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Abstract: The development and utilization of wind energy is of great significance to the sustainable
development of China’s economy and the realization of the “dual carbon” goal. Under typhoon
conditions, the randomness and volatility of wind speed significantly impact the energy efficiency
and design of wind turbines. This paper analyzed the changes in wind speed and direction using the
BFAST method and Hurst index based on data collected at 10 m, 30 m, 50 m, and 70 m heights from
a wind power tower in Yancheng, Jiangsu Province. Furthermore, the paper examined the causes
of wind speed and direction changes using wind speed near the typhoon center, distance from the
typhoon center to the wind tower, topographic data, and mesoscale system wind direction data. The
conclusions drawn are as follows: (i) Using the BEAST method, change points were identified at
10 m, 30 m, 50 m, and 70 m heights, with 5, 5, 6, and 6 change points respectively. The change points
at 10 m, 30 m, and 50 m occurred around node 325, while the change time at 70 m was inconsistent
with other heights. Hurst index results indicated stronger inconsistency at 70 m altitude compared
to other altitudes. (ii) By analyzing the wind direction sequence at 10 m, 30 m, 50 m, and 70 m, it
was found that the wind direction changes follow the sequence Southeast (SE)—East (E)—Southeast
(SE)—Southwest (SW)—West (W)—Northwest (NW). Notably, the trend of wind direction at 70 m
significantly differed from other altitudes during the wind speed strengthening and weakening stages.
(iii) Wind speed at 10 m and 70 m altitudes responded differently to the distance from the typhoon
center and the wind near the typhoon center. The correlation between wind speed and the distance
to the typhoon center was stronger at 10 m than at 70 m. The surface type and the mesoscale system’s
wind direction also influenced the wind speed and direction. This study provides methods and
theoretical support for analyzing short-term wind speed changes during typhoons, offering reliable
support for selecting wind power forecast indicators and designing wind turbines under extreme
gale weather conditions.

Keywords: BEAST; Hurst index; Typhoon Lekima; wind speed characteristics; driving mechanism

1. Introduction

Wind is one of the renewable resources, and the rational development and utilization
of wind energy are of great significance to the sustainable development of China’s economy
and the realization of the “double carbon” goal [1]. Due to the influence of weather systems
such as underlying surface characteristics, air temperature, atmospheric pressure, and
global circulation patterns, wind speed is characterized by randomness and fluctuation in
a short period, which causes the power generation of wind turbines to fluctuate and affects
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the stability of the power grid [2]. Additionally, the fluctuation of wind speed imposes
higher requirements on the fatigue resistance of the main mechanical components of wind
turbines [3]. Typhoons, as the main weather system that affects the working status of
wind turbines, impose higher requirements for the design and selection of wind turbines.
Analyzing the non-stationarity characteristics of wind speed around wind farms and its
influencing factors during typhoon transit is of far-reaching significance for the refined
prediction of wind power and the design of wind turbine components [4].

The non-stationarity of wind speed refers to the periodicity and fluctuation of wind
speed on different time scales due to the influence of weather systems such as underlying
surface characteristics, temperature, atmospheric pressure, and various circulation pat-
terns [5–8]. Chen et al. utilized daily sounding wind data from Wuhan spanning from 1958
to 2013 to analyze the non-stationarity characteristics of annual, seasonal, and monthly
mean wind speeds using deviation coefficient, climate tendency rate, wavelet analysis,
Yamamoto mutation test, and other methods [9]. Drawing from the 1971–2015 average
wind speed data of 155 meteorological stations in northern China, Han Liu et al. employed
climate trend analysis, spatial interpolation, and wavelet analysis to examine the annual
and seasonal spatio-temporal variation trends and periodic characteristics of the wind
erosion area in northern China [10]. Understanding long-term wind change characteristics
can provide early technical support for regional wind resource assessment, wind farm
location, and design [11,12].

Presently, an increasing number of studies focus on short-term wind characteristics.
For instance, Chen Wenchao et al. [13] utilized observation data from the 80 m meteorologi-
cal tower in Dongguan, China during Typhoon “Molave”, strong convection, and strong
cold air events. They compared and analyzed the characteristics of average wind direction,
power index of wind profile, turbulence intensity, wind attack angle, turbulence spatial
integral scale, and turbulence power spectrum. Similarly, Wang Hailong et al. [14] ana-
lyzed the time–history variation characteristics of wind shear index, turbulence intensity,
gust factor, and wind direction before and after super Typhoon “Rammasun” (No. 1409)
made landfall in Xuwen, Guangdong, using observation data from the Warrior Wind Farm
during Rammasun’s landing. The study of short-term strong wind characteristics provides
a theoretical basis for transmission line design, selection, and wind turbine design [15].

