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Abstract: Accurately generating high-resolution surface grid datasets often involves merging multiple
weather observation networks and addressing the challenge of network heterogeneity. This study
aims to tackle the problem of accurately interpolating temperature data in regions with a complex
topography. To achieve this, we introduce a deterministic interpolation method that incorporates
elevation to enhance the accuracy of temperature datasets. This method is particularly valuable for
areas with intricate terrains. Our robust methodology integrates a network harmonization method
with radial basis function (RBF) interpolation for complex topographical regions. The method was
tested on 10 min average temperature data from Jeju Island, South Korea, over 2 years that had a
spatial resolution of 100 m. The results show a significant reduction of 5.5% in error rates, from
an average of 0.73 ◦C to 0.69 ◦C, by incorporating all adjusted data. Integrating a parameterized
nonlinear temperature profile further enhances accuracy, yielding an average reduction of 4.4% in
error compared to the linear model. The spatial interpolation method, based on regression-based
radial basis functions, demonstrates a 6.7% improvement over regression-based kriging for the same
temperature profile. This research offers a valuable approach for precise temperature interpolation,
especially in regions with a complex topography.

Keywords: spatial interpolation; radial basis function; temperature inversion; mountainous region;
merging networks

1. Introduction

Near surface temperature is a key variable that is widely used in research on climate
change, meteorology, and environmental health. It serves as a crucial indicator of surface
energy balance, driving processes like evaporation, sublimation, and snow melting [1–3].
Accurate estimation of local air temperature is pivotal for modeling surface processes in
physical and environmental sciences.

Gridded temperature datasets are indispensable in various fields, including climate
change studies [4,5], crop suitability assessment [6], runoff prediction [7], flood esti-
mation [8], and weather forecasting [9]. However, meteorological stations collecting
temperature observations are typically sparse and irregularly distributed, which often
hinders accurate estimation of high-resolution grided temperature fields. To overcome
this limitation, various interpolation techniques have been proposed, including optimal
interpolation [10–13], the parameter-elevation regressions on independent slopes model
(PRISM) [14–17], and the kriging with external drift (KED) method [18–20]. Recently,
machine learning-based interpolation methods incorporating auxiliary data, like digital
elevation model (DEM) and satellite land surface temperature (LST), have been extensively
studied [21–27]. Furthermore, machine learning methods utilizing satellite data [26] and
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numerical weather prediction ensembles with field observations have been actively stud-
ied [28] for real-time or near-real-time high-resolution temperature interpolation. Our
study aims to address the limitations of traditional interpolation methods by introducing a
novel deterministic interpolation approach that incorporates elevation data to enhance the
accuracy of temperature datasets. Unlike traditional methods, our approach integrates a
network harmonization method with RBF interpolation for complex topography. This new
method specifically addresses the issue of heterogeneity in weather observation networks,
which is a common challenge in traditional interpolation techniques.

Land surface temperature interacts closely with various meteorological parameters,
such as wind speed, relative humidity, and atmospheric pressure, playing a pivotal role
in shaping weather patterns and atmospheric dynamics. In complex terrains in particular,
atmospheric models often exhibit better performance in predicting temperature compared
to wind speed due to the challenges posed by the intricate interactions between topography
and atmospheric circulation [29,30]. This is attributed to the fact that temperature is influ-
enced by factors such as solar radiation, land–sea distribution, and surface characteristics,
which are relatively well represented in models. Recent advancements in observational
techniques and modeling approaches have aimed to improve the representation of these
interdependencies, leading to enhanced forecast accuracy and a better understanding of
atmospheric processes in diverse geographical settings.

An effective approach to estimating temperature at a high resolution is to employ
comprehensive data created by integrating observations from multiple networks. However,
heterogeneous networks may introduce notable biases, even among equipment that is
closely located, due to non-standardized environmental conditions (such as installation
altitude and exposure environment) and equipment performance factors (resolution and
available measurement range). Nevertheless, even in the most challenging scenarios, the
overall error estimation should not be larger than that based on a single network. To
address this challenge, it is essential to eliminate heterogeneity among networks. This
can be achieved by defining and analyzing the differences among the observed values of
networks. A previous study addressed this issue by defining differences among observed
values between networks that shared a region and then leveraging these differences to
mitigate heterogeneity in observation network data for European gamma dose rate mea-
surements [31]. The results demonstrated that this proposed method reliably identified
and quantified biases. After adjusting the estimated biases, the resulting interpolation map
was shown to be more reliable than one generated based on the original data.

In mountainous regions, the distribution of surface air temperature presents distinctive
horizontal gradients and nonlinear changes with terrain heights, posing a significant
challenge for generating temperature datasets across general grids. Moreover, the sparse
distribution of stations exacerbates the difficulty in capturing the complex temperature
variations in mountainous terrain regions. To address this challenge, incorporating data
from additional networks or auxiliary observation networks has been proven to improve
the quality of temperature grid datasets in mountainous areas. Several advancements have
been made to construct regional high-resolution temperature datasets, including some
approaches based solely on station data. For instance, FORBIO (FORest-based BIOeconomy)
grid climate data for the daily minimum and maximum temperatures in Belgium were
obtained using the KED method [32]. Additionally, the study identified topography as
a more critical auxiliary variable compared to land cover type. Brunetti et al. compared
three interpolation methods [16]: multilinear regression with local improvement [33],
regression kriging (RK), and PRISM-based locally weighted linear regression (LWLR). The
findings revealed that LWLR, which considered the relationship between temperature
and elevation, provided slightly superior results in estimating monthly temperatures in
complex areas. These studies mainly focus on generating data with temporal resolutions
such as monthly [16,25,33] or daily [21,30,32,34], with spatial resolutions ranging from
1 km.
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A pioneering approach for spatially interpolating the daily air surface temperature
in alpine station measurements was introduced in [34]. This method is a deterministic,
two-dimensional interpolation method with distance weighting that is modified by using
nonlinear parametric profiles and a non-Euclidean distance weighting scheme. These
improvements allow for the modeling of the inversion layer in terms of height, contrast,
thickness, and adaption to various representation patterns of station measurements under
varying meteorological conditions. The flexible approach was rigorously tested in a moun-
tainous region in Switzerland, utilizing daily measurement data from 70 to 110 stations
over the period 1961–2010.

