panels) and at hybrid
level η = 0.85 (lower panels) for air temperature (K, with red shading, on the left) and for specific
humidity (g kg−1, with blue shading, on the right). Forecast errors are temporally averaged for
summer 2019 forecasts valid between 78 h and 144 h based on model outputs and analyses every 6 h,
i.e., at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC.

In the boundary layer, the spatial patterns of air temperature errors at level η = 0.85
are similar to what is found at the screen level (cf., Figure 1’s left panels). These errors are
generally smaller at η = 0.85 than at the screen level for air temperature, except for areas in
northern Canada (i.e., Territories and Yukon), where the amplitude is similar. For specific
humidity, the errors’ spatial distribution at η = 0.85 is substantially different from that at
the screen level. Large errors are detected over the US just southwest of the Great Lakes,
with values greater than 2.5 g kg−1 over certain areas. Forecast errors for specific humidity
are generally larger at η = 0.85 than at the screen level, especially over the central-eastern
portion of the US. Interestingly, it seems that the maximum errors for specific humidity at
η = 0.85 are slightly shifted east compared with those for air temperature at the same level
(see lower panels of Figure 1).

Maps of the STDE differences between NEW and OP for the same period and forecast
ranges are shown in Figure 2, both at the surface and at level η = 0.85. Forecast error
differences are temporally averaged for summer 2019 forecasts valid between 78 h and
144 h based on model outputs and analyses every 6 h. The results at the screen level
(Figure 2’s upper panels) are consistent with [19]. For screen-level air temperature, the
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STDE is generally smaller with NEW compared to OP. The largest impact is found over
Canada’s northern areas, but the air temperature STDE is also decreased at the screen
level over the US’s western and central regions. There is a smaller increase in STDE with
NEW over the southeastern US and southern Canada. For specific humidity, the spatial
patterns for STDE differences between the two experiments at the screen level are similar
to those for air temperature, with a substantial error decrease over northern areas and the
western-central US and an STDE increase over the southeastern US.

Figure 2. Maps over North America of STDE differences between NEW and OP at the screen level
(upper panels) and at hybrid level η = 0.85 (lower panels) for air temperature (K, on the left) and
specific humidity (g kg−1, on the right). The forecast error differences are temporally averaged for
summer 2019 forecasts valid between 78 h and 144 h based on model outputs and analyses every 6 h,
i.e., at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC. Areas in red indicate smaller errors for NEW,
and the reverse for areas in blue. The black rectangles indicate areas used in the figures below for
spatial averaging, which are referred to as “North Canada”, “Central US”, and “Southeast US”.

The impact of NEW vs. OP is quite different at level η = 0.85 (Figure 2’s lower panels).
Overall, the differences between the two experiments are smaller at this level. Large
portions of the lower-left panel for air temperature at η = 0.85 are white, indicating small
differences. For air temperature at this level, the largest impact is related to an STDE increase
for NEW over the southeastern US and over the northern portion of Yukon. The STDE
differences for specific humidity at η = 0.85 are different than for air temperature. These
differences are greater than for temperature at this same level and are mostly increased
with NEW, except for some areas in the central and southern US and also, to a lesser degree,
in the Canadian prairies (southern Alberta and Saskatchewan).

Vertical profiles of STDEs for OP and NEW are shown in Figure 3 for spatial averages
over North America and over the specific areas highlighted by the black rectangles in
Figure 2 over northern Canada, the central US, and the southeastern US. The profiles are
temporally averaged for forecasts valid every 6 h for ranges between 78 h and 144 h. For
air temperature over North America, both experiments have the STDE increasing upwards
from the surface (level η = 1.0) to reach its maximum values just below level η = 0.95 and
then decreasing above (see upper-left panels in Figure 3). The STDE errors are smaller for
NEW compared with OP near the surface, all the way up to approximately level η = 0.92
(i.e., nearly up to 1 km above the surface); these errors are slightly larger around level
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η = 0.85, which is the level used for the PBL maps in Figures 1 and 2. The values of STDE
at the surface are approximately 2.1 K for NEW and 2.3 K for OP. For specific humidity, the
STDE is relatively constant near the surface up to about level η = 0.90 (lowest km) and then
increases to reach its maximum values around level η = 0.80. NEW has a smaller STDE
compared with OP for the lowest layer (below η = 0.90), but it is slightly larger around
level η = 0.80.