In the non-stationary detection of short-term wind speed, researchers often utilize
linear methods such as time series parametric and non-parametric tests, including the
Mann–Kendall (MK) test, which can merely describe the trend characteristics of time
series [16]. During the period of typhoon transit, wind speed is often characterized by
strong volatility. Currently, the primary methods employed to detect the non-stationarity
and nonlinearity of time series changes include Empirical Mode Decomposition (EMD) [17],
Detecting Breakpoints and Estimating Segments in Trend (DBEST) [18], the Breaks for
Additive Season and Trend Monitor (BFAST) [19], and Bayesian Estimator of Abrupt
change, Seasonal change, and Trend (BEAST) [20].

EMD is an adaptive signal processing method that explores local time characteristics
and can address the non-stationarity trend of time series. However, when all extreme
value points are included, noise increases EMD error, leading to distortion of prediction
results [17]. DBEST can rapidly and reliably detect breakpoints in time series changes and
accurately estimate the time and amplitude of changes, although it cannot identify changes
in the period of time series [21]. BFAST can identify long-term trends and breakpoint
changes in time series, elucidating the periodic components. Similarly, BEAST can also
identify long-term trends and breakpoint changes in time series, with higher accuracy
in detecting breakpoint information compared to BFAST [20]. BEAST finds widespread
application in detecting surface vegetation, climate change, and social-ecological indicators,
among others [22]. The Hurst index is frequently employed to analyze the long-term
correlation and self-similarity of wind speed in time series [23]. Xu et al. utilized the Hurst
index to analyze the time series of wind speed per minute in 2017 from a wind tower in the
United States Wind Energy Research Center. Their findings revealed sharp fluctuations in
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wind speed and irregular monthly wind speed fluctuations, suggesting strong nonlinear
characteristics [24].

Previous researchers have predominantly focused on studying the changing character-
istics of wind speed, wind direction, and path during typhoons, as well as the temperature
and precipitation caused by these storms. For instance, Cai et al. [25] analyzed the turbulent
characteristics of Typhoon “Lekima” during its transit based on the 10-min average wind
speed and direction data from the Cixi Observation Station. Similarly, Sun et al. [26] ana-
lyzed the atmospheric pressure field reanalysis data of ERA5 to elucidate the precipitation
mechanism in Shandong triggered by “Lekima”. However, the development mechanism of
the changing characteristics of wind speed during typhoons remains unexplored.

Studying the non-stationarity of wind speed and its influencing factors is crucial for
wind power system modeling and the timely and accurate prediction of wind power. This
paper addressed these issues by utilizing 15-min wind speed and direction data from a
coastal wind farm in Dafeng District, Yancheng, Jiangsu Province. The BEAST method
and Hurst index analysis were applied, along with typhoon track data, surface data, and
mesoscale meteorological system data, to address the following objectives:

(i) Analyzing the non-stationarity characteristics of wind speed at the measuring tower
during typhoon transit using the BEAST method and Hurst index;

(ii) Investigating the causes of wind speed non-stationarity by considering factors such
as wind tower wind direction, the distance between the typhoon center and the
wind tower, the wind level near the typhoon center, the characteristics of the surface
under the typhoon’s path, and the meridional and zonal wind speed characteristics of
mesoscale systems.

The remainder of this paper is organized as follows: Section 2 describes the method-
ology, followed by an overview of Typhoon “Lekima” and its data sources in Section 3.
Sections 4 and 5 present and discuss the research results in detail, and finally, Section 6
provides the conclusions.

2. Methodology
2.1. BEAST Method for Mutation Detection

BEAST is a method introduced by Zhao Kaigang in 2019 for detecting change points in
time series, commonly applied in detecting changes in surface conditions, climate patterns,
river runoff, etc. This method employs Bayesian probability prediction, dividing the time
series into three segments: seasonal signal, trend signal, and abrupt change point. The
calculation formula is outlined as follows [20]:

ŷ(ti) = f(ti;⊖) = S(ti;⊖S) + T(ti;⊖T), i = 1 · · · , n. (1)

where ⊖S and ⊖T represent seasonal and trend signals; t is a time series.

