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Abstract: Visibility is one of the key meteorological parameters with special importance in aviation
meteorology and the transportation industry. Nevertheless, it is not a straightforward task to
automatize visibility observations, since the assistance of trained human observers is still inevitable.
The current paper attempts to make the first step in the process of automated visibility observations:
it examines, by the approaches of artificial intelligence (AI), whether light points in the target area
can or cannot be automatically detected for the purposes of night-time visibility observations. From
a technical point of view, our approach mimics human visibility observation of the whole circular
horizon by the usage of camera imagery. We evaluated the detectability of light points in the
camera images (1) based on an AI approach (convolutional neural network, CNN) and (2) based
on a traditional approach using simple binary thresholding (BT). The models based on trained
CNN achieved remarkably better results in terms of higher values of statistical metrics, and less
susceptibility to errors than the BT-based method. Compared to BT, the CNN classification method
indicated greater stability since the accuracy of these models grew with increasing pixel size around
the key points. This fundamental difference between the approaches was also confirmed through
the Mann–Whitney U test. Thus, the presented AI-based determination of key points’ detectability
in the night with decent accuracy has great potential in the objectivization of everyday routines of
professional meteorology.

Keywords: meteorological visibility; night-time observations; detectability of light points; convolutional
neural network; explainable AI; aviation

1. Introduction

Knowing the exact visibility in all directions at the airports, ports, highways, etc. is
the key to safe traffic operations. Low visibility due to weather changes represents a great
risk, especially for the drivers of vehicles. As a result of their reduced ability to recognize
objects, they are very often exposed to traffic accidents [1,2]. Meng et al. [3] also point to
the difficulty of managing the logistics of flight operations at airports as a result of efforts
to increase safety in conditions of low visibility. Beyond this, inaccurate airport visibility
estimates increase maintenance costs for the airlines and can even lead to fatal aviation
accidents [4].

On the other hand, visibility still remains one of the few meteorological variables,
the observation of which is nearly unthinkable without trained and experienced human
observers. Their work can be supplemented by equipment measurements. These, however,
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are by far not perfect: the state-of-the-art measuring tools (e.g., transmissometers and for-
ward scatters) are expensive, and at the same time, they are able to provide measurements
in the instruments’ location only. Bartok et al. [5] introduced a camera-based observa-
tion system that does not necessarily replace but effectively and synergically amends the
standard observations. The paper presented human observations from a remote center
that allows an observer to report meteorological conditions remotely, using images from
cameras installed at the airport. Bartok et al. [5] concluded that for a correct estimation
of the prevailing visibility, the standard near-the-runway automated sensors alone are
inadequate; however, the camera-aided remote human approach to observations seems
to be a promising supplement to eliminate the standard sensors’ deficiencies in terms of
quality (e.g., high-quality camera records; no more point measurements), objectivity (e.g., a
database of archived weather situations), and efficiency (e.g., no need to have an observer
physically present at the airport).

A further way to estimate visibility is on the basis of statistical models. They, compared
to the equipment measurements, can be cheap in terms of the invested costs; nevertheless,
they cannot be considered cheap in terms of the time and human resources necessary for
their development and training. The statistical models cover a wide spectrum, starting, for
instance, from a simple application of the Koschmieder law, through linear and non-linear
models relying on different meteorological variables, up to the highly sophisticated models
in the field of image recognition, constructed on the basis of machine learning and deep
learning techniques [6].

In recent years, particularly due to the exponential boom in the field of AI technologies,
a plethora of papers focusing on AI-based image recognition and/or classification have
been published [7,8]. A considerable portion of these studies is based on convolutional
neural networks (CNNs) and their innovated architectures, emphasizing their key capa-
bilities such as versatility and robustness [9]. Chen et al. [10] concluded that ‘From 2017
to the present, [. . .] CNNs have increasingly demonstrated irreplaceable superiority in
image classification.’ The target objects, and consequently, the particular technological
equipment and the adopted approaches are manifold, such as medical image recogni-
tion [11], face recognition [12], the inspection of road material defects [13], street view
image classification [14], or remote sensing image classification [15]. In meteorology and
fields closely affected by meteorological conditions (such as road traffic and intelligent
transportation systems [16,17]), the major challenge of the AI-based approaches is reliable
object recognition in environments with poor visibility conditions, such as haze, fog, dust,
dense rainfall, twilight, night-time, etc. [18,19].

Night-time visibility estimation is equally important in aviation and other forms of
transportation, as planes, ships, and all forms of public transportation also operate during
the night. Good night-time visibility is essential during landing and takeoff (e.g., guided
by runway lights, approach lights, and beacons), and also in ground operations such as
taxiing. Pedestrians and cyclists are also at higher risk during night-time.

Studies of night-time visibility or light point detection with graphical data as input are,
however, often hindered by the lack of high-quality annotated data sets. One such data set
was provided in the China Post-Graduate Mathematical Contest in Modeling in 2020 [20].
The data set contained meteorological data and observation video of one particular night
(13 March 2020) and was utilized in several studies [20–23]. Nevertheless, beyond the
common date, it is hard to track down further details on the data set since different authors
refer to different target locations (Chengdu Shuangliu International Airport [22], Nanjing
Lukou Airport [20], and unspecified site(s) [21,23]), different time intervals (from approx.
0:00 a.m. to 8:00 a.m. [20,22,23], and from approx. 0:00 a.m. to 12:00 a.m. [21]), and what
is a pity, the only web address of the reference data set cited in [20] is no more accessible
in 2024.

Quian et al. [21] performed multiple linear and multiple polynomial regressions to
model the dependence between ground meteorological observations and reported visibility.
Subsequently, the models were used to annotate the video data set split into separate frames
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and trained AlexNet [24] to predict visibility. They report less than 0.25% percentage error
in their approach in comparison with the ground truth. However, the test data set consisted
of the last 129 frames with essentially the same visibility.

Fu et al. [22] used a support vector machine model to classify video frames into
four visibility categories. They investigated the influence of the thermodynamic image
algorithm and gray histogram for feature extraction on model performance. The reported
performance for visibility between 400 m and 800 m contained about the same number
of hits and misses for both data processing approaches. For other visibility ranges, both
models performed significantly better.

Liu et al. [23] combined two CNN models VGG-16 [25] and Xception [26] to classify
fog into four categories with an overall accuracy of 87.64%. However, the lowest visibility
category ‘thick fog’ performed worse, possibly due to insufficient training data.

Chen et al. [20] used a Recurrent Neural Network (RNN) to analyze video sequences
and predict visibility. They examined the influence of adding meteorological data as an
input to the RNN. The mean relative error of the model decreased from 38.5% to 19.72% by
incorporating ground meteorological observations such as temperature, air pressure, and
wind speed.

The common features of the above referenced works [20–23] are (i) their focus on
nigh-time conditions, (ii) visibility prediction by means of various AI approaches, and
(iii) practically the same, limited data set of inputs. Even though the input figures therein
are available with a 15 s frequency, it is questionable whether the video sequences of
the length of 8 (12) hours offer sufficient variability of meteorological conditions that are
precursors of the low visibility cases. The lack of representativeness is manifested at least by
the fixed position of the camera, which does not allow for evaluating the visibility strictly
from the aviation perspective, i.e., according to the ICAO (International Civil Aviation
Organization) recommendations in all the cardinal directions [27]. The current paper,
therefore, aims at developing a trustworthy model, which attempts to mimic the approach
of professional observers, similarly to Bartok et al. [5]. Our strategy was also inspired
by the study of Pavlove et al. [28] who developed the concept of the ‘remote observer’
towards more automatized ways of the visibility recognition using various approaches of
artificial intelligence (two CNN models based on VNET [29]); however, it was for day-time
conditions. It is important to emphasize that unlike the studies above, we are not trying to
evaluate the visibility itself or the visibility prediction within different distance intervals
relevant to aviation. The current study only deals with the very first (necessary) step
towards the automatization of visibility prediction, and it is the analysis of the detectability
of light sources in night-time conditions.