Figure 3. Vertical profiles of STDE errors for air temperature (K) and specific humidity (g kg−1)
spatially averaged over the land portion of North America and of the specific areas depicted by
rectangles in Figure 2 for northern Canada, the central US, and the southeast US. Results are shown
for the NEW (dashed lines) and OP (full lines) experiments. The profiles are temporally averaged for
the forecasts valid at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC for ranges between 78 h and
144 h (i.e., forecasts for days 4 to 6). The model’s hybrid η levels are used as vertical coordinates.

The other panels in Figure 3 reveal that the STDE vertical profiles and the relative per-
formance of NEW versus OP are quite dependent on the location considered. Over northern
Canada, the differences between OP and NEW are substantial for both air temperature
and specific humidity. The air temperature STDE is smaller for NEW compared with that
from OP for the entire atmospheric layer evaluated here (up to above level η = 0.75). The
differences for the lowest atmospheric km are on the order of 0.5 K. For specific humidity,
the STDE is also smaller for NEW near the surface but is significantly increased compared
with OP in the layer between levels η = 0.90 and η = 0.75.

The opposite is found over the southeastern US (Figure 3’s lower right panels), where
there is a substantial deterioration in the air temperature STDE for NEW from the surface
to level η = 0.75, with differences on the order of a few tenths of a degree. For specific
humidity, the STDE is slightly worse for NEW in the lower km and slightly better for the
layer between levels η = 0.85 and η = 0.75.

A different situation is observed for the domain over the central US, where STDE
profiles are generally similar to what is previously described for North America. Over
that region, the STDE is decreased with NEW for air temperature for the first few hundred
meters and increased above level η = 0.90. The specific humidity STDE is decreased below
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level η = 0.85 for NEW, with differences on the order of a few tenths of g kg−1 in the lowest
few hundred meters. These STDE vertical profiles are consistent with the error difference
maps presented in Figure 2.

The diurnal cycles of NEW’s STDE vertical profiles and how they differ between
OP and NEW are presented in Figure 4. The forecasts are valid at 0000 UTC, 0600 UTC,
1200 UTC, and 1800 UTC, and the errors are temporally averaged for day 4 to day 6
predictions. According to Figure 4’s left panels, the air temperature STDE increases after
1200 UTC (morning) and becomes more vertical (i.e., more constant with height) from the
surface to approximately hybrid level η = 0.90. It should be noted that the air temperature
STDE for the southeast US remains larger near the surface; i.e., the error profile does not
become vertical at 1800 UTC. For the three domains, the air temperature STDE further
increases after 1800 UTC to reach its maximum value at 0000 UTC, i.e., in the evening. This
increase late in the day is particularly pronounced for the southeastern US domain. The
STDE difference profiles are consistent with the maps shown in Figure 2 and the vertical
profiles in Figure 3, with very distinct characteristics for the three domains.

For northern Canada, the air temperature STDE differences (in favor of NEW for
that domain) are amplified and deepen vertically throughout the day, as shown by the
progression from 1200 UTC (morning) to 1800 UTC (afternoon) to 0000 UTC (evening). For
the central US domain, the vertical profiles indicate a reduction in air temperature STDE
in the lowest 500 m or so (below level η = 0.95) with a slight deterioration above. The
error differences at low levels increase in vertical depth in the morning, from 1200 UTC to
1800 UTC, followed by a decrease late in the afternoon or early evening, from 1800 UTC
to 0000 UTC. For the southeastern US, the air temperature STDE differences are in favor
of OP and appear to decrease between 1200 UTC and 1800 UTC and then substantially
increase between 1800 UTC and 0000 UTC, with a slight decrease after that (late evening,
early night).