2.2. Hurst Stationarity Analysis of Time Series

The Hurst index formula is calculated using the R/S method as follows [24,27]:

(1) A time series of length N (P(t)) Pk,a divide A consecutive non-overlapping subinter-
vals of n growth Ia(a = 1, 2, · · · , A), Each element of Ia is Pk,a(k = 1, 2, · · · , n);

(2) For each subinterval, calculate its standard deviation Si, cumulative mean deviation
Xk,a, and range Ri respectively:

Si =

√
1
n

n

∑
k=1

(Pk,a − ea)
2 (2)

xk,a =
k

∑
i=1

(Pi,a − ea) (3)
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Ri = max
1≤k≤n

(x k,a

)
− min

1≤k≤n
(xk,a) (4)

where, ea is the mean of the Ia sequence.
(3) Calculate the (R/S) of each subinterval and the average (R/S)n of “A” interval _n:

(R/S)n =
1
A

A

∑
a=1

(R/S) (5)

(4) Change the subinterval in step (1) and repeat step (1)–(3) to calculate the range value
for different subinterval lengths (R/S)n lg(R/S)n and lgn there is a linear relationship,
that is,

lg
((

R
S

)
n

)
= lgθ+ Hlgn. (6)

The average range and subinterval length are plotted on the log-log coordinate plot,
and the slope H is the Hurst index through linear fitting by the least squares method.

The Hurst index quantitatively describes the long-term correlation. When 0 < H < 0.5,
it means that the event sequence is a long-term negative correlation, that is, if the time
series shows an increasing trend in a certain interval, the following intervals are likely to
decrease, and vice versa. When H ≈ 0.5, it indicates that the time series has no long-term
correlation and belongs to a non-autocorrelation random process similar to “white noise”.
When 0.5 < H < 1, it means that the time series is positively correlated in the long run,
that is, if the time series is growing in one interval, the next interval may also grow, and
vice versa.

3. Overview of Typhoon Likima and Its Data Sources
3.1. Overview of Typhoon Lekima

Super Typhoon Lekima (2019) is the fifth strongest typhoon to make landfall in main-
land China since 1949 [28]. On 4 August 2019, Typhoon “Lekima” (No. 201909) intensified
into a tropical storm in the northwest Pacific Ocean (Figure 1). Between 4 August and 10
August, it swiftly moved northwestward, traversing the East China Sea, and made landfall
in Wenling City, Zhejiang Province, China, as a super typhoon on 10 August, boasting
a central wind speed of 52 m/s [29]. Subsequently, it continued northward and reached
Dafeng District, Yancheng City, Jiangsu Province, passing through at 7:00 on 11 August.
During this time, the maximum wind speeds measured by the wind tower of a coastal
wind farm in Dafeng District were 23 m/s, 24 m/s, 25 m/s, and 19 m/s at 10 m, 30 m, 50 m,
and 70 m heights, respectively, over a 15-min interval. The typhoon ultimately dissipated
at 11:00 on 13 August 2019, in the Bohai Sea, China.

3.2. Data Source

In this study, wind speed and wind direction data were obtained from a cup anemome-
ter with a sampling frequency of times/15 min installed on a wind tower (120.7◦ E, 33.3◦ N)
at a coastal wind farm in Yancheng City, Jiangsu Province. The data at the heights of 10 m,
30 m, 50 m, and 70 m were obtained using linear interpolation. Missing values in the time
series were interpolated using linear interpolation, and the time series was smoothed using
a moving average technique, resulting in a complete time series of 672 data points. Typhoon
path data were obtained from the Typhoon Path Network (https://typhoon.slt.zj.gov.cn/,
accessed on 1 August 2023), encompassing the position of the typhoon center, near-
center air pressure, wind scale data, and the calculated distance between the wind tower
and the typhoon center using ArcGIS 10.2 neighborhood analysis tools. ASTER GDEM
30 m surface elevation data were retrieved from the Geospatial Data Cloud Platform
(https://www.gscloud.cn, accessed on 12 November 2023). Additionally, 30 m resolution
land use/cover data for 2019 were downloaded from the National Cryosphere Desert Data
Center (https://www.ncdc.ac.cn/portal/metadata/9de270f3-b5ad-4e19-afc0-2531f3977f2f,
accessed on 12 November 2023). The DEM and land use data were processed through

https://typhoon.slt.zj.gov.cn/
https://www.gscloud.cn
https://www.ncdc.ac.cn/portal/metadata/9de270f3-b5ad-4e19-afc0-2531f3977f2f
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clipping and mosaic procedures to generate a terrain and surface-type map of the region
traversed by the typhoon. Furthermore, wind direction data for the mesoscale system
(zonal wind U and meridional wind V) underwent reanalysis using the NCEP/DOE
Reanalysis II dataset. This dataset was acquired from the US National Oceanic and At-
mospheric Administration (NOAA) Physical Science Laboratory (PSL) website (https:
//psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html, accessed on 3 January 2024).
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4. Results

The BEAST method is used to detect breakpoint information in the time series, de-
termining the start and end times of the typhoon’s influence on the wind tower. It also
analyzes the change characteristics of the time series at different stages during the typhoon’s
influence. In this study, the maximum number of trend change points (Mtcp) was set to
10, and the minimum separation interval (htcp) was set to 96. The detection signal at the
heights of 10 m, 30 m, 50 m, and 70 m showed good correlation with the true value, with
correlation coefficients of 0.99, 0.99, 0.98, and 0.96, respectively.