The paper is organized as follows: The international standards/requirements for
visibility observation, and the camera-based system designed for it, are described in
Section 2 (Materials and Methods). The same section also introduces the principles of
the creation of the basic data set of camera images, characterizes the standard and novel
approaches of image processing, presents the methods adopted for the automated visibility
prediction, and finally, lists the statistics and metrics adopted to evaluate the performance
of the constructed models. Section 3, after a short introduction related to the analysis of
low visibility circumstances at the target location, presents the performance of the three
constructed models for the prediction of night-time visibility. The first of the models
predicts the visibility using a traditional approach (binary thresholding) with modified
images as inputs, whereas the core of the remaining two models is an AI-based approach
(convolutional neural network) that makes decisions both on the basis of original and
modified camera images. The Discussion Section (Section 4) attempts to inter-compare
and interpret the performance of the individual models, and underline their strengths and
weaknesses, and the last section (Section 5) delineates some pathways to extend the current
research in the future.
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2. Materials and Methods
2.1. Definition of Visibility

Prevailing visibility is one of the most important meteorological variables at airports.
The glossary of the International Standards and Recommended Practices, Meteorological
Service for International Air Navigation (Annex 3) [27] adopted by the Convention on
International Civil Aviation Organization (ICAO) defines the prevailing visibility as

The greatest visibility value, observed in accordance with the definition of ‘visibility’,
which is reached within at least half the horizon circle or within at least half of the surface
of the aerodrome. (These areas could comprise contiguous or non-contiguous sectors).

The visibility as defined for aeronautical purposes is the greater of the following:

(a) the greatest distance at which a black object of suitable dimensions, situated near the
ground, can be seen and recognized when observed against a bright background;

(b) the greatest distance at which lights in the vicinity of 1000 candelas can be seen and
identified against an unlit background.

Currently, reports of prevailing visibility are typically produced by a human observer
at regular time intervals. Typically, (a) is applied during the day and (b) during the night.

In the case of determining visibility during the day, i.e., in daylight conditions, meteo-
rological observers recognize specific objects and their outlines. In night-time conditions,
however, the observers rely on the ability to determine the visibility of light sources. In the
dark, when observing with the eye, instead of the entire visible scenery, the observer only
focuses on light points or light sources. As a result, there is no information available on
the edges of the target objects, which makes the AI-based prediction of night vision much
more challenging.

2.2. Camera Observation Methodology

The general architecture of the camera-based observation system is as follows: A
high-resolution camera with accessories is installed on a higher elevated point at the
Poprad–Tatry Airport (Slovakia; ICAO identifier: LZTT) with an obstacle-free view. It
sends 8 images of the horizon covering all the cardinal directions (N, NE, E, SE, S, SW, W,
and NW) to a central server with a 5 min frequency (this periodicity is customizable). The
rotation of the camera is provided by a rotator, which is assumed to always stop precisely in
pre-defined positions after turning. If this does not happen (for instance, due to wind gusts
or some mechanical failures), slightly shifted camera shots may result, and such camera
shifts represent one of the several possible factors influencing the accuracy of automated
visibility estimation.

As soon as a 360◦ camera rotation is completed, pre-defined distance markers (land-
marks) are added to the individual camera images. With the help of these markers (by
switching their statuses either to ‘visible’ or ‘obscured’), the remote (human) observer can
determine the prevailing visibility and save the results to the server [5]. Figure 1 illustrates
the results of such an evaluation both for daylight and night-time observations.
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Figure 1. Adding markers to estimate the overall prevailing visibility both in daylight and night-
time conditions—examples from the Poprad–Tatry Airport, in the northern direction. (a) Decreased 
visibility during the day, (b) ideal visibility during the day, (c) decreased visibility during the night, 
and (d) ideal visibility during the night. The green markers indicate visible targets, whereas the red 
ones denote obscured ones. 

Landmarks with distance labels for all the directions represent an aiding tool for the 
remote observer. They have to be selected carefully to cover a variety of distances in each 
direction. Table 1 shows some basic statistics of the landmarks at the Poprad–Tatry Airport 
where the marker counts were divided into four distance categories used by the ICAO 
[27]. Furthermore, Figure 2 presents the spatial distribution of the markers in the vicinity 
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Figure 1. Adding markers to estimate the overall prevailing visibility both in daylight and night-
time conditions—examples from the Poprad–Tatry Airport, in the northern direction. (a) Decreased
visibility during the day, (b) ideal visibility during the day, (c) decreased visibility during the night,
and (d) ideal visibility during the night. The green markers indicate visible targets, whereas the red
ones denote obscured ones.

Landmarks with distance labels for all the directions represent an aiding tool for the
remote observer. They have to be selected carefully to cover a variety of distances in each
direction. Table 1 shows some basic statistics of the landmarks at the Poprad–Tatry Airport
where the marker counts were divided into four distance categories used by the ICAO [27].
Furthermore, Figure 2 presents the spatial distribution of the markers in the vicinity of
the airport, with the focus on the nearest ones, within the two circles with radii of 0.6 and
1.5 km, corresponding to Table 1.

Table 1. The number of landmarks used to identify directional visibility (regardless of whether they
serve in daytime and/or night-time conditions) by the camera-based system at the Poprad–Tatry
Airport, stratified by the ICAO distance categories.

Distance Interval [m] Number of Landmarks

0–600 56
600–1500 26
1500–5000 30

>5000 41
Total 153
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2.3.1. Key Point Detection and Description 

Figure 2. Spatial distribution of the landmarks with distance labels used to identify directional
visibility (regardless of whether they serve in daytime and/or night-time conditions) in the vicinity
of the Poprad–Tatry Airport.

The basic principles of visibility estimation based on the set of markers assigned to the
camera images are as follows:

1. If all the markers are visible in a given direction, then the visibility is larger than the
distance of the most distant marker in this direction.

2. If some markers are not recognizable in a given direction, then the visibility is deter-
mined by the distance of the nearest visible marker preceding the first obscured one.

These principles mimic the procedure that is required of a professional aeronauti-
cal observer.

The evaluation of the camera images by a remote (human) observer serves as the
ground truth in the analysis of the automated approaches to night-time visibility estimation.
Such an evaluation accompanies each camera image, usually in a text file of an XML format.
The associated text file involves information on the light sources (their approximate co-
ordinates and distance from the camera), information on the date and time of the camera
shooting, information on the quality of the individual camera images, and, as mentioned,
the expert decision of the human observer on which of the light sources are visible and
which are not.

2.3. Classical Methods in Image Processing

The cornerstone of the classical methods of image processing (e.g., texture analysis,
pattern recognition/classification) is the detection and description of its key points, and
parallel to this, the definition of the adequate descriptors that characterize the structure of
the image. Herein, a similar approach is adopted, with (a) the detection and description
of the key points, and (b) the morphological reconstruction of the original images. Both
procedures will be described in detail in the following two subsections.

2.3.1. Key Point Detection and Description

In the current study of night visibility, light spots represent the key points. We
attempted to identify and describe them by means of some standard, widely accepted
approaches, i.e.:
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• SIFT (Scale-Invariant Feature Transform) [30];
• BRIEF (Binary Robust Independent Elementary Features) [31];
• ORB (Oriented FAST and Rotated BRIEF) [32].

Our preliminary analysis indicated that out of the above-listed approaches, the SIFT
method yielded the most acceptable results.

A further step in the standard approach of image processing is feature matching. Its
goal is to find matches between the descriptors of the recognized key points in two or more
tracked images. From the wide palette of the available methods of feature matching, we
used the Brute Force method [33]. Finally, we adopted the RANSAC (Random Sample
Consensus) [34] algorithm to search for homography and then filter out incorrectly matched
pairs of image features.