As shown in Figure 4’s right panels, the diurnal evolution of the specific humidity
STDE and of the impact of NEW versus OP is quite different from what is described just
above for air temperature. For the three domains examined here, the specific humidity
STDE becomes more vertically constant (or could be understood as vertically “well mixed”)
between 1200 UTC and 1800 UTC. This vertical mixing of the errors is associated with an
increase in specific humidity STDE at the surface and in the lowest portion of the PBL.
There is less diurnal variability in the atmospheric layer that could be interpreted as being
above the PBL (above levels η = 0.85 or η = 0.80), except for the central US domain, where
the specific humidity STDE substantially increases between 1800 UTC and 0000 UTC.

The diurnal evolution of specific humidity STDE differences is quite dissimilar for the
three domains. For northern Canada, these errors are generally smaller for NEW near the
surface (below η = 0.90) and greater for the layer above. The vertical profiles become more
vertical (constant or well mixed) later in the day, as can be seen with the 0000 UTC profile.
The opposite is found for the southeastern US domain, with a larger specific humidity
STDE in the lower km and more neutral values above, except in the evening at 0000 UTC,
when NEW’s STDE is substantially smaller than OP’s above level η = 0.90. Over the central
US, the specific humidity STDE differences reveal NEW’s better performance over that area
for that variable, but a pattern for the diurnal evolution of STDE differences is difficult to
discern, except for a substantial increase in this difference very close to the surface, in favor
of NEW.
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Figure 4. Vertical profiles of STDEs for air temperature (K) and specific humidity (g kg−1) for the
NEW experiment spatially averaged over northern Canada, the central US, and the southeast US for
forecasts valid at 0000 UTC, 0600 UTC, 1200 UTC, and 1800 UTC, temporally averaged for day 4 to
day 6 forecasts. Spatial averages of STDE differences (NEW minus OP) are also shown for the same
areas and for the same forecast ranges.

One of the main objectives of this study is to determine how these very particular and
complex vertical error structures for air temperature and specific humidity relate to errors
at the land surface. The Pearson correlation coefficient is used here to determine the linear
relationship between the atmospheric STDE differences between the two experiments and
the error differences (STDE and bias) at the screen level. It provides information on how
STDE is improved or deteriorated in the lower troposphere in relation to error changes at
the surface. It can also help determine whether STDE deteriorations in the PBL (e.g., all the
way up to hybrid levels η = 0.85 and η = 0.80) can be linked to similar deteriorations at
the screen level, and whether biases play a role.
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In Figure 5, these correlations are shown for STDE differences in air temperature
(left panel) and specific humidity (right panel). The correlations are calculated over the
North American domain and are shown for forecasts valid at 0000 UTC, averaged over
the ranges 96 h, 120 h, and 144 h. For air temperature, the strongest link in the lower
troposphere is with air temperature STDE differences at the screen level (left panel, full
line), with a correlation coefficient of 1.0 at the screen level (by construction), decreasing
almost linearly upward to a value of approximately 0.3 at level η = 0.82. There is also
a good relationship with specific humidity STDE differences at the screen level, but to a
much lesser degree. The correlation coefficient is about 0.4 at the screen level and decreases
to a value close to 0.1 at level η = 0.85.

Figure 5. Vertical profiles of the Pearson correlation coefficient linking the STDE differences between
NEW and OP for lower tropospheric air temperature and specific humidity with error differences in
the same two variables at the screen level. The correlations are calculated over the North American
domain and are shown for forecasts valid at 0000 UTC, averaged over the ranges 96 h, 120 h, and 144 h.
In the legend, “STT” and “SHU” are for the correlations with STDE differences for air temperature and
specific humidity at the screen level; “BTT” and “BHU” are for the correlations with bias differences
for air temperature and specific humidity at the screen level.

The most notable feature in Figure 5’s left panel is the fact that atmospheric STDE
differences for air temperature correlate quite well with air temperature bias differences
at the screen level. For levels η = 0.85 to η = 0.80, the correlation coefficient is almost
as large as the one linking the same errors with air temperature STDE differences. It
seems, however, that screen-level humidity biases do not play a substantial role, since the
correlation coefficient for the “BHU” line in Figure 5’s left panel remains small from the
surface all the way up to levels above η = 0.75.