4.1. Characteristics of Wind Speed Change of Measuring Tower during Typhoon Influence Phase
4.1.1. Breakpoint Analysis of Wind Speed Sequence of Measuring Tower during Typhoon
Influence Phase

Based on the influence range of the typhoon track and geopotential height, this paper
performed a breakpoint analysis of the wind speed sequence during the typhoon’s influence
phase. At this stage, the BEAST method was adopted to detect the number of change points
in the wind speed time series at 10 m, 30 m, 50 m, and 70 m of the wind tower, which were
found to be 5, 5, 6, and 6, respectively, as shown in Figure 2. The probability values of all
breakpoints were maintained above 0.52. The change point information for the 10 m height
was at 324, 76, 154, 598, and 407; for the 30 m height at 325, 76, 402, 155, and 598; for the

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis2.html
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50 m height at 324, 249, 428, 154, 554, and 478; and for the 70 m height at 306, 371, 554, 160,
429, and 56.
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Figure 2. Beast method breakpoint detection (a–d).

This indicates that the airflow field changes rapidly before and after the typhoon
passes, weakening the stationarity of the wind speed series. Except for the wind speed
sequence at 70 m height, abrupt change points appeared at 154, 324, and 598 points at
10 m, 30 m, and 50 m altitudes. This suggests that the period during which the typhoon
significantly impacted the wind tower was from point 154 to 598. At 70 m altitude, abrupt
change points were observed at 56, 306, and 371, which may be due to the greater distance
from the underlying surface. The roughness of the underlying surface has little influence at
this height.

4.1.2. Analysis of Series Trend of Wind Speed of Measuring Tower during Typhoon
Influence Stage

As can be seen from Table 1, based on the slope of the time series before and after
abrupt points, except for the tower at 70 m height, the sequence can be roughly divided
into two stages: intensification stage—weakening stage and strengthening stage time
series. Meanwhile, the wind speed time series at 70 m height can be divided into four
stages: intensification—weakening—intensification—weakening. At 10 m height, the slope
changes were 0.01, 0.03, 0.04, 0.03, 0.04, and 0.002. At 30 m height, the slope changes were
0.001, 0.03, 0.04, 0.009, 0.05, and 0.01. The slope changes at 50 m height were 0.004, 0.11,
0.03, 0.04, 0.07, 0.06, and 0.005. At 70 m height, the slope changes were 0.02, 0.006, 0.03,
0.03, 0.02, 0.05, and 0. It can be observed that wind speed at 70 m altitude shows a stronger
lag in response to the typhoon, indicating less smooth airflow.
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Table 1. Beast point in time and probability value at the breakpoint.

Cp10 Time10 Pr10 Cp30 Time30 Pr30 Cp50 Time50 Pr50 Cp700 Time70 Pr70

76 2019/8/8
18:45 0.8 76 2019/8/8

18:45 0.98 154 2019/8/9
14:15 0.81 56 2019/8/8

13:45 0.52

154 2019/8/9
14:15 0.77 155 2019/8/9

14:30 0.69 249 2019/8/10
14:00 1 160 2019/8/9

15:45 0.95

324 2019/8/11
8:45 0.99 325 2019/8/11

9:00 1 324 2019/8/11
8:45 1 306 2019/8/11

4:15 1

407 2019/8/12
10:00 0.62 402 2019/8/12

4:00 0.85 428 2019/8/12
10:45 0.95 371 2019/8/11

20:30 1

598 2019/8/12
5:30 0.72 598 2019/8/12

5:30 0.59 478 2019/8/12
23:15 0.7 429 2019/8/12

11:00 0.87

554 2019/8/13
18:15 0.7 554 2019/8/13

18:15 1

4.2. Hurst Index Analysis

In summary, the wind speed time series can be segmented into two distinct stages:
the strengthening stage and the weakening stage. The Hurst index is utilized to assess the
smoothness of these two time series. Specifically, the strengthening stage spans from data
points 76 to 325, while the weakening stage encompasses data points 326 to 598. Based on
this segmentation, the Hurst index was calculated for both stages, as illustrated in Figure 3.
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Figure 3. Hurst index calculation results.

During the intensification stage, the Hurst index ranges from 0.38 to 0.45, with good-
ness of fit R2 values ranging from 0.88 to 0.94 across different heights of the wind measure-
ment tower. Conversely, during the weakening stage, the Hurst index ranges from 0.36 to
0.4, with goodness of fit R2 values ranging from 0.7 to 0.84. These results suggest that when
the typhoon is active, the wind speed exhibits a Hurst index ranging from 0.38 to 0.45, with
goodness of fit R2 values between 0.8 and 0.94.