However, the preliminary testing of this approach revealed that it was unable to
identify a significant number of key points, predominantly due to blurred images or a
significant presence of fog. Conversely, the application of image sharpening filters led to
excessive noise. In some cases where the points were correctly matched, we encountered
inaccuracies in the image overlay process. We, therefore, arrived at a conclusion that the
standard methods of key point detection and description are unsuited for the identification
of light spots in our data set. As a viable alternative to this, we turned our attention to
methods of image modification as tools for a binary identification of light spots as detectable
or undetectable in a relatively straightforward way.

2.3.2. Image Modification

The term ‘mathematical morphology’ is used to classify methods to extract the useful
features of an image that describe the shape of the examined image patches [35]. A specific
case of the application of mathematical morphology is morphological image reconstruction.
It is used to extract important features from an image by removing noise, highlighting
edges, and filling gaps. It uses two inputs: (i) the input image itself to be modified, and
(ii) the structuring element (or structural element or kernel), which is usually a small image
(e.g., 3 × 3 or 7 × 7 pixels), and serves as a pattern that defines the details of the effect of
the operator on the input image.

Image reconstruction is performed in an iterative manner while trying to preserve
important features from the original image. There are several algorithms commonly used
in morphological image reconstruction, and one of them is erosion [35,36]. Erosion is a
morphological operation that reduces the boundaries of a white object in a binary image
by removing pixels from its edges. Thus, from a technical point of view, the process of
morphological erosion is a unification of the input image and the structuring element.

From the practical point of view, morphological erosion was applied on each image
patch with a light spot. As mentioned above, the most important feature of the method is
its ability to remove noise and highlight important elements in the original image (mostly
light spots). Beyond this, the morphological erosion also filtered out, to some extent, the
background of the light spots.

Different sizes of the structuring element were used in our preliminary testing; how-
ever, the lowest noise and/or gray artifacts were detected at a value of 7, which then was
further used.

From now onward, we will term the results of the processing algorithm by the morpho-
logical erosion as ‘modified’ images or image patches, in contrast with the ‘original’ ones.

2.4. Binary Classification of Detectability of Light Spots

Having the original images modified by morphological erosion, the overall task of the
prediction of meteorological visibility is reduced to a task of binary classification of the
light spots, i.e., to decide whether they are detectable (equivalent to ‘visible’, class ‘1’) or,
conversely, undetectable (equivalent to ‘obscured’, class ‘0’). In line with this concept, in
the remainder of the paper, we will use the terms ‘prediction of detectability’ in relation to
the approaches of the automated detection of light spots from the camera images, and ‘ob-
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servation of visibility’ in relation to the activities of human observers at the meteorological
observatory (ground truth).

To determine whether the light spots are detectable or undetectable, two conceptually
different approaches were adopted: a traditional one (binary thresholding) and one making
use of a concept of machine learning (using a convolutional neural network).

2.4.1. Binary Thresholding

Binary thresholding (BT) [35] is a segmentation method used in image processing.
It converts black-and-white or gray images into binary ones, containing only pixels with
black or white color. It works on a simple principle in which each pixel in the image is
replaced by a black pixel if its intensity value is lower than a specified threshold value, and
conversely, the pixel is substituted with a white pixel if its intensity value is higher or equal
then the threshold. An image is classified as 1 (visible, detectable) if there is at least one
white pixel in the binary image. Otherwise, when the image contains only black pixels, it is
classified as 0 (invisible, undetectable).

2.4.2. Convolutional Neural Networks

Convolutional neural networks (CNNs) [37] are one of the most important deep learn-
ing methods used to solve problems in the field of computer vision. Convolutional neural
networks were inspired by the structure of the visual system, specifically drawing inspira-
tion from the models proposed by Hubel and Wiesel [38]. Convolutional neural networks
constructed in this manner have proven to be effective in processing two-dimensional
data with a grid-like topology, such as images and videos. These layers were designed for
feature extraction by applying convolution to the input data.

Convolutional neural networks are typically composed of the following types of
neuronal layers [39]:

1. Convolutional layers. Convolutional layers are used for feature extraction by combin-
ing the input of each neuron with the local receptive field of the previous layer [40].
The goal of this process is to discover meaningful internal representations of objects
and signs in the image. Voulodimos et al. [39] emphasize the importance of applying
convolution to the entire image and activation maps or feature maps using kernels of
different sizes. This approach leads to the generation of diverse activation maps that
highlight local flags, thereby facilitating the detection of their interconnections.

2. Pooling layers. The essence of pooling layers is the mapping of extracted symp-
toms [39]. They reduce the spatial dimensions of the input image for another con-
volutional layer. Simultaneously, the dimensions of width and height are reduced,
while the depth remains unaffected. This is commonly referred to as downsampling
since size reduction in the input data leads to a loss of information. This loss leads to
computational overhead for other layers, and also acts against information overload.

3. Flattening layer. This layer converts multidimensional arrays (output from previous
layers) to a single linear vector, a format suitable for dense layers.

4. Dropout layer. The dropout layer is designed to prevent the overfitting of deep
learning models. It randomly selects inputs and sets them to 0 with a customizable
frequency called the dropout rate.

5. Dense or fully connected layers. In CNN architectures, fully connected layers are
applied after several convolutional and pooling layers. These fully connected layers
serve as the basis for the final classification of the input images [39]. In these layers,
neurons are fully connected to all the activations in the previous layer. Thus, their
activation can be calculated by matrix multiplication, followed by a deviation correc-
tion. Finally, the fully connected layers convert the obtained 2D feature maps to a 1D
feature vector.

Herein, a convolutional neural network was proposed as the other approach to a
binary classification of the detectability of light points. As part of the proposed approach,
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we built and trained a model of a CNN with the simplest possible architecture of this
network (Figure 3).
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Figure 3. Architecture of the convolutional neural network used in the study. The schematic was
created by means of the Net2Vis tool [41].

The architecture consists of one convolutional layer with 8 filters of size 3 × 3, followed
by a max pooling layer with a 2 × 2 pool size. The output of the convolutional and pooling
layers is flattened into a 1D vector, and then passed through a dropout layer to reduce
overfitting. Finally, a dense layer with a single neuron and sigmoid activation function is
used for binary classification. This architecture is simple yet effective for tasks involving
image data with binary outcomes. More specific details about these layers are provided in
Appendix A.

2.5. Data Set Creation
2.5.1. The Initial Data Set

The measurements of visibility took place at the professional meteorological obser-
vatory at the Poprad–Tatry Airport (Slovakia). Both the database of the images from the
camera observation system (available with a 5 min frequency in 8 cardinal directions; see
Section 2.2), and the evaluation of visibility by professional human observers are available
for a 39-month long period, starting with January 2018 and ending with March 2021.

2.5.2. Relevant Sampling

To create a relevant data set, one needs the records of light points found in photos that
evenly cover all the periods of the year. The original data set, however, is not balanced
since it contains uneven amounts of photos from different months of the year. For this
reason, we attempted to pseudo-randomly select a certain amount (~1000) of records for
each month over the approximately three-year period to achieve data set relevance. The
principles of the procedure are as follows.

The governing rule of the selection was to keep the balance of the selected data set
in terms of the visibility/invisibility of the light points. This initial data set, previously
estimated by professional human observers and regarded as the ground truth, was available
as a collection of XML files. According to the number of records in the minority group
(i.e., those with the label ‘1’), the same number of records was selected from the majority
group (with the label ‘0’), thus the new data set was created in a 1:1 ratio in terms of
the visibility of light points. As a result of processing XML data from the initial data
set (see Section 2.2), an intermediate data set was created with the number of records of
approximately 12,000. Nevertheless, this data set had to be further refined/reduced for
one of the following three reasons: (a) there was no camera image available to be assigned
to the records from the intermediate data set, (b) although the corresponding camera image
existed in the intermediate data set, it was either corrupted or was not a black-and-white
image (i.e., taken, for instance, during the dusk or dawn), or (c) the overall goal was, again,
to reach a balanced status of the data set in terms of visibility of light points by eliminating
some records from the intermediate date set. This procedure resulted in the final data
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set with about 7000 items; more precisely, it consisted of 6892 camera images and the
corresponding text/numeric information.