Radial basis function (RBF) interpolation is a deterministic interpolation method that
is widely used for general and flexible interpolation in multi-dimensional spaces. It is
well known for its strong approximation properties and ease of implementation, making
it useful not only for approximating statistical and neural networks [35,36] but also for
finding approximate solutions to numerical partial differential equations [37,38]. There are
several types of RBFs, and selecting an appropriate function and optimal shape parameter
based on the density of observation points can ensure the stability and accuracy of the linear
equation [39–41]. The commonly used Gaussian RBF is sensitive to the shape parameter
and has a narrow range of shape parameters with minimal errors, making it difficult to find
the optimal shape parameter in each situation [42]. In contrast, the thin-plate spline RBF
does not require a shape parameter but may not be as accurate as RBFs that do use shape
parameters [39]. Previous meteorological studies have primarily used these Gaussian RBFs
or thin-plate splines, resulting in less favorable validation outcomes [43] and a preference
for kriging methods over RBFs. In another study [44], four interpolation methods for rain
gauge precipitation were compared: inverse distance weight (IDW), RBF, ordinary kriging
(OK), and a compressed-sensing method using RBF. The RBF interpolation method showed
the smallest error in leave-one-out cross-validation (LOOCV). Instead of using Gaussian or
thin-plate RBF, the study used Hardy’s multiquadric RBF and inverse multiquadric RBF,
selecting optimal shape parameters to enable precise RBF interpolation. Thus, selection
of appropriate RBF and shape parameters has a significant impact on the accuracy of the
RBF interpolation method. Before conducting this study, we tested several RBF methods
(Gaussian, thin-plate spline, inverse multiquadric, multiquadric, radial powers, etc.) using
air temperature data (see Appendix A).

This study aims to develop a fast and accurate method for generating surface air
temperature grid data with high spatial (0.1 km) and temporal resolutions (10 min) in
a region with a mountainous terrain using multi-heterogeneous observation networks.
Drawing inspiration from techniques outlined in [31,34], we merge data from different
observation networks and incorporate elevation when modeling temperature profiles.
The proposed interpolation method for surface air temperature is specifically tailored for
application in mountainous terrains with heterogeneous networks.

Section 2 provides an overview of the study area and the datasets used in this study.
Also, the data harmonization and interpolation methods are described in this section.
Section 3 presents a comparison of LOOCV errors to assess the impact of data harmoniza-
tion according to temperature profile types and interpolation techniques. Furthermore, it
presents an examination of the monthly cross-validation error, monthly inversion strength,
and strong inversion occurrence rate of the air temperature on Jeju Island. Section 4 is dedi-
cated to discussion, while Section 5 summarizes the findings and presents the conclusions.

2. Data and Methods
2.1. Data
2.1.1. Study Area

Jeju Island (Figure 1) is a volcanic island that is located on the southern coast of the
Korean Peninsula. Covering an area of 1848 km2, it features Hallasan Mountain at its center,
a towering volcano with an altitude of 1950 m above sea level (asl). Jeju Island extends
73 km from east to west and 41 km from north to south, corresponding from 33◦10′ to
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33◦34′ N latitude and 126◦10′ to 127◦ E longitude. The island has a humid subtropical
climate with cool and dry winters and hot and humid summers [17]. As an island, it is
strongly affected by the ocean, resulting in smaller daily temperature variations compared
to inland areas, and maintains warm and humid conditions throughout the year. The
island has high surface and underground temperatures, making it suitable for horticultural
crop cultivation in winter and facility cultivation of subtropical fruit trees. In contrast to
inland areas, Jeju Island is characterized by higher temperatures, higher precipitation, and
frequent strong winds.
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Figure 1. (a) Study area and locations of stations of the Korea Meteorological Administration (KMA),
Korea Forest Service (KFS), Internet of Things (IoT), Rural Development Administration (RDA),
and Jeju Province Office (JEJ) used for 10 min temperature interpolation in 2019–2021. The color
map represents the digital elevation model (DEM) with 100 m grid spacing in both meridional and
zonal directions. The highest grid point and highest station point correspond to 1919 and 1668 m,
respectively. (b) The distribution of elevation height for each observation network.

2.1.2. Dataset

A total of five networks were utilized as temperature measurement stations. Figure 1
shows the locations of the stations in the networks along with 100 m resolution DEM
data. The utilized networks are maintained by different agencies, such as the Korea
Meteorological Administration (KMA), the Korea Forest Service (KFS), the Jeju Province
Office (JEJ), and Rural Development Administration (RDA), as well as Internet of Things
(IoT) devices. The data output intervals vary depending on the network, i.e., every 1 min
for the KMA and KFS, every 5 min for the JEJ and IoT, and every 10 min for the RDA. To
synchronize with the RDA’s 10 min interval, the KMA and KFS data were averaged over
10 min periods. For the RDA, since the interval was already 10 min, the data were used
as-is at each 10 min mark. For the JEJ and IoT, data received within the past 10 min were
averaged, resulting in up to 2 data points being averaged since their intervals were 5 min.

The KMA manages 539 automatic weather stations (AWSs) and 98 Automated Sur-
face Observing Systems (ASOSs) installed throughout South Korea. These stations are
distributed spatially in approximately 13 km intervals, with a temporal resolution of 1 min.
They continuously collect data on precipitation, air temperature, relative humidity, and air
pressure every minute. The temperature and humidity observation equipment is typically
installed at a height of about 1.5 m. On Jeju Island, there are a total of 38 KMA datapoints
(refer to Figure 1), six of them are located at altitudes of 1000 m or higher.

The IoT devices for weather monitoring are installed in various locations, including
schools, government offices, bus stops, town halls, apartments, terminal, and marts. These
locations are mainly installed in urban areas, making them susceptible to the influence of
the surrounding urban environment, with inconsistent installation heights. The observed
measurements include relative humidity, sea level pressure, air temperature, and daily
cumulative precipitation. Air-temperature data measured by IoT sensors are acquired at
approximately 5 min intervals from a total of 48 sites between July 2019 and June 2021.
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However, installation height data for each location are not provided. Over the two-year data
collection period, the IoT sensors were both removed and newly installed, resulting in fewer
than 10 sites performing continuous data collection for the entire duration. Consequently,
the number of IoT data collected every 10 min ranges from about 10 to 30 stations during
the study period.

The JEJ manages observation data at around 66 locations, but only five stations in the
JEJ network monitor temperature observation, recording relative humidity, wind, and daily
cumulative precipitation at 5 min intervals as well. The temperature equipment is installed
at a height of around 1.5 m.

Figure 2 shows the time series of temperature data from closely located IoT, JEJ, and
KMA sites (the yellow arrow in Figure 1) on 26 July 2019. The horizontal distances between
the KMA and JEJ sites and between the KMA and IoT sites measure 707.5 m and 180.4 m,
respectively, which are less than 1 km. The temperature observed at the JEJ site exhibited
similarities with that at the KMA site, but the temperature observed at the IoT site, which
was only 180 m away from the KMA site, was more than 2 ◦C higher than that at the KMA
site. Notably, the temperature discrepancy between the IoT and KMA sites increased for
higher temperatures.
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Figure 2. Temperature time series for 26 July 2019 (LST), for the closest KMA, IoT, and JEJ observation
sites, with elevations of 51.86, 83.16, and 50.0 m, respectively. The horizontal distance between the
IoT and KMA sites is 180.4 m, while the distance between the JEJ and KMA sites is 707.5 m.