Furthermore, both the intensification and weakening stages of the wind speed time
series demonstrated a pronounced long-term negative correlation. A comparison between
the strengthening and weakening stages reveals that the Hurst index tended to decrease
with the increasing height of the wind measurement tower during the strengthening stage.
Conversely, during the weakening stage, the Hurst index generally increased with height.
This indicates that the self-similarity of wind speed increases with height during the
strengthening stage, while it decreases with height during the weakening stage. These
trends may be attributed to variations in the airflow field before and after the passage of
the typhoon.
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4.3. Analysis of Wind Direction Change Characteristics

Based on the intensification and weakening stages, the alterations in wind direction
were scrutinized. As illustrated in Figure 4, throughout the duration when the measuring
tower experienced the typhoon’s influence, the wind direction exhibited a sequence of
shifts from southeast (SE) to east (E), southeast (SE), south (S), southwest (SW), west (W),
and northwest (NW). The average magnitude of these directional changes across all four
altitudes was 233◦, indicating Typhoon Lekima was within the vigorous wind zone of
the eyewall.
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where, (a) is the wind direction during the wind speed increasing period, (b) is the statistical value of
wind direction during the wind speed increasing period, (c) is the wind direction during the wind
speed weakening period, and (d) is the statistical value of wind direction during the wind speed
weakening period.

During the intensification stage, the wind speed time series was fitted with a quadratic
polynomial, yielding R2 values exceeding 0.75 across various heights of the wind tower.
Conversely, a linear fit was employed for the wind speed time series during the weakening
stage, resulting in R2 values surpassing 0.63 at different tower heights. The higher R2
values in both stages suggest a strong fitting performance.

In the intensification stage, the wind direction transitioned from southeast to east
before reverting back to southeast. The fitting curves of the wind speed series at 10 m, 30 m,
and 50 m heights exhibited a high level of consistency, whereas the wind speed series curve
at 70 m altitude showed a distinct trend. Prior to 20 August 2019, the wind speed series
curve at 70 m altitude exceeded those of other altitudes, but after this point, it fell below
them. Concurrently, during the weakening stage, the wind direction swiftly shifted from
southeast to southwest and ultimately to northwest. Notably, the wind direction series
at 70 m altitude displayed a persistently higher trend of directional change, particularly
around 9 November 2019, indicating sharp alterations in the airflow field surrounding the
measurement tower before and after midnight when the typhoon passed through. Statistical
analysis of wind direction during the intensification and weakening stages revealed that
the mean and median wind directions at the 70 m height were higher than those at other
altitudes. Conversely, wind direction statistics at other altitudes exhibited similar values.
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This suggests that wind direction at 70 m height is less influenced by underlying surface
conditions and more affected by the circulation patterns of the typhoon.

4.4. Relationship between Wind Speed Variation Characteristics and Paths at 10 m and 70 m

As depicted in Figure 5, the relationship between central pressure and wind speed
near the typhoon center is inversely proportional: the lower the central pressure, the greater
the pressure gradient between the central and surrounding areas, resulting in higher wind
speeds near the center [30]. Therefore, typhoon intensity serves as a fundamental factor
influencing wind speed at the wind measurement tower.
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In this study, hourly wind speed data at the tower were recorded from the onset
of typhoon influence until its dissipation. The analysis focused on wind speed near the
typhoon center and the distance between the typhoon and the tower. Figure 5 illustrates
the impact of the distance between the typhoon center and the wind tower, and the wind
level near the typhoon center, on wind speed at the tower. Before landfall, Typhoon Lekima
affected the tower’s wind speed despite not yet making landfall in Wenling, Zhejiang
Province. The typhoon center was located at 125.10◦ E, 24.30◦ N, approximately 1088 km
from the tower. The minimum central pressure was 920 hPa, with a maximum wind speed
near the center of 58 m/s. By 7:00 on 11 August 2019, as the typhoon passed directly over
the tower, its center was just 30 km away, with a minimum central pressure of 982 hPa
and a maximum wind speed near the center of 23 m/s. Even after the typhoon ceased
numbering on 13 August 2019, its circulation continued to influence wind speeds at the
tower. At this point, the center was positioned at 119.90◦ E, 37.50◦ N, approximately 446 km
from the tower, with a minimum central pressure of 990 hPa and a maximum wind speed
near the center of 16 m/s.