2.5.3. Choice of Sizes of Image Patches

The original camera images were processed by means of the concept of key point
images with a default setting, where the individual key points were approximately centered
within the square-shaped cut-out of the original image. After experimenting with different
sizes of the neighborhood, we have chosen 256 × 256 pixels, which is robust with respect
to camera shifts and includes both a light spot and its sufficiently small surroundings.

An example of a night-time image is presented in Figure 4a. It was taken on 30 Au-
gust 2019, at 3:00 a.m., at the Poprad–Tatry Airport. The camera, pointing towards the
northern direction, shows the silhouette of the High Tatras Mountain in the background,
with some night-time public lighting in the villages at the foot of the mountains. In the
foreground, there are two significant objects for visibility estimation: the wind bag and the
mast, both illuminated at night. All these points in the background and the foreground
might be identified as key points using the procedures described in Sections 2.3.2 and 2.4.
Figure 4b emphasizes one of the key points (the wind bag) cut out of the original image
with its neighborhood, delineated according to the default settings. Figure 4c serves as an
illustration of a modified image, which is the result of the morphological erosion adopted
in Figure 4b with the aim of highlighting the light spot in the image. Finally, Figure 4d is
the binary image created on the basis of Figure 4c.
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Figure 4. (a) An original camera image, taken at the Poprad–Tatry Airport (30 August 2019, 3:00 a.m.)
in the northern direction. (b) An example of a key point neighborhood around the illuminated
wind bag, as identified in (a). (c) Key point neighborhood as a result of the modification of (b) by
morphological erosion. (d) Key point neighborhood in the form of a binary image.
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To evaluate the effect of the default settings of the patch size on the final outcomes
of the analysis, an experiment using 15 different neighborhood sizes was also conducted.
Herein, various neighborhood sizes were defined, ranging from 30 to 450 pixels, with a
step of 30 pixels (i.e., a square patch of the size of 30 × 30, 60 × 60, 90 × 90 pixels, etc.). In
the end, for each of the ~7000 key points from the final data set, 16 different image patches
were prepared, including the default size (256) and an additional 15 from the described
experiment (from 30 to 450 pixels). The same procedure was applied both on the ‘original’
and the ‘modified’ images.

2.6. Verification Methodology

Widely known scores were used to evaluate the performance of the proposed models
for classifying the detectability of the key points and their neighborhoods. The assessment
started with the standard 2 × 2 contingency table, which reflects the goodness of the given
constructed model in the light of the observations (ground truth):

• True Positives (TP)—They indicate the number of cases when the key point is visible
according to the human observers, and also the model-based prediction.

• False Negatives (FN)—The key point in the image is visible, but the model finds it
undetectable (i.e., type II error).

• False Positives (FP)—The key point in the image is invisible; nevertheless, the model
declares it detectable (i.e., type I error).

• True Negatives (TN)—The key point in the image is invisible, and it is correctly
predicted by the model as undetectable, too.

Based on these scores, further, more complex statistical metrics are defined [42]:

• Accuracy (A)—It is the ratio of the number of correct predictions to the total number
of predictions.

A = (TP + TN)/(TP + TN + FP + FN) (1)

• False Positive Rate (FPR)—It is the share of the number of false positive predictions
from the total number of negative observations. In other words, it describes what
proportion of samples that should have been classified as negative are not in that class.

FPR = FP/(TN + FP) (2)

• False Negative Rate (FNR)—It is the share of the number of false negative predictions
from the total number of positive observations. In other words, it describes what
proportion of samples that should have been classified as positive are not in that class.

FNR = FN/(TP + FN) (3)

• True Positive Rate (TPR)—It is the share of the number of true positive predictions
from the total number of positive observations. In other words, it describes what
proportion of samples that should have been classified as positive are in that class.
This statistic is also known as Probability of Detection (POD).

TPR = TP/(TP + FN) (4)

• True Negative Rate (TNR)—It is the share of the number of true negative predictions
from the total number of negative observations. In other words, it describes what
proportion of samples that should have been classified as negative are in that class.

TNR = TN/(TN + FP) (5)

False positives lead to an overestimation of night visibility since some non-visible light
points are marked as ‘detected’. This can potentially lead to a safety issue, as an aircraft
could try to land in worse weather conditions than expected.
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False negatives lead to an underestimation of the night visibility since visible light
points are marked as undetected. This can potentially lead to an unnecessary flight rerout-
ing to a different airport. The consequences would be additional costs for the airline and,
increased fuel consumption and CO2 emissions.

In the domain of aviation safety, the metrics that focus on minimizing false positives,
namely TNR and FPR, are more relevant than the ones that are aimed at minimizing false
negatives. In the remainder of the study (and in the upcoming ones in the future), we,
therefore, propose to use the metric FPR as the one to be minimized, and the metric FNR as
a satisfying one. This would imply setting an acceptable value of FNR and trying to lower
FPR as much as possible.

2.7. Explainable AI

The standard statistical scores and metrics described in Section 2.6 are excellent tools
to inter-compare different models in terms of figures; nevertheless, they do not offer any
hint for why they perform the way they do. The possible reasons for the good or bad
performance of the individual models have to be examined in a different way, by an analysis
of the individual cases of the correctly and incorrectly predicted detectability of key points
and their surroundings.

Explainable AI is a novel and useful tool, which generally offers further insight
into the processes of how machine learning algorithms make decisions in individual
cases [43,44]. There is a wide variety of explainable AI tools such as Saliency [45], Vanilla-
gradient [46], Occlusion Sensitivity [47], CAM (Class Activation Mapping) [48], and Grad-
CAM (Gradient-Weighted CAM) [49] algorithms. We have decided not to use CAM because
Grad-CAM is considered to be a superior alternative addressing CAM’s drawbacks [49].
We have tried out the rest of the mentioned explainable AI algorithms during the pilot
stage of our study. Both Vanilla-gradient and Saliency visualized the interpretability results
based on individual pixels rather than regions on the image, which were often too low-level
and out of context for our purposes. In addition, many outputs were not ‘readable’ since an
entirely black image was returned as a result. Even though Occlusion Sensitivity was able
to highlight interesting regions, it returned both reasonably interpretable and confusing
outputs. Moreover, this method was the most time consuming in terms of computational
cost. We have thus decided to proceed with the Grad-CAM algorithm since it returned
acceptable results, is well studied, robust, relatively fast, and takes into account more of
the ‘context’.

The Grad-CAM algorithm uses gradients of any target object, which pass into the final
convolutional layer. Its goal is to create a rough localization map highlighting important
areas in the image, which serves as the basis for any inference to be made about the
studied object.

Aside from the Grad-CAM algorithm, the results from the last layer of the convolu-
tional neural network were analyzed using the Sigmoid activation function. In general, the
role of the activation functions (or transfer functions) in machine learning is to transform
the input (or several inputs) into an output. In other words, the activation function decides
whether to activate the neuron or not, i.e., whether the input information is useful and
should be transferred to the next node. The Sigmoid function is a widely used activation
function in neural networks, which can be characterized by a non-linear behavior [50,51].

In the traditional model of binary thresholding where neither the explainable AI
nor any activation functions can apply, the selected cases of correctly and incorrectly
predicted visibility were analyzed through a calculation of the maximum pixel intensity in
the modified images.

2.8. Computational Details

In the Methods section, two data sets (original and modified images, Section 2.3)
and two methods of the light spots’ detectability prediction (binary thresholding and
convolutional neural network, Section 2.4) were introduced. Herein, we describe the



Atmosphere 2024, 15, 890 13 of 28

resulting combinations of data sets and methodological approaches (termed as Models #1,
#2, and #3) as well as the technical computational details involved. Note that it was not
possible to evaluate all 4 combinations of two data sets and two methods since the binary
thresholding only works with modified images.