The KFS operates a network of weather stations to monitor precipitation, temperature,
relative humidity, and atmospheric pressure at intervals of a few minutes. The stations are
typically installed in mountainous areas. There are a total of five observation sites located
between 400 and 1000 m asl on Jeju Island (see Figure 1). The temperature observation
point for the KFS is at a height of 2 m.

The RDA in South Korea manages observation data of temperature, humidity, wind,
and rainfall recorded at 10 min intervals. All five sites in Jeju Island are located at altitudes
of 300 m or less, and most of these sites are located far from the AWSs and the city center.
The installation height of the temperature observation equipment is 1.5 m, the same as
the KMA.

To derive terrain heights for Jeju Island, we used a DEM dataset known as the
Global Multiresolution Terrain Elevation Data 2010 with a spatial resolution of 3 arc-
seconds. The data were acquired from the website of the United States Geological Survey
(https://topotools.cr.usgs.gov/gmted viewer/viewer.htm), last accessed on 5 July 2018.

2.2. Methods

The proposed method comprised three main steps. Firstly, statistical data are gen-
erated through temperature data collection for each network. To ensure the quality of
heterogeneous network data, statistical data are generated. Following the method outlined
in [31], pair data of the values of each network and the interpolated values are compared
over a defined period. The collected pair data for each network are then utilized to derive a
linear regression equation between the two observation networks.

https://topotools.cr.usgs.gov/gmted
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Secondly, air temperature data for each network is adjusted and removed using these
statistical data to eliminate the bias. After establishing a linear regression between the
two networks, the “difference” is defined as the distance from this regression equation.
Observations with significant differences are then removed, and the heterogeneous network
observation data are adjusted using the slope and y-intercept, as detailed in Section 3.2

Lastly, we incorporate the altitude-dependent temperature profile function to perform
RBF spatial interpolation on the adjusted data. This interpolation method consists of
four steps: (1) Calculating a vertical temperature profile through regression analysis;
(2) computing the residuals between the adjusted and merged observed temperature data
and the values predicted by the temperature profile; (3) interpolating the residuals; and
(4) adding the grid predicted by DEM using the profile to the grid interpolated residual data.
It is crucial to note that the DEM must align with the grid information being produced.

The proposed method was validated using surface air-temperature data obtained
from five networks in Jeju Island, South Korea, over two years (from July 2019 to June
2021) with spatiotemporal resolutions of 0.1 km and 10 min, respectively. To assess the
quantitative accuracy of the method, the LOOCV errors were compared according to the
types of elevation profiles and interpolation method.

2.2.1. Interpolation Methods

The main method proposed herein is the interpolation of the residuals after remov-
ing the temperature trend with altitude. In this study, RBF and kriging were adopted
for interpolation.

Let yi be the observation at each station xi. y(x) is a continuous function, and we
assume that y(xi) = yi. The RBF interpolation is a deterministic interpolation method that
forms a weighted sum of RBFs, as follows:

y(x) =
N

∑
i=1

wiϕ(|x − xi|), (1)

where ri =|x − xi| is the distance between the interpolated point x and the center xi of
each base ϕ and wi is the coefficient or the weight of each RBF ϕ(ri ). Here, each station
point for all networks is used as a center.

Substituting each position xi(i = 1, . . . , M) in (1), we obtain the following linear equations: ϕ(|x1 − x1|) · · · ϕ(|x1 − xM|)
...

. . .
...

ϕ(|xM − x1|) · · · ϕ(|xM − xM|)


 w1

...
wM

 =

 y1
...

yM

, (2)

where M is the number of stations. The coefficient matrix
[

ϕij]M×M is nonsingular and
symmetric if {xi} is a set of distinct points [45]. By solving the linear equations, we can
determine the weights wi. These weights are used to estimate y(x) at an arbitrary position
x. There are several types of RBFs, such as Gaussian [46], inverse multi-quadratic [46,47],
inverse quadratic [48,49], and thin-plate spline [50]. The accuracy of the RBF depends on
the type of base functions and shape parameters [39]. In this study, we use the following
exponential function [39]:

ϕi(r) = exp
(
− r

c

)
, r = |x − xi|, (3)

where c is a shape (or scale) parameter. The exponential function was used for interpolating
precipitation from rain gauge observations and yielded smaller errors than the commonly
used Gaussian RBF [51]. Note that the shape parameter ‘c’ depends on the spatial resolution
of stations and the distance units of domain. The shape variable ‘c’ is a variable that
determines the radius that affects the surrounding area during interpolation. The larger
the value, the larger the radius that it affects. To find the optimal shape parameter and the
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appropriate RBF, we varied the shape parameters [39,42] and compared the magnitude of
LOOCV errors for each method. Among them, the exponential function exhibited a broader
optimal shape parameter range than other RBFs that use shape parameters, and it also had
smaller errors compared to other RBFs. These analytical results were not included in the
main text (See Appendix A). In this study, we used c = 13 km as a shape parameter of the
exponential RBF.

Kriging is a geostatistical interpolation method with a linear combination of observa-
tions, as follows:

ŷ(x0) =
N

∑
i=1

wiy(xi), (4)

where wi are the weights that minimize the mean squared error under the constraint that
the summation of the weights must be 1; ŷ(x0) is the prediction value at x0; and y(xi ) is the
observed value at location xi. The weights ensure that the spatial interpolation is unbiased
and has minimal variance. Various kriging methods with different underlying assumptions
have been developed. To account for the lack of stationarity, external drifts are often used
to model spatially varying trends by decomposing the variable into a trend µ(x) and a
residual e(x), y(x) = µ(x) + e(x). The trends are linearly modeled with external drifts,
and the residuals are assumed to be stationary spatial processes with zero means. In this
study, we focused on RK [52,53] and KED [54,55]. Both of these methods use external drifts
for modeling spatially varying means. The essential difference between them lies in the
computational steps. RK predicts the trend and residuals separately and then adds them to
complete the spatial interpolation, as follows:

ŷ(x0) = µ̂(x0) + ê(x0) =
p

∑
k=1

β̂kzk(x0) +
N

∑
i=1

wie(xi), (5)

where µ̂(x0) is the estimated trend; ê(x0) is the interpolated residual; zk(x0) is the kth
external drift at location x0; β̂k is the corresponding estimated coefficient; p is the number
of external drifts; wi is the kriging weight in residual interpolation; and e(xi) is the residual
at location xi. In this paper, elevation is used as an external drift.