During the observation period, hourly wind speeds at 10 m showed a significant
negative correlation with the distance between the typhoon center and the tower (p < 0.05,
R2 = 0.85), as well as with wind intensity (p < 0.05, R2 = 0.88), indicating continued influence
from the typhoon’s circulation. As the typhoon center gradually moved northward, wind
speeds at the tower steadily increased due to the expanding radius of the typhoon. A
significant negative correlation was observed between 10 m wind speed and the distance
from the tower to the typhoon center (p < 0.05, R2 = 0.09), as well as with wind intensity
(p < 0.05, R2 = 0.69). However, as the typhoon’s radius diminished, wind speed at the tower
became primarily influenced by local wind conditions rather than the typhoon’s circulation.
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In contrast, wind speed at 70 m exhibited greater volatility. It gradually increased
before the typhoon’s passage, peaking at 17 m/s around 13:00 on 10 August 2019. Subse-
quently, wind speed fluctuated before stabilizing. Prior to the typhoon’s passage, hourly
wind speed at 70 m demonstrated a significant negative correlation with the distance from
the typhoon to the tower (p < 0.05, R2 = 0.23), as well as with wind intensity (p < 0.05,
R2 = 0.33). However, post-typhoon, wind speed at 70 m showed no significant correla-
tion with the distance to the typhoon (p = 0.31, R² = 0.001), while remaining significantly
correlated with wind intensity (p < 0.05, R2= 0.33).

Compared to wind speed at 10 m, wind speed at 70 m exhibited weaker correlations
with both the distance from the typhoon and wind intensity, both before and after its
passage. This indicates that there may be external factors influencing wind speed at
this height.

4.5. Influence of the Cushion on the Wind Speed of the Tower

Terrain and surface type significantly impact the intensity and trajectory of typhoons,
subsequently influencing the extreme wind speeds and duration experienced by station
wind towers [31]. Examining the path of Typhoon “Likema,” it traversed primarily through
Zhejiang, Jiangsu, and Shandong provinces. As shown in Figure 6a, analyzing the terrain of
these regions reveals distinct characteristics. Zhejiang’s topography slopes from southwest
to northeast, with mountainous terrain dominating the southwest and alluvial plains in
the northeast. Notably, mountain ridges such as Dappan Mountain, Tiantai Mountain,
Kuangcang Mountain, and Kuaiji Mountain align in the southwest to northeast direction,
with peak elevations ranging from 1100 m to 1400 m. After making landfall in Wenling,
Zhejiang Province, the typhoon veered northwestward, reaching the northern Zhejiang
Plain within 12 h. During this period, the central wind velocity decreased from 52 m/s at
landfall to 28 m/s, and the typhoon’s trajectory shifted from northwest to north. While wind
speeds at 10 m height continued to rise, those at 70 m displayed a temporary weakening
trend, dropping from 17 m/s to 3 m/s. Additionally, wind direction fluctuations were
observed at both heights, with a notable 100◦ larger reduction in wind direction at 70 m
compared to 10 m.
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Jiangsu, characterized by flat terrain and low average altitude, experiences a different
influence from the typhoon’s passage. As the typhoon moves across the northern Zhejiang
Plain towards the wind tower, it traverses through the middle and lower Yangtze River Plain
and the North China Plain. During this phase, spanning a linear distance of approximately
350 km, the central wind speed reduces to 23 m/s and maintains this speed before reaching
the wind measurement tower after 15 h. Interestingly, while wind speeds at 10 m height
continued to increase, those at 70 m height exhibited a rising-then-decreasing pattern.
Similarly, wind direction at both heights showed fluctuations, with a period of low direction
at 70 m. This suggests that typhoons advance more swiftly through mountainous regions
with complex terrain compared to plain areas, with stronger restraining effects near their
centers. Wind speeds and directions at 70 m height are more influenced by large-scale
typhoon circulation compared to those at 10 m height.

As shown in Figure 6a, Analyzing surface type distribution in the typhoon’s transit
area reveals high forest coverage in Zhejiang’s mountainous regions, while the northern
Zhejiang Plain and Jiangsu Plain are characterized by water systems, urban agglomerations,
and farmlands. In urbanized areas like southern Jiangsu, wind tower wind speeds and
directions undergo significant changes, with wind speeds at 70 m height dropping to as
low as 3 m/s and wind direction shifting from 112◦ to 90◦. This underscores the substantial
influence of surface type on high-altitude wind speed and direction, emphasizing the lesser
impact of large-scale typhoon circulation on near-surface wind characteristics.

4.6. Influence of Mesoscale System on Wind Speed of Measuring Tower before and after Typhoon

To delve into the discrepancies in wind speed and direction variation between altitudes
of 10 m and 70 m, further analysis was conducted on the mesoscale system characteristics
before and after typhoon transit, utilizing NCEP reanalysis data at a 2.5◦ × 2.5◦ resolution
four times a day. Focusing on the distribution of meridional (north-south) and zonal (east-
west) winds (U and V) near the latitude and longitude (120◦ E, 33◦ N) of the wind tower,
several key findings emerged [32].