For specific humidity, the strongest link in the lowest portion of the atmosphere is
with specific humidity STDE differences at the screen level (right panel, dotted line). This
is the same as for air temperature, with a correlation coefficient of 1.0 at the screen level
(by construction). This coefficient decreases rapidly to a value close to 0.1 at η = 0.85. The
correlation coefficient with screen-level air temperature STDE differences is about 0.5 at the
screen level but rapidly decreases with height to become negative (value of about −0.1 at
level η = 0.85).

Again, the most noteworthy aspect is the link of specific humidity STDE differences
with near-surface air temperature biases. In Figure 5’s right panel, the dashed line for
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“BTT” increases with height from the surface to reach a maximum value of about 0.2 close
to level η = 0.95 and then decreases to reach strong negative values of less than −0.2 at
η = 0.85. In other words, having cooler predictions at the surface has a positive impact
on the humidity STDE for the lower part of the PBL, and the opposite is true for its upper
portion. Considering that the link with specific humidity biases at the surface appears to
be weak, it can be concluded that specific humidity STDE improvements or deteriorations
are more strongly linked with air temperature bias changes than specific humidity bias
changes at the screen level.

4. Discussion

The results presented in the previous section provide a statistical overview of the
links between random errors for air temperature and humidity in the lower troposphere.
In the discussion below, these statistics are further explored in order to determine the
physical processes that could explain how atmospheric forecast errors are linked with
model performance at the land surface. They help us better understand the differences
in the errors diagnosed over the three areas specifically examined in this study, i.e., over
northern Canada, the central US, and the southeast US. This analysis also informs on how
errors at the surface and in the PBL relate to the diurnal evolution of the PBL, and on how
they may influence the objective evaluation process traditionally used for NWP systems.

4.1. Statistically Explaining STDE in Upper Boundary Layer

The diagrams shown in Figure 6 provide a summary of the statistical links between
screen-level errors and the STDE at level η = 0.85, which is approximately 1.5 km above
the surface and could be considered to be in the upper portion of the boundary layer. The
correlations displayed in the upper panel of that figure are obtained for the North American
domain and are used here to determine whether errors at η = 0.85 for the three domains
are consistent with the behavior previously described. The results in this section are only
discussed for 0000 UTC, in the late afternoon and evening for North America, when the
STDE is largest in the lower troposphere (see Figure 4).

Based on North American error statistics for this time of day, it seems that improving
surface predictions (in terms of STDE) indeed has a positive impact on the STDE for both
air temperature and humidity for the entire PBL, as revealed in the vertical profiles shown
in Figure 5 and as summarized in the upper panel of Figure 6. But, the statistical links
with air temperature biases at the screen level are also large in the upper part of the PBL
and appear to be a crucial factor for both air temperature and specific humidity (see the
BTT portion of the histograms in Figure 6’s upper panel). In comparison, specific humidity
errors at the screen level appear to have less impact on errors in the PBL.

For northern Canada (second panel in Figure 6), the air temperature STDE decrease
at level η = 0.85 with NEW (decreased by 0.15 K) could be related to the substantial
decrease in the air temperature STDE at the screen level (decreased by 0.64 K) and smaller
values for near-surface air temperature with NEW (decreased by 1.16 K), both aspects
positively correlated with the boundary-layer air temperature STDE reduction (see top
panel). Similarly, the specific humidity STDE increase with NEW at level η = 0.85 (increased
by 0.09 g kg−1) can be mostly linked with the same cooling at the screen level (negatively
correlated) and, to a lesser degree, with the air temperature STDE decrease at the screen
level (also negatively correlated). The improvement for screen-level specific humidity
STDE with NEW is, however, not consistent with the positive correlations displayed for
both air temperature and humidity at η = 0.85 in the upper panel of Figure 6 since the
humidity STDE is actually increased over that area at η = 0.85 (see left portion of Figure 6’s
second panel).

Figure 6’s bottom panel describes the situation for the southeast US subdomain,
another area where the STDE differences between the two experiments are large at level
η = 0.85. Over that area, the large increase in air temperature STDE at η = 0.85 for NEW
(about 0.24 K) could be related to increases in the air temperature STDE (0.10 K) and, mostly,
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to a larger bias (1.13 K warmer with NEW) at the screen level. On the other hand, the same
warming at the surface with NEW could be used to explain the substantial decrease in the
specific humidity STDE at level η = 0.85 for NEW (0.14 g kg−1).