Similar to conventional kriging, the KED predictor is a linear combination of observa-
tions, as follows:

ŷKED(x0) =
N

∑
i=1

λiy(xi), (6)

where λi is the weight for the KED under the constraint that
N
∑

i=1
λizk(xi) = zk(x0) for

k = 1, · · · , p. The weights are determined with the extended covariance matrix of residuals
and the extended vector of covariances at x0, including external drifts. Both methods
yield the same prediction and prediction variance for the linear trend. Since RK separates
trend estimation from residual interpolation, it allows for modeling the trend more flexibly
compared to the linear model that is used in KED.

2.2.2. Harmonization Using a Reference Network

KMA AWS data were used as the reference network data for removing and adjusting
heterogeneous data (hereafter referred to as harmonization) from multiple observation
networks. The reference network is considered to provide the most stable and reliable
data among all networks. The first step in removing and adjusting heterogeneities is to
predict the values at other network points by interpolating the reference network, the
KMA. The selected interpolation method is RBF, and the residual interpolation method
is implemented using a fixed temperature lapse rate, 6.5 ◦C km−1 (see Section 2.2.3). To
validate the reference data, it is essential to ensure the reliability of the interpolation process.
The verification of this interpolation method utilizes LOOCV, and the results are consistent
with those obtained by interpolating the KMA data to validate the KMA network.
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A linear relationship is established by comparing the predicted values with the actual
observed values. Reliable statistical data are obtained by collecting the observed tempera-
ture data over a period of time. The values that exceeded a certain distance are removed
using the standard deviation of the distances obtained from the linear relationship. Bias is
removed by adjusting the data using the slope and y-intercept of the regression line. The
method used is described in detail in the following paragraph.

Let yi(xk) be the observed value at location xk in network i (i = 1, . . ., M) and ŷ0(xk) be
the prediction (or interpolated value) using the observed data from the reference network.
For each network i, a linear regression is used to model the relationship between yi(xk) and
ŷ0(xk): yi(xk) = ai ŷ0(xk) + bi, k = 1, . . . , Ni, where ai and bi are the regression coefficients
for network i and Ni is the total number of stations in network i. To determine the deviation
from the reference network, we measure the distance d0i(xk) =

∣∣yi(xk)− (ai ŷ0 (xk) + bi)
∣∣

between the regression line and the observed value yi (xk ). When this distance exceeds a
predetermined threshold, we regard the corresponding observation as a heterogenous value
and eliminate it. In this study, the predetermined threshold was set to niσ(d0i), where σ(d0i)
is the standard deviation of d0i(xk). After the heterogenous data are removed, the observed
values in the ith network are adjusted to remove any bias with the reference network:

yi
corr(xk) = (yi(xk)− bi)/ai, (7)

This adjustment is performed after removing the heterogenous data to eliminate any
bias caused by variations in observation environments among the different observation
networks. Specifically, there is a high possibility that the IoT observation data do not
comply with the standard installation environment, unlike the KMA observations that are
measured in a standard observation environment. Hence, there might still be bias in the
observed value.

2.2.3. Computation of Vertical Temperature Profiles

Jeju Island exhibits noticeable temperature variations with altitude because of the
presence of Hallasan Mountain, which stands at an altitude of 1900 m and is located at
the center of the island. To interpolate the temperature values that are widely dispersed
spatially, it is essential to use an altitude-dependent temperature profile. In this study,
three types of profiles were compared ((1) a linear equation using a tropospheric mean
temperature lapse rate of 6.5 ◦C km−1, (2) a linear regression using real-time temperature
data and altitude, and (3) a real-time nonlinear equation that can simulate an inversion
layer) for regression-based interpolations.

Two types of linear temperature profiles were used. The first profile is T(z) = T0 − 6.5z,
with a fixed lapse rate of 6.5 ◦C km−1, where z (km) is the altitude and T0 is the average
temperature at the sea level (z = 0). The second profile is the real-time linear regression
equation, T(z) = T0 − γz, where T0 and γ are obtained as different values each time
through linear regression.

A nonlinear vertical thermal profile model in [34] that represents an inversion layer
with two linear and one nonlinear section is presented as follows:

T(z) =


T0 − γz, h1 ≤ z

T0 − γz − a
2

(
1 + cos

(
π z−h0

h1−h0

))
, h0 < z < h1

T0 − γz − a, z ≤ h0

. (8)

The linear sections consist of one section at an upper level above elevation h1 and
another at a lower level below elevation h0. These sections share a common lapse rate, γ. A
schematic of the nonlinear parametric function is shown in Figure 3. To determine the five
parameters a, γ, h0, h1, and T0 at each time step, we utilized MATLAB’s nonlinear curve
fitting function, ‘lsqcurvefit’, which employs the least squares method.
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Figure 3. Schematic of the parametric function of Equation (1) used for a nonlinear vertical profile
and its five parameters: a, γ, h0, h1, and T0. The two sections are separated by a temperature contrast
and are connected in the mid-elevation range (h0 , h1) by a smooth step function that mimics an
inversion layer. Note that this function allows the flexible modeling of inversion-type temperature
profiles with adjustable inversion strength (using parameter “a”), height, and thickness (using h0 and
h1) (see Figure 4 in [34]).
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2.2.4. RBF Interpolation Using Real Time Vertical Temperature Profile

The RBF interpolation method is highly effective in estimating function values at
arbitrary points. By selecting the observation points as centers, the values at these points
can be interpolated with high accuracy. Additionally, choosing a basis function that
matches the characteristics of the observed variable and selecting shape parameters based
on the density of the observation data and grid resolution can yield more accurate results
compared to kriging-based methods [44]. However, when using observation points as
centers in the RBF interpolation method, overlapping points should be avoided. If overlaps
occur, the overlapping points should either be replaced with an average value or one of the
points should be removed.

The RBF interpolation method used in this study involves three steps. First, the
vertical-temperature profile Tsim(z, t) is estimated at each time step, where z is the altitude
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and t is time. In the next step, each residual Tr(xi, z, t) = T(xi, z, t)− Tsim(z, t) at the station
point xk is computed, and these residuals are interpolated in a high-resolution grid xgrid.
Finally, the temperature field T(xgrid, z, t) at an actual altitude is obtained by adding the
interpolated residual field Tr(xgrid, z, t) to the grid field Tsim(zDEM, t) in which the DEM
data zDEM are substituted for elevation:

T(xgrid, z, t) = Tr(xgrid, z, t) + Tsim(zDEM, t).