As is shown in Figure 7, Before the typhoon transit, the east–west and north–south
components of Typhoon Lekima” were balanced. Specifically, the wind measuring tower
experienced influence from the easterly wind region, concentrated predominantly in the
southern portion of 33◦ N. This easterly wind zone spanned from 600 hPa to 900 hPa
and 25◦ N to 30◦ N in the atmosphere, and from 400 hPa to 1000 hPa and 30◦ N to 35◦ N
at the latitude of 33◦ N. Notably, the position of the strong northerly wind region was
comparatively lower, featuring a more stable pressure field than the easterly wind region.
This stability resulted in stronger airflow disturbance at various altitude levels within the
easterly wind region. Consequently, the wind direction at 70 m altitude was stronger and
more volatile compared to that at 10 m altitude before the typhoon’s passage.

Subsequent to the typhoon’s transit, the westerly gale area gradually shifted south-
ward from around 33◦ N. Within this gale area, wind speeds gradually decreased from
15 m/s to 10 m/s, and its scale expanded from 600 hPa to 1000 hPa down to 400 to 1000 hPa.
Additionally, a southerly gale area persisted south of 33◦ N, maintaining wind speeds
at each altitude level within the range of 0–5 m/s. However, the intensity of change in
wind speed was smaller compared to the north–south component. Consequently, after the
typhoon’s passage, the wind direction at 70 m altitude remained larger and more unstable
than that at 10 m altitude, as the wind speed experienced greater fluctuations.
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5. Discussion
5.1. Comparison of BEAST Method with MK and BFAST

Wind speed data at 10 m altitude underwent MK mutation testing and BFAST change
point detection to delineate trend and seasonal variations in the time series data [33,34]. The
MK mutation test, a non-parametric statistical method, was employed to detect changes
in wind speed without imposing distributional assumptions on the samples [33]. Mean-
while, the BFAST method decomposed the time series into trend, seasonal, and residual
components, subsequently identifying change points within the trend and seasonal compo-
nents [34]. Figure 8 illustrates the outcomes of trend change detection using the MK and
BFAST methods.
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The results from the MK mutation test revealed that from 8 August at 5:00 to 14 August
at 2:30, the UF (U statistic) value consistently exceeded 0, indicating a sustained upward
trend in wind speed at 10 m altitude. Although the UF and UF curves intersected at
21:45 on 14 August, they failed to meet the significance level test at 0.05. On the other
hand, the BFAST method identified four change points at sequences 174, 321, 442, and 549,
respectively. Prior to sequence point 321, two sub-sequences (0–174, 175–321) displayed
increasing trends, while sequences 550–672 exhibited an increasing trend, and 322–442 and
443–549 displayed weakening trends. Despite discrepancies in the number and timing
of change points between BFAST and BEAST methods, the wind speed series generally
depicted both increasing and weakening trends [34].

The MK method, primarily suited for detecting monotonic trends in categorical and se-
quential variables, may not be suitable for identifying multiple breakpoints [35]. In contrast,
the BFAST method utilizes ordinary least squares and minimum sum of squares of residuals
(OLS-MOSUM) to pinpoint trend change points, selecting the optimal model based on
stable regression detection estimates [36]. On the other hand, the BEAST method, grounded
in Bayesian principles, determines the probability value of each sample point’s change
according to a model space probability distribution, allowing for the detection of subtle
change trends [37]. The discrepancy between BFAST and BEAST change points may arise
from BEAST’s capability to discern nuanced changes. However, the BFAST method requires
manual specification of the minimum detection interval factor in parameters, potentially
resulting in fewer change points detected compared to the BEAST method [20,38].
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5.2. Analysis of the Influence of Typhoon on Wind Farms and Its Measures

Preliminary analysis indicated that during the passage of Typhoon Lekima, wind
speeds at the wind farm’s 10 m, 30 m, and 50 m heights initially intensified and sub-
sequently weakened, revealing high non-stationarity, particularly at lower altitudes, as
indicated by their Hurst indices. However, at 70 m height, wind speed variations were more
pronounced, with higher Hurst indices and notable wind direction fluctuations. Given
that the wind turbine’s hub height is 96 m and rotor diameter is 148 m, the significant
wind speed gradients and increased vertical wind shear during typhoons can amplify
cyclic fluctuation loads on the turbine, affecting its fatigue performance and shortening its
operational lifespan [36]. Sudden shifts in wind direction can also stress turbines equipped
with less responsive yaw systems, potentially leading to blade flutter and reduced blade
longevity [39].