Figure 6. The upper panel provides histograms showing the statistical relationship between screen-
level errors (STDE and bias) and the STDE at level η = 0.85 for the North American domain (in
yellow for air temperature and in green for specific humidity). The lower three panels show the
STDEs and biases for air temperature and specific humidity at the screen level and the STDEs at
η = 0.85 for the three subdomains indicated by the black rectangles in Figure 2. The results for NEW
are in red, whereas the results for OP are in blue. In the legends, “B” refers to bias, while “TT” and
“HU” refer to air temperature and specific humidity.

For the central US subdomain (third panel in Figure 6), the STDE differences at
η = 0.85 between the two experiments are much smaller compared with northern Canada
and the southeast US. The slight deterioration with NEW for the air temperature STDE
at η = 0.85 (0.07 K) appears to be linked with warmer air at the screen level (increased
by 0.11 K), in spite of the contradictory signal from the air temperature and specific
humidity STDE differences at the screen level, which are both reduced with NEW. The
small improvement with NEW for the specific humidity STDE at η = 0.85 could also be
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related to the warmer surface and to a substantial decrease in the specific humidity STDE
(decreased by 0.45 g kg−1).

4.2. Physical Links with PBL Diurnal Evolution

The strong correlation between STDE differences in the lower troposphere and STDE
differences in the same variable at the screen level is to be expected. The results indeed
show that the air temperature STDE in the lowest few hundred meters is well correlated
with the air temperature STDE at the surface. The same can be said for specific humidity.
More interesting is the relationship between air temperature biases at the surface and
boundary-layer STDEs for air temperature and specific humidity in the first few kilometers.
The role and impact of near-surface temperature biases are investigated in Figure 7, which
provides some physical interpretation by showing the spatially and temporally averaged
diurnal evolution of the boundary-layer height over the three subdomains examined in
this study. In this figure, the PBL height is temporally averaged for days 4, 5, and 6 of all
summer 2019 forecasts.

Figure 7. The diurnal evolution of the PBL height (m), spatially averaged over the subdomains shown
in Figure 2 and temporally averaged for days 4, 5, and 6 of all summer 2019 forecasts. The spatial
mean (in black) and standard deviation (in gray) are shown for the NEW and OP experiments (full
and dashed lines, respectively).

Over northern Canada (Figure 7’s upper panel), the maximum PBL height is on
the order of 750 m for NEW and 1000 m for OP, with a spatial variability that is also
substantially larger for OP, i.e., close to 500 m for OP compared with 350–400 m for NEW.
For both experiments, the PBL is most developed for a few hours before 0000 UTC, while
the spatial variability is largest just after 0000 UTC. Going directly to Figure 7’s lower panel,
the situation is reversed for the southeast US, where the PBL is substantially deeper for
NEW, with peak values greater than 1500 m around 2100 UTC, compared with a maximum
PBL height of about 1000 m for OP, peaking a few hours earlier than NEW (i.e., just after
1800 UTC). Differences are also found for the spatial variability, which is close to 750 m for
NEW just before 0000 UTC, compared with a standard deviation of about 500 m, peaking
around 2000 UTC for OP. In contrast, the PBL appears to evolve in a similar manner for the
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central US domain (Figure 7’s middle panel), with a maximum PBL depth slightly greater
than 1000 m around 2100 UTC and a maximum standard deviation of about 500 m near
0000 UTC.

From this figure, the results indicate that the PBL height and spatial variability are
directly related to the screen-level air temperature bias differences. Deeper, more developed
boundary layers are related to greater turbulent activity and variance (both spatial and
temporal) in the lowest few kilometers. This increased turbulent activity is represented
in the atmospheric model by subgrid-scale vertical diffusion and by grid-scale upward
motion. In either case, the increased entrainment of warmer and drier air at the top of the
PBL associated with larger air temperature biases (i.e., warmer air) at the screen level could
partly explain how the STDE in the lower troposphere is physically related to errors at the
land surface.