The proposed interpolation method considers the surface air-temperature field as
a superposition of a simulated background temperature pattern with only elevation in-
formation and a residual pattern interpolating the residuals at actual station points. The
face temperature field generated in this way is almost identical to the actual value at the
network point, and, as the distance from the point increases, it has characteristics that
match the value of the background field rather than the observed value. Therefore, in
interpolation using residuals, the higher the density of observation points and the more
accurate the background fields that are used, the higher the accuracy. In the first step,
a separate process is conducted to create the vertical temperature profile, allowing for
methodological flexibility through various temperature profile generation tests.

3. Results

In this study, we applied the proposed methodology to the temperature data collected
from five observation networks installed on Jeju Island. To establish the criteria for removal
and adjustment, we analyzed a two-year dataset spanning from July 2019 to June 2021. The
criteria were applied to a one-year dataset covering January to December 2020. Through
cross-validation, we assessed the effectiveness of removing and adjusting heterogeneous
observations as well as the impact of temperature profiles and interpolation methods on
the results.

3.1. Data Harmonization (Removal and Adjustment of Heterogeneous Data)

In establishing the criteria for data harmonization, we gathered interpolated values
utilizing KMA AWS and observed values from other observation networks. The interpola-
tion technique employed was RBF, with a fixed lapse rate of γ = 6.5 ◦C km−1 (as detailed in
Section 3.3), to generate the reference dataset.

Figure 4 shows the differences between the observed values for each network and
the values interpolated using the KMA data. In Figure 4a, the LOOCV values for KMA
data are compared with the observation values. The KMA data exhibit the least bias, while
the IoT data show a positive distribution with mean bias (MB) of 2.72 ◦C compared to
the KMA data. The data from JEJ and RDA are nearly symmetric, with JEJ showing the
smallest standard deviation (SD) value, 0.96 ◦C. In contrast, the distributions of IoT and
KFS data exhibit slight skewness, with Pearson’s skewness coefficients (SK) of 0.38 and
−0.38, respectively. Especially, the heterogeneity appears to be pronounced in IoT due to
the wide distribution range of data values.

Figure 5 shows the correlation coefficient ( r), mean absolute error (MAE), and mean
bias (MB) for each network, calculated using the reference data, along with a scatterplot.
Here, σ(d) is the standard deviation of the distances between the observed value at a certain
network point and the linear regression line of the scatter plot of the values predicted
through the reference network for this point (see Section 2.2.2). IoT data have the smallest
correlation, with the standard deviation of distance set σ(d01) measuring 0.87 ◦C, which is
about 1.7 times that of the other data. The standard deviations of distance sets for JEJ, KFS,
and RDA are 0.55, 0.51, and 0.48 ◦C, respectively.
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The use of the regression function improves the bias but does not enhance the corre-
lation coefficient. The IoT data exhibit a larger standard deviation and lower correlation
coefficient than other networks. Therefore, a unique regression equation was derived and
adjusted for each IoT device to maximize the adjustment effect. Note that the coefficients
(a, b) of the integrated linear regression equation for the IoT data were 1.05 and 1.88, re-
spectively. Table 1 lists the individual regression equations and bias between each IoT site
and the interpolated KMA. The IoT network exhibits distinct characteristics at each station.
The specific regressions in Table 1 are used to adjust the data for every station. Notably, all
bias values are positive, ranging from 0.27 ◦C to 5.77 ◦C across the stations.

Table 1. Individual coefficient (a, b) and mean bias (MB) and σ(d) of the Internet of Things (IoT)
network data based on the Korea Meteorological Administration (KMA) data for each site.

Site
ID

yi=aŷ0+b
(a, b) MB, σ(d) Site

ID
yi=aŷ0+b

(a, b) MB, σ(d) Site
ID

yi=aŷ0+b
(a, b) MB, σ(d) Site

ID
yi=aŷ0+b

(a, b) MB, σ(d)

0 (1.10, −0.61) 0.37, 0.36 12 (0.97, 3.75) 3.16, 0.59 24 (1.04, 2.27) 2.91, 0.95 36 (1.16, −2.04) 1.08, 0.68
1 (1.08, −1.27) 0.27, 0.43 13 (1.04 2.49) 3.30, 0.73 25 (1.05, 2.60) 3.41, 0.76 37 (1.08, 0.82) 2.45, 0.74
2 (0.94, 4.73) 3.47, 0.81 14 (0.92, 4.55) 2.89, 0.89 26 (1.03, 0.40) 0.88, 0.82 38 (1.21, −4.39) 1.05, 0.44
3 (1.07, −0.51) 0.74, 0.64 15 (1.02, 3.31) 3.68, 0.52 27 (1.06, 2.69) 3.59, 0.68 40 (1.01, 1.95) 2.12, 0.66
4 (1.24, −2.85) 3.04, 0.43 16 (1.03, 4.13) 4.71, 0.85 28 (1.09, 2.17) 3.48, 0.48 41 (1.07, 2.62)) 4.01, 0.77
5 (1.15, −0.92) 1.50, 0.68 17 (1.14, 0.38) 2.75, 0.71 29 (0.98, 2.99) 2.66, 0.74 42 (1.03, 1.00) 1.58, 0.63
6 (0.90, 3.78) 1.29, 0.55 18 (1.10, 1.96) 3.56, 0.80 30 (0.99, 2.58) 2.37, 0.71 43 (1.08, −0.20) 1.16, 0.69
7 (1.29, −2.94) 3.78, 0.69 19 (1.09, 1.96) 3.39, 0.70 31 (1.15, −2.61) 0.28, 0.48 44 (1.19, −1.49) 1.79, 0.99
8 (0.95, 6.90) 5.77, 0.71 20 (0.99, 4.26) 4.08, 0.77 32 (1.07, −0.18) 1.20, 0.29 45 (1.09, 1.90) 3.69, 0.96
9 (1.07, 0.65) 1.73, 0.76 21 (1.00, 3.05) 3.04, 0.66 33 (1.09, 0.87) 0.95, 0.64 46 (1.09,0.40) 1.90, 0.37

10 (1.03, 0.75) 1.26, 0.73 22 (0.95, 3,32) 2.15, 0.73 34 (1.04, 1.55) 2.29, 0.62 47 (1.12,0.07) 2.42, 0.59
11 (0.99, 5.62,) 5.54, 0.75 23 (1.19, −1.98) 1.63, 1.14 35 (1.06, 1.24) 2.27, 0.52 48 (1.06, 1.70) 2.84, 0.57

As shown in the table, it is evident that σ(d) values do not proportionally increase
relative to the magnitude of MB; instead, they consistently remain below 1 ◦C. The presence
of these small standard deviations alongside substantial absolute MB values suggests that
correcting biases in the data could mitigate errors.