Over the past decade (2012–2022), Yancheng, Jiangsu Province experienced an average
of one typhoon per year, with near-central wind speeds ranging from 16 m/s to 33 m/s.
Notably, only the 18th typhoon, “Dawei,” in 2012 surpassed 25 m/s wind speeds (Figure 9).
Based on Typhoon Lekima’s wind speed characteristics, the impact of strong winds and
abrupt wind direction changes on wind turbines, and recent typhoon occurrences, the
following measures are proposed:

(i) Strengthening Anti-Typhoon and Anti-Gale Early Warning Systems:
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Implement an integrated intelligent supervision system across wind farms to enhance
data analysis and interoperability, enabling early detection and warning of typhoon paths,
wind speeds, and wind directions;

(ii) Enhancing Wind Turbine Control System Upgrades and Maintenance:

Prioritize maintenance and control system upgrades, including variable pitch, yaw,
and braking systems, to mitigate typhoon damage [40]. Ensure system operability during
typhoons through annual inspections and necessary upgrades;

(iii) Investing in Energy Storage Systems:

Given the region’s strong economic development and electricity demand, deploy
advanced energy storage technologies to address short-term power supply interruptions
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during typhoons [41]. These systems also support long-distance power transmission and
contribute to achieving carbon reduction goals.

5.3. Deficiencies and Prospects

Based on the data of wind speed and direction at different heights of the wind tower
measured every 15 min, this paper analyzed the change characteristics of wind speed
and direction by using BFAST and Hurst index. Meanwhile, based on path characteris-
tics, surface characteristics, and mesoscale wind direction characteristics, it explored the
reasons affecting the change characteristics of wind speed and direction. There are the
following deficiencies:

(i) Based on the change point, this study artificially divides the wind speed and direction
data of the wind tower at different heights into the strengthening stage and weakening
stage according to time node 325. Such division may cause the Hurst index and
direction characteristic analysis to affect the judgment of the result due to the error of
sample data;

(ii) In this study, the distance from the typhoon center to the tower and the effect of
the wind speed near the typhoon center on the wind speed of the tower, surface
characteristics, and mesoscale wind direction characteristics were selected as the
external characteristics that affect the wind speed and wind direction of the wind
tower. In the coastal area, SST, sea and land local circulation, and atmospheric
circulation were the main factors that affected the wind speed and wind direction [42],
which will become the influencing factors for the wind speed change of the wind
tower during typhoons in the future.

In extreme weather systems, higher requirements are put forward for the power pre-
diction of wind turbines and the design of wind turbines. In this paper, the characteristics
and influencing factors of wind speed and direction change of wind towers in wind farms
were studied in order to further study the wind power prediction model in the future.

6. Conclusions

Based on wind speed and wind direction data at 10 m, 30 m, 50 m, and 70 m heights
of a wind power tower in Yancheng, Jiangsu Province, this paper analyzed the change
characteristics of wind speed and wind direction by using the BFAST method and Hurst
index. Based on data on the distance from the typhoon center to the tower and the effect of
the wind speed near the typhoon center on the wind speed of the tower, topographic data,
and mesoscale system wind direction data, the causes of the occurrence and development of
wind speed and wind direction of wind tower were further analyzed, and the conclusions
are as follows:

(i) In the BFAST method, there were 5, 5, 6, and 6 change points at the height of 10 m,
30 m, 50 m and 70 m, respectively. Among them, the change points at the height of
10 m, 30 m, and 50 m all changed before and after node 325, while the change time
point at the height of 70 m was inconsistent with other heights. Hurst index results
showed that the non-stationarity of wind speed series at 70 m altitude was stronger
than that at other altitudes;

(ii) The wind direction sequence at the height of 10 m, 30 m, 50 m, and 70 m was fitted by
stages. It was found that the direction of wind direction was SE–E–SE–SW–W–NW.
Among them, the trend line fitted at the height of 70 m had a large deviation from
other altitudes at the wind speed strengthening and weakening stages;

(iii) The wind speed at the heights of 10 m and 70 m had different response degrees to the
distance from the typhoon center to the tower and the effect of the wind speed near
the typhoon center on the wind speed of the tower. The correlation between the wind
speed and the distance between the wind measurement tower and the typhoon near
the center was stronger at the height of 10 m than at the height of 70 m. The surface
type and the wind direction of the mesoscale system also had certain effects on the
wind speed and direction.
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In this paper, the change characteristics and influencing factors of wind speed and
direction of wind tower were studied, which provides methods and theoretical support for
the study of short-term wind speed when a typhoon passes through and provides reliable
support for the selection of wind power forecast indicators and the selection and design of
wind turbines under extreme gale weather systems.
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