Model #1 to classify key point detectability was constructed based on the method
of binary thresholding (Section 2.4.1) and using the final data set (Section 2.5.2) of the
modified image patches (Section 2.3.2). For this model, we have decided to keep the data
set as is, e.g., it was not split. We compared the BT-based predictions of detectability with
the true visibility labels for each key point of the data set. Note that to allow for a proper
comparison of the outcomes across different models, these results were normalized to the
number of the test set records from models based on the convolutional networks, which is
690 (10% of the size of the data set 6892).

Model #2 utilized a convolutional neural network (CNN, Section 2.4.2) with the
modified images (i.e., pre-processed by a morphological erosion) from the final data set
(Section 2.5.2). Model #3 also followed the design of the experiments using CNN; however,
the original images from the final data set were used as inputs. For these models a
Monte Carlo cross-validation approach [52] was adopted, where the training, testing, and
validation data sets were created from the final data set in the ratio of 80:10:10. Such a
procedure was repeated five times, each time with a different random seed value. The
values provided in the tables represent an average of these 5 trainings. All the input images
were scaled to the range 0 to 1. The images in the training and validation sets were shuffled.
Binary cross-entropy was adopted as the loss function, and ‘Adam’ as the optimizer. The
learning rate was standard, namely 0.001. The batch size during training was 32, and the
training lasted a maximum of 10 epochs. The method of early stopping was implemented.

3. Results
3.1. Low Visibility at Night

The Poprad–Tatry Airport and its vicinity have recently been the subject of several
meteorological–climatological analyses, which adopted both traditional (physics-based)
and AI-based approaches [5,53,54]. Especially, Bartok et al. [55] evaluated fog characteristics
at the target site from the analyzed 39-month period. Figure 5 shows the frequency of
fog occurrence at the target site, stratified according to the hours of the day and the
individual months, and restricted to the night hours, i.e., between 7 p.m. and 8 a.m. Herein,
the observed low-visibility phenomena were classified as fog as soon as the METAR
(Meteorological Aerodrome Report) message reported visibility below 1000 m and any
type of fog. The color shading of the cells (and the figures within) in Figure 5 indicates the
frequency of the occurrence of fog, expressed in the percent of the total available number
of METAR messages for the given hours and months. For instance, there are three Octobers
in the selection (2018, 2019, and 2020) with a sum of 93 days. Since the METAR messages
are issued with a 30 min frequency, there were 2 × 93 = 186 METAR messages distributed
for each hourly interval. For instance, the maximum value of the plot (15%) is a ratio of the
28 occurrences of the fog from the total of 186 METAR messages.

Figure 5 underpins that fog occurs most frequently in the cold half of the year, i.e., from
October to March (however, in March, the fog occurrence is not significant). Figure 5 further
reveals that fog at the target site typically occurs in the period from midnight to 8 a.m.,
which can be explained by the most intensive cooling of the Earth’s surface in the night-time.
The secondary maximum occurs in the late evening hours.
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Figure 5. Frequency of fog occurrence during the night hours (between 7 p.m. and 8 a.m.), expressed
as a percent ratio of the total available number of METAR messages for the given hour (vertically)
and month (horizontally) at the Poprad–Tatry Airport, in the period of January 2018–March 2021.
Low visibility was declared as fog as soon as the METAR message included a report of any type of
fog, and the visibility was below 1000 m.

3.2. Performance of the Models of Visibility Prediction

Herein, the performance of Models #1, #2, and #3 is presented and analyzed.
The most important findings related to Model #1 (=binary thresholding + modified

image patches) are summarized in Figure 6. On one hand, it presents the effect of the
patch size selection (with different key point neighborhood sizes, see Section 2.5.3) on the
performance of Model #1 in terms of accuracy. On the other hand, Figure 6 also includes
the corresponding intensity threshold values.
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The pattern of the model’s accuracy in Figure 6 (left y-axis) seems to be clear. First, the
accuracy increases, and it reaches its maximum at one of the smallest image patch sizes
(60 × 60 pixels). From this point onward, however, the accuracy gradually decreases with
increasing image patch size. On the other hand, a further characteristic, the threshold value
of the binary thresholding (namely the intensity value, which defines which part of the
image is considered as detectable/undetectable) shows an opposite behavior: it increases
practically monotonously as the key point neighborhood size increases (Figure 6, right
y-axis).

Generally, in images with larger key point neighborhoods, multiple points of light of
similar intensity were usually captured. Figure 6, therefore, indicates that capturing more
than one key point in an image resulted in a higher threshold value, and consequently, in a
lower accuracy of the model. On the other hand, the highest accuracy was achieved in the
case when the intensity threshold value was ~21.

An additional plot related to the peak intensity of the modified images (Figure 7)
presents a further important aspect of the analysis. It indicates that in most images,
the most frequently occurring peak values were less than the intensity threshold of ~21.
They, however, represent noise or unfiltered artifacts left over from the morphological
reconstruction of the image.



Atmosphere 2024, 15, 890 16 of 28Atmosphere 2024, 15, x FOR PEER REVIEW 16 of 28 
 

 

 
Figure 7. Distribution of the peak intensities detected on all of the image patches with different 
neighborhood sizes in the analysis of the performance of Model #1. 

Overall, the obtained results indicate the low stability of the binary thresholding 
method. With Model #1, the average accuracy of key point visibility classification reached ∼72% (averaged through all the 16 different neighborhood sizes, from 30 × 30 to 450 × 450 
pixels). Nevertheless, with an appropriately chosen image patch size (namely, 60 pixels), 
the accuracy of the BT-based prediction may exceed ~81%. 

The test to verify the dependence of the accuracy on the image patch size (with 15 
different sizes) was carried out for both the CNN-based models; their results are summa-
rized in Figure 8 (along with those for Model #1). It can be seen that with the increasing 
patch size, the accuracy of Model #2 increases monotonously, with a single exception in-
dicated by a minor drop at the value of 270 pixels. Nevertheless, the most relevant feature 
of this function is that the AI-based Model #2 performs better and better with increasing 
patch size, whereas for Model #1, the exact opposite statement applies.  

The performance of Model #3 resembles the one of Model #2. First, with the increas-
ing size of the image patches (from 30 to 120 pixels), the accuracy of Model #3 sharply 
increases. Then, in the region of the values of 120 to 270 pixels, the accuracy oscillates 
around the same value, with a slightly increasing trend. The last third of the plot (from 
270 to 450 pixels) exhibits higher values than the second one; however, one can distinguish 
a moderately increasing trend, indicating a certain kind of saturation.  

The overall features of the plot are similar to those of Model #2 (Figure 8); however, 
Model #3 can be characterized by somewhat larger figures within the entire spectrum of 
the considered key point neighborhood sizes. Obviously, Model #3 also outperforms 
Model #1. 
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Overall, the obtained results indicate the low stability of the binary thresholding
method. With Model #1, the average accuracy of key point visibility classification reached
∼72% (averaged through all the 16 different neighborhood sizes, from 30 × 30 to
450 × 450 pixels). Nevertheless, with an appropriately chosen image patch size (namely,
60 pixels), the accuracy of the BT-based prediction may exceed ~81%.

The test to verify the dependence of the accuracy on the image patch size (with 15 dif-
ferent sizes) was carried out for both the CNN-based models; their results are summarized
in Figure 8 (along with those for Model #1). It can be seen that with the increasing patch
size, the accuracy of Model #2 increases monotonously, with a single exception indicated
by a minor drop at the value of 270 pixels. Nevertheless, the most relevant feature of this
function is that the AI-based Model #2 performs better and better with increasing patch
size, whereas for Model #1, the exact opposite statement applies.