Adjusting for the IoT data using individual linear equations improved the standard
deviations compared to adjusting integrated linear equations only. For IoT data, Figure 6
shows the distribution obtained after correction using the coefficient (1.05, 1.88) of inte-
grated linear equation and the distribution after adjustment using the individual linear
equations (in Table 1), respectively. According to this distribution, using a single linear
equation improved the bias, but significant asymmetries remained. Conversely, after
individual adjustments, the data were nearly symmetrical around the mean center.

Figure 7 shows scatterplots of the data after only adjustment using the linear regression
equation for each network compared with the interpolated KMA data. The plot also depicts
the standard deviation σ(d) of the distance to the line y = x after adjustment. In the case of
IoT data, individual adjustments increased the correlation coefficient from 0.9626 to 0.9772
and reduced the standard deviation σ(d01) from 0.87 ◦C to 0.71 ◦C. However, the MAE was
slightly larger (1.21 ◦C) than that of the other network data. In the cases of the JEJ, KFS, and
RDA data, there are negligible changes in the correlation coefficient after correction, and
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the magnitudes of the MAE and MB decreased slightly after adjustment. Any observations
outside of this dotted line are subsequently excluded from further analysis.
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Figure 7. Scatter plots of (a) IoT, (b) JEJ, (c) KFS, and (d) RDA data after adjustment based on the
reference data. Dashed lines: y = x lines for each data, dotted lines: 2σ(d01) for IoT and 3σ(d0i)

distances for the other networks.

Table 2 summarizes the equations used for adjusting each network and the σ(d0i) after
adjustment. The σ(d01) of IoT was 0.87 ◦C before adjustment (see Figure 6) and decreased
to 0.71 ◦C after individual adjustment (Table 1). Despite the individual adjustment of the
IoT data, σ(d01) values are still relatively higher than those of the other networks. Thus,
for data removal, 3σ and 2σ were used as a threshold for IoT and the rest of the networks,
respectively. Table 2 also presents the percentage of data removed from the entire data.
The removal rates for the IoT, JEJ, KFS, and RDA data are 17.74% (>2σ), 2.82% (>3σ), 5.27%
(>3σ), and 4.83% (>3σ), respectively.

Table 2. Fitting coefficients (a, b) and σ(d0i) values for removal and adjustment for each network.

IoT JEJ KFS RDA

(a, b) * Individual Equation (1.01, −0.61) (1.03, −0.79) (1.04, −0.82)
σ(d0i) 0.71 0.55 0.51 0.48

Removal rate [%] 17.74 2.82 5.27 4.83
* See Table 1 for individual equations for the adjustment of IoT data.

3.2. Verification of Effect of Merging Harmonized Data

To verify the data harmonization effect, RBF interpolation using lapse rate γ = 6.5 ◦C
km−1 was used for comparison.

3.2.1. Examples of Interpolation Results

First, we examined cases with and without an inversion layer, randomly selecting two
representative cases to assess the impact of merging the harmonized data. Figure 8 shows
the interpolated examples for a scenario without an inversion layer. In Figure 8a, a total of
38 KMA data points were used for grid interpolation, resulting in a LOOCV MAE (CVE)
value of 0.57 ◦C. Figure 8b presents the interpolation result based on the combined data
from other observation networks with the KMA data, and the CVE increased to 1.24 ◦C.
However, merging the harmonized data with the original KMA data reduced the CVE
value to 0.60 ◦C, as depicted in Figure 8c. Notably, this figure demonstrates the mitigation
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of the issue, where IoT data were excessively high compared to the surroundings. The
interpolation involved 62 points, with two data points removed.
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Figure 8. Grid interpolation images at 09:00 1 August 2020 LST, using (a) KMA data, (b) merged
data, and (c) merged data with harmonization, and at 21:00, 1 January 2020 LST, using (d) KMA data,
(e) merged data, and (f) merged data with harmonization. The fixed lapse rate of γ = 6.5 ◦C km−1 is
commonly used as a vertical temperature profile.

Figure 8d–f show interpolation results for the cases involving a temperature inversion
layer during the winter of 2020. In Figure 8d, interpolation using only 38 KMAs yields a
CVE value of 0.96 ◦C, which increases to 1.36 ◦C after merging raw data. After data har-
monization, the CVE decreases to 0.87 ◦C, surpassing the value obtained using only KMA
data. In Figure 8, the pixel resolution and grid size are 0.1 km and 850 (longitude) × 500
(latitude), respectively.

3.2.2. Verification Using 2020 Data

To quantitatively assess the effectiveness of removing and merging the adjusted data,
10 min average temperature data were collected at 1 h intervals throughout the year from
January to December 2020. We compared the CVE values using the KMA data, the merged
dataset of all raw data, and the merged dataset of all harmonized data.

By exclusively utilizing the KMA data from Table 3, the mean CVE over one year
is determined to be 0.73 ◦C. Upon merging the KMA data with those of other networks
without harmonization, the mean CVE at KMA stations rises to 1.00 ◦C, with the average
CVE across all merged stations reaching 1.26 ◦C. However, after merging the data following
harmonization processes, the one-year mean CVE for the KMA sites decreases to 0.70 ◦C
and the mean CVE for all data also decreases to 0.69 ◦C. This confirms that the interpolation
error can be mitigated by incorporating the removed and adjusted data during the merging
of data from other networks. Additionally, the magnitude of MB value for each network
decreases after data harmonization.
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Table 3. Comparison of leave-one-out cross-validation (LOOCV) mean absolute errors (MAEs known
as CVEs) before and after data harmonization for a fixed value γ = 6.5 ◦C km−1.

Data for
Interpolation

Verification
Network

LOOCV MVE [◦C] Mean Bias [◦C]

Before After Before After

KMA KMA 0.73 −0.00

All
(KMA + IoT + JEJ

+ KFS + RDA)
(Leave-one-out

Cross-validation)

KMA 1.00 0.70 0.37 −0.00

IoT 2.21 0.78 −1.52 0.01

JEJ 1.05 0.59 0.56 −0.08

KFS 0.94 0.63 0.63 0.01

RDA 1.12 0.53 0.88 0.01

All 1.26 0.69 0.04 −0.00

3.3. Interpolation Results for Different Temperature Profiles

To compare temperature profiles, RBF interpolation was applied to the removed
and adjusted data using the following three temperature profiles: fixed lapse rate, linear
regression, and nonlinear regression. Additionally, for a comparative analysis between
interpolation methods, CVE values of RBF methods were compared with those of RK
and KED.