4.3. PBL Errors and Upper-Air NWP Evaluation

The results of this study suggest that land areas where air temperature is decreased at
the screen level (i.e., colder forecasts) should have smaller air temperature STDEs in the
lower troposphere, at least for medium-range summertime forecasts valid at 0000 UTC.
This could have an impact on the objective evaluation traditionally performed at prediction
centers to determine the performance of their NWP systems. For instance, the STDE or
RMSE for air temperature forecasts at 850 hPa is often used as one of the main target
variables to improve. It is often displayed as part of scorecards and is included in the calcu-
lation of aggregated NWP performance indices [46,47]. Based on the results obtained in the
present study, this practice might be problematic since random errors of air temperature at
850 hPa (similar to level η = 0.85 here) are subject to variability in atmospheric turbulence
(parameterized or grid scale) and, in addition, could be sensitive to changes in biases for
screen-level air temperature.

In fact, this dependence on the boundary-layer turbulence and near-surface tempera-
ture bias could have a more profound impact. The geopotential height, arguably the most
popular variable used to evaluate the performance of global NWP forecast systems, is also
sensitive to perturbations in air temperature STDE errors associated with near-surface biases.

In Figure 8, the performance differences for atmospheric temperature STDEs between
NEW and OP (NEW minus OP) at 0000 UTC (i.e., 96 h, 120 h, and 144 h forecast ranges)
over a series of land surface points selected on narrow percentile bands on the cold side
(between 20th and 30th percentiles) and warm side (between 70th and 80th percentiles) of
the spatial distribution of temperature bias differences at the screen level are compared. The
distributions include land grid points over North America for forecasts valid at 0000 UTC
for the ranges 96 h, 120 h, and 144 h. In this figure, the dashed line shows the vertical
profile of STDE differences (NEW minus OP) for points where the bias difference at the
screen level between NEW and OP is smaller than the mean (i.e., could be considered areas
where NEW is cooler). And, the dash-dotted line displays the same but for land points
where NEW could be considered warmer.

In both cases, NEW’s temperature STDE is smaller than OP’s for the North American
domain. The STDE differences are larger at the surface and decrease to near zero near level
η = 0.87. Above that level, the differences become negative again for the cold subset of
points, while they remain near zero for the warm subset. For the first few kilometers above
the surface, the STDE differences (i.e., gains for NEW versus OP) are more negative (more
in favor of NEW) for the cold points. The performance difference between the cold and
warm series of land points reaches about 0.05 K at η levels 0.93 and 0.78.
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Figure 8. Vertical profiles of air temperature STDE differences between NEW and OP (NEW minus
OP) for land surface points selected between the 20th and 30th percentiles (“cold” in the figure) and
the 70th and 80th percentiles (“warm” in the figure) of the spatial distribution of air temperature bias
differences between NEW and OP at the screen level. These distributions are over the land portion
of North America for forecasts valid at the 96 h, 120 h, and 144 h ranges. The blue and red squares
represent the differences in height differential errors (m) based on Equation (9) for the “cold” (blue)
and “warm” (red) vertical profiles.

A rough estimate of the quantitative impact that this distinct performance over cold
and warm areas could have on the geopotential height STDE is provided based on a simple
development from the atmospheric hydrostatic equilibrium equation and the ideal gas law:

∂p
∂z

= −ρg ; p = ρRT (7)

in which ρ is the air density, g is the acceleration due to gravity, and R is the universal
gas constant. Rewriting this in a discretized form and using the fact that η levels can be
approximated by the ratio of pressure to surface pressure near the surface, the following
can be obtained:

∂z = −RT
g

∂p
p

≈ RT
g

∂η

η
(8)

which can then be used to estimate the height difference ∆zk, or uncertainty, associated
with the air temperature STDE difference ∆T:

∆zk ≈
R
g

k

∑
sur f ace

(
∆η

η

)
∆T (9)

The horizontal distance between the colored squares in Figure 8 indicates that this near-
surface bias could have an impact on the order of 0.3 m (for height errors, i.e., 0.03 dam
for geopotential height errors) when integrated from the surface to level η = 0.73. This
difference is not negligible and is sufficiently large to have an influence on decisions based
on the geopotential height STDE or RMSE.
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5. Summary and Conclusions

In this study, the impact of a new land surface package with modifications to surface
fields, land surface modeling, and land data assimilation is presented in terms of random
errors (STDE) in the lower troposphere in medium-range summertime forecasts. Using
correlation coefficients, the statistical relationships between STDEs at the screen level and
in the lower atmosphere are investigated. Diagnostics for the mean PBL diurnal evolution
provide insight into the physical processes that could explain some of the links between
surface and atmospheric errors.