The performance of Model #3 resembles the one of Model #2. First, with the increasing
size of the image patches (from 30 to 120 pixels), the accuracy of Model #3 sharply increases.
Then, in the region of the values of 120 to 270 pixels, the accuracy oscillates around the same
value, with a slightly increasing trend. The last third of the plot (from 270 to 450 pixels)
exhibits higher values than the second one; however, one can distinguish a moderately
increasing trend, indicating a certain kind of saturation.

The overall features of the plot are similar to those of Model #2 (Figure 8); however,
Model #3 can be characterized by somewhat larger figures within the entire spectrum of the
considered key point neighborhood sizes. Obviously, Model #3 also outperforms Model #1.
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The patterns of Figure 8 suggest that with the increasing image patch size, Model
#3 was able to cope better with camera shifts. On the other hand, the images with larger
patches captured several key points or objects, which might have complicated the model’s
decision on the detectability of the key points. A more elaborated analysis related to the
performance of the individual models will take place in the Discussion (Section 4).

Table 2 presents the average classification results of Models #1, #2, and #3 where the
images with the default key point patch size (256 × 256 pixels) served as the input.

Table 2. Statistics of the visibility/detectability classification of the light points (the first four lines of
the table), and the derived metrics for the examined models. Sign ↑ denotes ‘the higher figure the
better model’, whereas the opposite holds true for the sign ↓. Bold indicates the best model.

Statistics, Metrics Model #1 Model #2 Model #3

Visible/Detected (TP) ↑ 278 285 298
Visible/Undetected (FN) ↓ 67 63 50
Obscured/Detected (FP) ↓ 140 27 34

Obscured/Undetected (TN) ↑ 205 315 308

Accuracy (A) ↑ 0.70 0.87 0.88
False Positive Rate (FPR) ↓ 0.33 0.09 0.10

False Negative Rate (FNR) ↓ 0.25 0.17 0.14
True Positive Rate (TPR) ↑ 0.81 0.82 0.86

True Negative Rate (TNR) ↑ 0.59 0.92 0.90

Table 2 presents the summary results of the visibility predictions by Models #1, #2,
and #3. An inter-comparison of the scores of the contingency tables (the first four rows
of Table 2) indicates that the biggest difference appears in the case of the number of false
positives. Model #1 relying on a standard approach had many more FPs (140) than the other
two models based on the AI technique (27 and 34 for Model #2 and #3, respectively). The
observed difference in the number of FPs (i.e., error type I) may result from the potential
presence of other light points with the same intensity in the modified images. A further
striking difference between the models is also related to this finding, and it can be found in
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the numbers of correctly predicted negatives (205, 315, and 308, for Models #1, #2, and #3,
respectively). Such a poor performance of Model #1 might be explained by the fact that the
presence of any light point in the modified images makes it impossible for this BT-based
(i.e., traditional) approach to classify the key point as undetectable.

The average values of the accuracy in Table 2 are in perfect agreement with the overall
features of the plots for the different key point neighborhood sizes presented in Figure 8: the
worst performer is Model #1, whereas Models #2 and #3 are better, with a slight difference
between them.

Relatively huge differences also appear in the derived statistical metrics (the last four
rows of Table 2). Overall, the most striking contrast emerges between Model #1, making use
of a standard approach of binary thresholding, and the remaining pair of models relying
on AI-based visibility prediction, both using a convolutional neural network. In line with
this finding, the equivalent metrics for Models #2 and #3 only showed a little difference,
sometimes pushing Model #2 to the first position, in other cases Model #3.

In Model #2, we used images that mostly contained only the visible points of light since
the background information was suppressed due to the use of morphological reconstruction.
Thus, when predicting the visibility of the light spots, the convolutional neural network
was not influenced by the possible appearance of dominant points in the background. This
can be both an advantage and a disadvantage. The absence of a dominant object with
visibility other than that of the key point can help the prediction. On the contrary, the lack
of information that the network can extract from the background can harm the prediction.
Table 2 indicates that despite the missing information from the background of the key
points, Model #2 achieved results comparable to those of Model #3.

4. Discussion
4.1. Statistical Significance of Results

As Figure 8 indicates, the differences between some models are striking, especially
between those based on the AI approaches in comparison with the traditional ones. We,
therefore, decided to perform statistical tests to verify the significance of the differences
between the individual models. The predicted accuracy values related to different key
point neighborhood sizes served as the input data sets in statistical testing. Two pairs of
models were compared:

• Model #2 vs. Model #1 (i.e., to verify statistical significance resulting from differences
in methods);

• Model #3 vs. Model #2 (i.e., to verify the statistical significance resulting from the
difference in inputs processed by the same methodology).

To determine the significance of the differences between the pairs of models, we
primarily decided to perform a statistical t-test [56]. Considering the independence of the
available samples and the goal of the statistical test itself, the t-test for independent samples
was chosen. Its assumptions, however, were not met. Neither the normal distribution of the
data, tested by the Shapiro–Wilk test [57], nor the equality of variances, tested by Levene’s
test [58], was fulfilled. Given the fulfillment of the assumption of sample independence,
we subsequently decided to use an alternative non-parametric test, the Mann–Whitney
U-test [59], which is resistant to the violations of the assumption of normality of the data
and capable of comparing the medians of two independent groups.

The results of the Mann–Whitney U-test showed:

• Statistically significant difference between Models #2 and #1;
• Statistically insignificant difference between Models #3 and #2.

4.2. Interpretability of Results

Neural networks traditionally belong to uninterpretable methods, i.e., they are gener-
ally considered as ‘black boxes’. Their internal structure can be complex and difficult to
interpret directly. When data are fed into a neural network, they pass through several layers
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of interconnected nodes, each performing some operations on the data. Understanding
exactly how these computations lead to a particular output can be challenging, especially
in the case of multi-layered deep learning systems. Nevertheless, efforts are being made to
increase the interpretability of neural networks to provide insights into which parts of the
input data are most influential in producing a given output.

We attempted to interpret the results by means of (i) the Grad-CAM algorithm within
the CNN approach (Section 2.7), (ii) the analysis of the results from the last layer of the
CNN using the Sigmoid activation function (again, Section 2.7), and (iii) the analysis of
individual cases of binary thresholding.

4.2.1. Grad-CAM

An example of sample images analyzed by the Grad-CAM algorithm is presented in
Figure 9.
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Figure 9. Selected pairs of the original images of key points and their surrounding areas (left; a,c,e)
and the corresponding outputs of the Grad-CAM algorithm (right; b,d,f) for the key points labeled
as ‘Tatranska Lomnica’ (top; a,b), ‘Wind Cone’ (middle; c,d), and ‘Runway Light 1’ (bottom; e,f). The
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Grad-CAM outputs are visualized using the ‘viridis’ colormap, where the purple color indicates that
the given pixel was ignored by the neural network, whereas the pixels highlighted with yellow color
were considered with the highest weight. The red arrows point to the individual key points.

The visible key point labeled as ‘Tatranska Lomnica’ that was correctly predicted by
the CNN approach as detectable (i.e., TP) is shown in Figure 9a. Figure 9b represents
the output of the Grad-CAM algorithm. It puts emphasis on the light sources and their
immediate surroundings that represent the monitored key point. In addition to them,
however, other light sources are also highlighted, but with lower intensity.

The key point named ‘Wind_Cone’ in Figure 9c was captured in foggy conditions. We
consider the visibility of this point controversial since in some other images in the data
set, with meteorological circumstances similar to those in Figure 9c, the key point was
sometimes declared as visible, other times as invisible. According to the output of the
Grad-CAM algorithm shown in Figure 9d, the key point itself was marked as a significant
area. In addition to this, further points were identified by the algorithm as significant areas;
however, these might represent the fog reflection in the wind cone surroundings. In the
end, the AI predicted the detectability in this case as 0, which differs from the true visibility
value of this key point observed by humans (i.e., FN).