3.3.1. Examples of Interpolation Results

Figure 9 shows the temperature values of the KMA and KFS in relation to altitude along
with three types of temperature profiles for two scenarios (with and without inversion).
In the absence of an inversion layer (Figure 9a), the slopes of the linear and nonlinear
profiles are 5.9 ◦C km−1 and 6.3 ◦C km−1, respectively, closely resembling the fixed lapse
rate of 6.5 ◦C km−1. However, with the presence of an inversion layer on 1 January 2020
(Figure 10b), during the winter, the shapes of the three profiles exhibit significant variations.
The existence of an inversion layer leads to a lapse rate of only 5.4 ◦C km−1 in the linearly
fitted T(z). The nonlinear equation yields a lapse rate of 9.3 ◦C km−1 for two separate
layers, and the inversion layer has a thickness of approximately 250 m (= h1 − h0) and a
strength of 7.1(= a) ◦C.
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Figure 9. Examples of vertical-temperature profiles for the following two cases: (a) 09:00 LST,
1 August 2020, without an inversion layer and (b) 21:00 LST 1 January 2020, with an inversion layer.
The blue dots and red triangles denote the elevations of the KMA and KFS data, respectively. The
black dotted line represents a straight line with a lapse rate of 6.5 ◦C km−1. The blue dashed line and
red dashed curve depict the linear regression line and nonlinear regression curve, respectively.
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These different temperature profiles are expected to result in varied spatial interpola-
tions. The temperature profiles depicted in Figure 9 were applied to the two aforementioned
cases for the data with a harmonization process in Figure 10. In the absence of an inversion
layer (Figure 9a), the results of the three temperature profiles, i.e., fixed lapse rate, linear re-
gression, and nonlinear regression, are nearly identical, with CVEs of 0.60, 0.59, and 0.59 ◦C
(Figure 10a–c), respectively. However, in the presence of an inversion layer (Figure 9b),
the CVEs of the profiles are 0.87, 0.86, and 0.71 ◦C (Figure 10d–f), respectively, with the
smallest error being obtained using a nonlinear profile. Figure 10f shows a ring-shaped
inversion layer at an altitude of approximately 1.2 km asl around the center region of the
domain, demonstrating temperature interpolation results that significantly differ from
those obtained using a linear temperature profile.

3.3.2. Verification Using 2020 Data

Table 4 presents the CVEs from the 2020 data to evaluate the accuracy of the in-
terpolation methods using different temperature profiles. Additionally, the accuracy of
the RBF interpolation is compared with those of RK and KED using the same linear
temperature profile.

Table 4. LOOCV MAE values (CVEs) for different networks and interpolation methods.

Network
for

Interpolation

Methods

Regression-Based RBF KED RK

γ=6.5 Linear T(z) Nonlinear
T(z) γ=6.5 Linear T(z)

KMA 0.73 0.72 0.66 0.87 0.87 0.78
All 0.69 0.69 0.66 0.77 1.09 0.74

When only the KMA data are used, the CVEs of the RBF method with the three
temperature profiles (fixed lapse rate, linear regression, and nonlinear regression) are
0.73, 0.72, and 0.66 ◦C, respectively. After adding all the harmonized data, the errors
decrease to 0.69, 0.69, and 0.66 ◦C, respectively. The interpolation error is minimized when
using a nonlinear temperature profile with an inversion layer. The effect of the nonlinear
temperature profile is more pronounced when using only the KMA data, probably because
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the other data, except for the KMA and KFS data, are mostly distributed below an altitude
of 400 m and thus are slightly influenced by the altitude.

In comparing interpolation methods, applying a fixed lapse rate of γ = 6.5 ◦C km−1

to the KMA data results in CVEs of 0.73 and 0.87 ◦C for RBF and RK, respectively. Using a
linear regression equation, these values become 0.72 and 0.78 ◦C, respectively. Thus, for the
same temperature profile, the error in the RBF is smaller than that of RK. In KED, when
only the KMA or all data are used, the CVEs are 0.87 and 0.77 ◦C, respectively. This result
shows that KED provides poorer performance compared to linear RK or RBF.

Figure 11 displays the monthly and hourly CVEs for different interpolation methods
and temperature profiles. The RBF method using the nonlinear temperature profile con-
sistently exhibits the smallest CVEs for both monthly and hourly error analyses. The RBF
method with linear regression has the second-smallest values. Furthermore, the error of
RBF is smaller than that of RK for the same temperature profile. Interestingly, unlike the
RK method, the RBF method does not exhibit any significant difference in error compared
to linear regression when using a fixed average lapse rate of γ = 6.5 ◦C km−1.
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The monthly CVEs for Jeju Island may be related to the spatial variability of tempera-
ture. In other words, the months or hours with relatively large errors across all interpolation
methods likely correspond to times when the temperature shows high spatial variability.
Overall, the months with the lowest overall CVEs are January, July, August, and September.
The average error is the smallest at 0.7 ◦C or less between 10:00 and 20:00 LST in the
hourly results.

The error discrepancy observed between the linear and nonlinear temperature profiles
in Figure 11 may be related to the presence or absence of an inversion layer. Specifically, the
difference in error between the two temperature profiles is smallest during July, August,
and September and between 10:00 and 20:00 LST. This suggests that an inversion layer is
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less likely to occur in these months and at these times. In January, the difference in error
between nonlinear and linear profiles is significant but the overall error is not large. This
implies that inversion layers are likely to occur frequently in January but that their spatial
variability is not pronounced.

The nonlinear inversion layer modeling discussed in [34] has the advantage of allowing
for the identification of both the thickness of the inversion layer and the depth of the
temperature change from the resulting profile. Figure 12 shows the distribution of the
intensity a of the inversion layer occurring between altitudes of 0 and 2 km, as determined
by the coefficient obtained from the nonlinear temperature profile and the frequency ratios
of cases where a ≥ 5 ◦C. The median value of a is the highest at around 4 ◦C in January
and April, while the lowest median is approximately 2 ◦C in July. The interquartile range
(IQR) of the values is the largest in March and May and the smallest in July and September.
The possibility of occurrence of a temperature inversion layer with a ≥ 5 ◦C is the greatest
in March, April, October, and November (30% or more) and the lowest (10%) in July.
This finding can explain why the error variation is minimal in July, when both linear and
nonlinear temperature profiles are used (Figure 12).
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4. Discussion

The reduction in error by 5.5% through data harmonization represents a numerical
decrease attributed solely to data manipulation. The reduction in LOOCV error was
achieved not by altering the interpolation method but by adjusting the heterogeneity
across networks through data adjustments. Data adjustment acts similarly to a smoothing
effect, thereby reducing errors. Paradoxically, while such methods may decrease validation
errors, they can also lead to the production of distorted observational data by removing or
reducing outlier values, such as the urban heat island effect in certain regions. Therefore,
caution is necessary when adjusting data. In cases where data have low variance and high
bias, adjustments using linear regression may be reasonable [56]. However, when dealing
with high variance in the data, adjustments may not be necessary to preserve regional
characteristics. In such cases, instead of adjusting the data, an alternative approach could
be to vary the shape parameter contributing to the influence radius in RBF interpolation
based on the LOOCV values at each point [57]. This could reduce errors while preserving
peak values in the area. The application of a weighting approach to these shape parameters
appears to be reasonable in interpolation and holds potential for future implementation.
Identifying the optimal weighting in this method will be crucial.