In agreement with previous studies, it is clear that improvements at the surface or
screen level do not always or automatically translate into improvements in the lower
troposphere or in the PBL. Although the NEW configuration evaluated in this study
generally improves medium-range forecasts over North America for both screen-level and
lower tropospheric results, the comparison with the control OP configuration depends
on the geographical area. Three subdomains are used to illustrate situations in which the
impact of NEW versus OP is quite different. Diagnostics over these three subdomains
reveal a very distinct diurnal evolution of STDE errors, with maximum errors at 0000 UTC,
i.e., in the evening, at the end, or just after the daytime boundary-layer growth.

The STDEs for air temperature and specific humidity in the lower troposphere correlate
well with STDEs at the screen level, with coefficients smoothly decreasing with height.
Interestingly, the air temperature bias at the screen level is also found to have a significant
influence, often as important (or even more important) as the near-surface STDE for the
same variable. These statistical relationships derived at the continental scale appear to
properly explain the differences in the STDE profiles for the three subdomains examined in
this study.

The evolution of the PBL is also closely linked with near-surface temperature biases
and is likely to be one of the main physical causes explaining the impact of near-surface
errors on the STDE in the lower troposphere. It appears that a lower air temperature at
the surface is beneficial for the air temperature STDE in the PBL; i.e., areas that are colder
seem to have lower temperature STDEs in the upper part of the boundary layer. This leads
to a note of caution to NWP modelers concerning the inclusion of 850 hPa (or 925 hPa)
air temperature in the scorecards now systematically used for NWP model evaluation.
This extends to the inclusion of 850 hPa air temperature in the production of NWP indices.
Caution is also warranted when looking at random errors for geopotential height because
changes in near-surface temperature bias and its impact on the diurnal PBL evolution can
affect or perturb these errors.

There are, of course, several limitations to this study. Some of them are listed below,
along with possible extensions for this work:

• The same analysis could be carried out during the winter season and over other areas,
when and where the nature of the links between errors at the surface and in the
atmosphere could be different.

• It is not clear whether the same kind of statistical and physical links would be found
in other atmospheric models.

• Do we see the same kind of behavior for weather prediction based on AI forecasting
systems?

• Diagnostics for land–atmosphere coupling could be examined in order to have a
more complete understanding of the links between errors at the surface and in the
boundary layer.

Work is ongoing at ECCC to evaluate the impact of a similar land surface package in
its km-scale short-range deterministic prediction system.
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Abbreviations
The following abbreviations are used in this manuscript:

AIRS Atmospheric Infrared Sounder
CRIS CRoss-track Infrared Sounder
EnKF Ensemble Kalman Filter data assimilation system
EnVar Ensemble Variational data assimilation system
CaLDAS Canadian Land Data Assimilation System
CaPA Canadian Precipitation Analysis
CCMEP Canadian Centre for Meteorological and Environmental Prediction
CTEM Canadian Terrestrial Ecosystem Model
ECCC Environment and Climate Change Canada
GDPS Global Deterministic Prediction System
GEM Global Environmental Multiscale model
GEWEX Global Energy and Water EXchanges initiative
HRRR High-Resolution Rapid Refresh
IASI Infrared Atmospheric Sounding Interferometer
ISBA Interactions between Soil, Biosphere, and Atmosphere scheme
LoCo Local Land–Atmosphere Coupling
NOAA National Oceanic and Atmospheric Administration
NWP Numerical weather prediction
PBL Planetary boundary layer
SMAP Soil Moisture Active Passive mission
SMOS Soil Moisture and Ocean Salinity mission
SVS Soil, Vegetation, and Snow scheme
TKE Turbulent kinetic energy
UTC Universal Time Coordinated
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