Figure 9e shows the key point labeled as ‘Runway Light 1’ with incorrectly predicted
visibility. Here, the AI approach declared the key point as detectable, whereas, in fact,
it was invisible (i.e., FP). According to the Grad-CAM algorithm (Figure 9f), the most
significant area was the part of the mast that did not belong to the key point itself. In fact,
the mast represents another key point that is used in determining daytime visibility at the
Poprad–Tatry Airport.

This analysis indicates that to achieve the optimal results, a trade-off should be made
between the following:

• The advantages of larger image patches, with

# Higher accuracy of the CNN approach (underpinned by Figure 8);
# Lesser susceptibility to camera shifts (due to vibrations in gusty wind).

• The advantages of smaller image patches, with

# Lesser contamination by nearby key points or dominant objects.

4.2.2. Sigmoid Activation Function

The Sigmoid activation function was adopted to examine the results from the last layer
of the trained CNN, especially the cases with incorrectly predicted visibility. The results
from this analysis were highly variable. Depending on the randomly selected subset of the
data, the probability of predicting the detectability of key points correctly varied greatly.
Their distribution in some cases only approached the extremes of 0 or 1, whereas in others
it was around the threshold value of 0.5 (i.e., the probability of a correct prediction was
close to random).

4.2.3. Maximum Pixel Intensities

The performance of the binary thresholding method was examined through the maxi-
mum pixel intensity values of the modified images that could represent light points. The
maxima served to estimate the threshold at which these light points would be classified as
detectable or undetectable using the method of binary thresholding. Figure 10, which shows
three different cases of visibility of the key point ‘Wind Cone’, represents an example of
such an approach. Each subfigure has a value of maximum intensity assigned, derived from
the corresponding modified images. The analysis suggests that the binary thresholding
method is interpretable in a more straightforward way, as one can clearly evaluate specific
threshold values at which the target objects might be classified as detectable/undetectable.
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4.3. Findings in Terms of Related Works

As Ait Ouadil et al. [6] review, there is an enormous pile of AI-based visibility pre-
diction methods; however, the vast majority of them are devoted to daytime conditions.
Our results cannot be compared with them at all, since there is a fundamental difference
between the visibility prediction during the day vs. night. The complexity of daytime
prediction stems from the wide variability of the objects’ features (shape, size, color, shade,
hue, saturation, etc.), although the approaches allow for defining an arbitrary number of
auxiliary points (landmarks) for a more accurate prediction. In contrast to this, there are no
object features or the possibility to define landmarks in night-time prediction. The difficul-
ties of the night-time approaches follow from the limited amount of available information,
i.e., whether the methods are able to detect light sources and distinguish them from the
background (surrounding pixels).

We found a very limited number of studies focusing on night-time visibility prediction
by various AI approaches [20–23]. As mentioned in the Introduction, all four studies used
data from one particular day (March 13, 2020 from 0:00 to 8:00) both for the training and
testing of the proposed models. We do not consider this data set to be representative of
different weather conditions. Aside from this fact, the idea of feeding the data from the
Chinese airports into our model indeed emerged, just to see the performance of all the
models on the same data set. Nonetheless, as emphasized above, it was impossible to obtain
the discussed data set since the only web address cited in [20] was no more accessible in
the period of our model developing and manuscript preparation (2023–2024). Comparing
the performance of deep learning models on different data sets is not a viable alternative: it
can lead to very misleading results.

Finally, there is one more point which prevented us from a direct comparison with the
above referenced four works [20–23]. In all of them, the evaluation of the performance was
based on visibility—either on visibility as a continuous variable or by means of visibility
intervals that are relevant in aviation. In the case of our model, the relatively low number
and the spatial distribution of the available light spots in the target location did not let
us carry out a similar statistical analysis, allowing at least a rough comparison with the
referenced works.

4.4. Potential Drawbacks

Some of the more disputable aspects of our study can be highlighted as follows:
Light spot distribution. The number and the distribution of light spots at the target

location have a significant influence on the possibility to evaluate the uncertainty in visibil-
ity predictions. Generally, the number/distribution of light spots is affected by the local
geographical conditions (hills, valleys, lake/sea/ocean shore, etc.), the population density,
the level of industrialization, etc., and these aspects were out of our control.
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One testbed, one camera model. The data set was collected at one airport (one ge-
ographical location) and with a particular camera model and settings. The inclusion of
images collected at multiple locations, with different camera settings could prevent future
model drifts, and ensure better transferability by diversifying the training data set. In
addition, a more realistic estimate of the real-life performance of the developed models
would be possible.

CNN architecture. We adopted a computationally efficient but rather simple CNN
architecture. Adding more layers to the CNN will increase both the computational cost
and hardware demands, but can lead to more favorable results, especially when combined
with a more diverse data set.

No auxiliary data used. The study was only based on graphical inputs and visibility
data as the ground truth from professional observers. No other ground meteorological
observations were incorporated. Nevertheless, as Chen et al. [20] report, the inclusion of
additional variables can greatly improve the model’s performance.

4.5. Influential Factors and Further Considerations

The quality of the results may have been affected by a number of objective or subjective
factors. These are, among others, as follows:

Camera shifts. The correctness of the AI-based prediction of night-time visibility is
conditioned on the proper functioning of the camera system. The critical part of the observ-
ing system is the rotator, which may provide camera images of lower quality either due to
temporary effects (e.g., shaky images due to the wind gusts) or due to long-term effects,
which may be caused by gradual wear of some mechanical parts of the rotator. For this
reason, a novel ‘static’ solution with no moving parts is being tested recently at a selected
testbed. The new construction of the system consists of five high-resolution cameras at fixed
positions, which are aimed at covering all four cardinal directions. Five cameras (instead of
four that one would naturally assume) are expected to supply satisfactory coverage of the
entire horizon with a sufficient reserve for overlapping the neighboring pictures, including
the possibility of getting rid of some possible distortions at the edges of the camera pictures.
Note that a potential solution with a single (and static) fisheye-lens camera covering the
entire hemisphere does not represent a viable solution to our problem. Such an optical
tool has widespread applicability in camera-based observing systems; however, they suit
better to observing cloud coverage (with a dominant focus mostly in vertical directions)
than horizontal visibility (with the areas of the key interest occurring at the edges of a
fisheye-lens cameras).

External pollution of the camera. Insects and/or spiders represent occasional disturb-
ing elements in the camera view. Their occurrence can be reduced by a preventive spraying
of insecticides around the camera objective. Raindrops and snowflakes are further and
more frequently occurring factors affecting the quality of the camera images. Water droplets
from the camera lens can be removed by heating the target area; nevertheless, the effect
of such an operation manifests itself gradually, resulting in a few images with decreased
quality. A further possible solution is the usage of blowing devices that can blow water
droplets/pollution from camera lenses just before the moment of image capture; however,
the development and deployment of such tools can be expensive. Based on our experience
we can underpin that with the usage (and combinations) of adapted HW, camera shields,
and water-repellent layer on camera lenses, the effect of extreme weather on the quality
of camera images can be significantly reduced. The ultimate effect of these interventions,
however, depends on the character of local weather and climatic conditions.

Technical parameters of the camera. It is beneficial to use a camera with a strong
microchip that allows at least full HD or higher resolution. Larger microchips are able to
detect a higher portion of light, and therefore, the resulting images are less affected by
noise, particularly in night-time conditions. Furthermore, it would also be beneficial a
higher dynamic range (10 bits or more) of the camera that could better capture the details
of the bright and dark parts of the image.
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Subjective character of the ground truth. The evaluation of visibility carried out
by professional meteorological observers is generally considered as the ground truth.
Nevertheless, since the subjective character of the procedure cannot be fully eliminated,
the ground truth remains, at least to some degree, questionable. Not seldom there are not
fully clear weather conditions where the visibility is determined by different observers in
a different way. Moreover, it may also happen that a borderline case can be judged by a
given meteorological observer in a different way, when evaluated repeatedly, for instance,
using some form of backup. Adoption of machine learning techniques, on the other hand,
is a significant step towards the objectivization of the decision procedure since a trained
neural network will always decide the same way when evaluating identical camera images
repeatedly several times.