In this study, the utilization of nonlinear temperature profiles resulted in a 4.4% de-
crease compared to linear temperature profiles, a figure that may be considered lower
than expected. The effectiveness of nonlinear temperature profiles is evident only when
temperature inversions occur, with similar errors between the two methods being observed
when inversions are absent. Consequently, the overall improvement over one year was not
significant. When considering the methodological aspects of kriging and RBF interpolation,
the residual-based RBF method shows lower errors compared to residual kriging. Addition-
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ally, in the comparison of methods using fixed lapse rates and those employing first-order
regression equations to derive temperature lapse rates, there were slightly fewer errors
when using first-order regression equations, but the average difference was not substantial.

The methods proposed in this study can be applied beyond Jeju Island to the South
Korean Peninsula. Initially, the widespread distribution of AWS data across the peninsula,
with the KFS being primarily situated in mountainous regions and the RDA at lower
altitudes, provides a foundation. Data fusion is not recommended, particularly for IoT
data, due to numerous biased values requiring individual equipment adjustments [58]
which may not be cost-effective. Temperature observations are significantly influenced by
the installation altitude of equipment and the extent of direct solar exposure. While the
KFS and RDA data adhere to standard installation methods like AWS, the IoT data do not.
Therefore, by integrating the KFS and RDA with AWS, high-resolution observational data
can be obtained. However, due to the larger area and complex terrain compared to Jeju
Island, as demonstrated in [30,34], it will be necessary to divide regions by considering
local characteristics and apply temperature profiles accordingly.

5. Conclusions

In this study, we introduce a fusion method for temperature data from multiple
networks to generate accurate high-resolution gridded data in diverse topographical re-
gions. Our approach harmonizes multiple networks by adjusting biases, removing un-
reliable data, and using a deterministic real-time temperature interpolation method that
incorporates altitude.

Using Radial Basis Function (RBF) with an exponential function, we performed spatial
interpolation on 10 min temperature data from five networks in Jeju Island, South Korea.
Bias analysis relative to the Korea Meteorological Administration (KMA) data revealed
significant discrepancies, particularly for IoT data with an average bias of 2.5 ◦C. Adjust-
ments were made to eliminate these biases, especially at individual observation stations. To
account for altitude variations, vertical temperature profiles were derived from observed
values by considering lapse rates and inversion layers.

Quantitative comparisons using leave-one-out cross-validation (LOOCV) errors demon-
strated the effectiveness of our method, reducing errors by 5.5% with fixed temperature
lapse rates. The method involves generating linear or nonlinear profiles from observed
temperatures and station altitudes, interpolating residuals into a grid field. Applying this
to an 85 km × 50 km area using DEM grid data minimized errors, with nonlinear profiles
reducing average errors by 4.4% compared to linear regression.

Monthly and hourly error analysis revealed distinct differences between linear and
nonlinear profiles, except during summer months (July to September) and specific time
intervals (10 to 20 LST). We studied the intensity distribution and frequency of monthly
strong inversion layers using real-time calculated nonlinear profiles, finding that increased
intensity and frequency of inversion layers correlated with higher errors.

In conclusion, our novel temperature interpolation method leverages reference net-
works to address challenges in combining data from diverse networks. It effectively
enhances the accuracy and reliability of temperature data, reducing errors from 0.73 ◦C
to 0.66 ◦C with nonlinear profiles. Our method’s consideration of nonlinear vertical tem-
perature profiles is particularly advantageous for high-resolution grid interpolation. The
successful application to Jeju Island underscores its practical applicability, and its potential
extends to other regions with similar topographical challenges, enhancing environmen-
tal and meteorological research by improving data integration and analysis accuracy in
complex terrains.
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Appendix A

To find the optimal RBF and shape parameter ‘c’ for temperature interpolation, we
tested the following RBF functions on the temperature data. The shape parameter was
increased from 2 km to 16 km in increments of 0.02, and the MAE values of LOOCV were
examined for each shape parameter [39,42].

For r = |x − xi|, the tested RBF functions are:

• Exponential (or Matern):

ϕi(r) = exp(−r/c)

• Gaussian:

ϕi(r) = exp(−r 2/c2
)

• Multiquadric:

ϕi(r) =
√

1 + (r/c)2

• Inverse multiquadric:

ϕi(r) =
1√

1 + (r/c)2

• Radial power:

ϕi(r) = r3

• Thin-plate spline:

ϕi(r) = r2ln(r)

Excluding RBFs not affected by the shape parameter, the value of the shape parameter
(c) with the smallest error varied slightly depending on the case. Figure A1 shows the results
of calculating the MAE of LOOCV while varying the shape parameter using temperature
data fused at two arbitrary times. The Gaussian RBF had the largest error, and it was
observed that the error function shape differed depending on the RBF type and the value
of ‘c’. In the case of the exponential RBF, it was confirmed that the error stabilized and
remained small from approximately c > 10 (km).



Atmosphere 2024, 15, 1018 20 of 22

Atmosphere 2024, 15, x FOR PEER REVIEW 20 of 22 
 

 

𝜙 (𝑟)  = ඥ1 + (r/c)ଶ     
• Inverse multiquadric: 𝜙 (𝑟)  = 1ඥ1 + (𝑟/𝑐)ଶ 

• Radial power: 𝜙 (𝑟)  =  𝑟ଷ 

• Thin-plate spline: 𝜙 (𝑟)  =  𝑟ଶln (𝑟) 

Excluding RBFs not affected by the shape parameter, the value of the shape parame-
ter (c) with the smallest error varied slightly depending on the case. Figure A1 shows the 
results of calculating the MAE of LOOCV while varying the shape parameter using tem-
perature data fused at two arbitrary times. The Gaussian RBF had the largest error, and it 
was observed that the error function shape differed depending on the RBF type and the 
value of ‘c’. In the case of the exponential RBF, it was confirmed that the error stabilized 
and remained small from approximately c > 10 (km). 

 
Figure A1. Examples of LOOCV error tests for merged temperature data at (a) 21:00 1 January and 
(b) 03:00 13 March 2020 LST. 
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