Biomedical aspects of night vision. Some humans have better night vision than others
due to variations in the structure of their eyes and the functioning of their retinas. The
ability to see in low-light conditions, such as at night, is primarily determined by the
presence of specialized cells in the retina called rods. Rod cells are highly sensitive to
light and are responsible for our ability to see in dim lighting. Individual differences in
night vision can be influenced by factors such as the density of rod cells in the retina, the
efficiency of the visual processing pathways in the brain, and genetic variations that affect
the functioning of these components. Additionally, environmental factors like exposure
to bright lights or certain medications can also impact night vision [60]. Although many
studies have confirmed wide variation in night vision in young healthy volunteers, some
factors were explained but the majority of the variation in night vision remains unexplained
by obvious non-genetic factors and suggesting a strong genetic component [61]. This
medical knowledge gives importance to our solution of the automatic determination of
night visibility with cameras because it can bring significant accuracy and objectification.

5. Conclusions

In the presented work, we focused on the issue of the detectability of light points at
night. We worked with a data set consisting of (1) camera photos from a selected location
(Poprad–Tatry Airport, Slovakia) and (2) the information on whether the key points (light
spots) were detectable or not by professional observers.

Multiple sets of images were created for each key point by a cut-out from the original
camera images with a number of different key point neighborhood sizes (termed as ‘original’
data set). The ‘modified’ data set of images was created from the ‘original’ one by applying
morphological erosion to emphasize the dominant features of the images and suppress
detected noise.

The detectability of light points in the images was classified in two ways. The first one
was a traditional approach using simple binary thresholding (BT), while the second one
was based on one of the progressive AI approaches (convolutional neural network, CNN,
with a simple architecture). The individual cases of predicted detectability were analyzed
in the light of true visibility values that were determined by human observers.

We primarily compared the use of the standard BT approach with CNN. The two mod-
els based on trained CNN achieved remarkably better results in terms of more favorable
values of metrics, greater stability, and less susceptibility to errors than the classification
by the BT method. The difference in the input image sets (modified vs. original) did not
affect the results considerably—some scores/statistics were more favorable for the mod-
ified images, others for the original ones. This emphasizes the benefits resulting from
image modification, which are mainly the highlighting of dominant features and a lower
significance of key points’ background.

We also examined the accuracy of the predictions as a function of the image size
around the key points. In these experiments, the CNN classification method showed
greater stability since the accuracy of these models grew with increasing pixel size around
the key points, whereas an opposite behavior was discernible for the BT method. This
finding was also confirmed statistically: the Mann–Whitney U test indicated a significant
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difference between the CNN and the standard BT classification methods. On the other
hand, the difference between the two models based on CNN classification but with different
inputs (original vs. modified images) was statistically insignificant.

The rate of misclassification using CNN was lower, and the errors were caused mostly
due to the following two reasons: (i) questionable annotations of true visibility of the key
points, or (ii) the presence of another dominant point with different visibility. The error rate
of classification by binary thresholding was manifested to a greater extent, especially in
cases of the presence of other light points, or parts of the gray image with higher intensity.

In the paper, we managed to point out the potential of an automated and AI-based
determination of key points’ detectability in the night. The method has shown stability
and decent accuracy, which is important in meteorology, and has great perspectives in the
everyday routine of professional meteorology, especially in an automated estimation of
prevailing visibility. In the current study, we did not make attempts to convert the light points’
detectability into actual values of visibility (expressed in meters). It would be interesting to
evaluate the uncertainties in the determination of visibility, stratified according to distance
categories (see Table 1); however, the low number and the spatial distribution of the available
light spots in the target location did not allow for a satisfactory statistical analysis. Such a
task remains one of the key plans for the future, either by having collected a larger database
covering a much longer period or by setting up a further experiment at a different testbed.

While the proposed solution may offer advantages, it is also important to acknowledge
its limitations. Here, we list some issues with the potential to enhance the performance of
the proposed approach for future work.

Quality control of the annotated data set. One of the foreseeable problems is the
difficulty of obtaining an annotated data set with a well-defined visibility of key points.
In the current work, several cases were discovered where the annotated true visibility did
not correspond to reality, or, at least, it was questionable. Although being aware of this
deficiency, we did not ignore these annotations, which could have caused the results to be
distorted. We, therefore, suggest a more thorough screening of the annotated data set to
improve the automated predictions’ accuracy.

Quality control of the camera images. Another limitation is that we did not directly
control the quality of the camera images. As part of their pre-preparation, the images were
filtered using additional information about their quality, which we fully relied on. Further
undiscovered and unfiltered, low-quality photos (for instance, damaged ones or with low
resolution) in the data set could have increased the bias in the results. Therefore, within the
field of extension, we call for the investigation of ways to improve the quality of camera
images or the implementation of measures to control their quality.

Camera shifts. Our solution does not consider camera movements that could occur
over several years due to various unfavorable weather conditions. This could cause shifts
between the co-ordinates of the key points and their location in the photos. To overcome
this problem, we propose either a software-based or a hardware-based solution. The SW-
based solution would involve key point motion analysis techniques in sequential images
and their adaptation, for example, using the methods of image registration. The HW-based
solution could be a replacement of the critical (moving) part of the system (i.e., a camera
mounted on a rotator) by construction with several fixed and high-quality cameras, as
indicated in the discussion above.

Deep learning. The aim of the current study was to devise a light-weight neural
network suitable for deployment with a low computational cost and moderate hardware
requirements. Increasing the complexity of the neural network is expected to lead to better
overall performance for accuracy, FNR, and FPR. Although we expect our model to be
transferable to other airports in similar meteorological environments, this issue remains to
be investigated in further research. In this study, we have decided to address the imbalance
of the data set by keeping all the class 0 data and randomly adding class 1, e.g., ensuring
that both classes are equally distributed. Other options could be data augmentation [62] or
a higher misclassification cost for wrongly classified minority events [63–66].
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Appendix A

The following summary (in the form of bullet points) provides a description of the
CNN architecture adopted in the study:

0 Model initialization

• The model is initialized using tf.keras.Sequential(), which indicates a linear stack
of layers.

1 First layer: Convolutional Layer

• Type: Convolutional Layer (Conv2D)
• Number of Filters: 8
• Kernel Size: 3 × 3
• Activation Function: ReLU (Rectified Linear Unit)
• Input Shape: 256 × 256 × 1 (for grayscale images) or 256 × 256 × 3 (for RGB images)
• This layer extracts 8 feature maps from the input image using 3 × 3 filters,

applying the ReLU activation function to introduce non-linearity.

2 Second layer: Max Pooling Layer

• Type: Max Pooling Layer (MaxPooling2D)
• Pool Size: 2 × 2
• This layer reduces the spatial dimensions (height and width) of the feature maps

by a factor of 2, helping to reduce the number of parameters and computation in
the network, as well as controlling overfitting.

3 Third layer: Flatten Layer

• Type: Flatten Layer (Flatten)
• This layer flattens the 2D feature maps into a 1D vector, which can be fed into

fully connected (dense) layers.

4 Fourth layer: Dropout Layer

• Type: Dropout Layer (Dropout)
• Dropout Rate: 0.1
• This layer randomly sets 10% of its input units to 0 at each update during training

time, which helps prevent overfitting by ensuring that the model does not rely
too heavily on any individual neurons.
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5 Fifth layer: Dense Layer

• Type: Dense Layer (Dense)
• Number of Units: 1
• Activation Function: Sigmoid
• This layer is a fully connected layer with a single neuron, using the sigmoid

activation function to output a value between 0 and 1, suitable for binary classifi-
cation tasks.
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