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Abstract: The major challenge in the current context of the rising world energy demand is to
limit the global temperature increase for mitigating climate change. This goal requires a large
reduction of CO2 emissions, mainly produced by power generation and industrial processes using
fossil fuels. In this study, a novel methodology for K2CO3-doped Li4SiO4 sorbents production for
CO2 capture at high temperatures was adopted based on the Design of Experiments (DoE). This
innovative approach systematically tested different synthesis (temperature and K2CO3 content) and
adsorption conditions (sorption temperature and CO2 concentration), allowing for the assessment
of individual and interactive effects of process parameters. The Response Surface Methodology
(RSM) was employed to obtain non-linear predictive models of CO2 uptake and Li4SiO4 conversion.
The results of RSM analysis evidenced a maximum adsorption capacity of 196.4 mg/g for a sorbent
produced at 600 ◦C and with 36.9 wt% of K2CO3, tested at 500 ◦C and 4 vol% of CO2. Whereas
at 50 vol% of CO2, the best uptake of 295.6 mg/g was obtained with a sorbent synthesized at
600 ◦C, containing less K2CO3 (17.1 wt%) and tested at a higher temperature (662 ◦C). These findings
demonstrate that K2CO3-doped Li4SiO4 sorbents can be tailored to maximize CO2 capture under
various operating conditions, making them suitable for use in industrial processes.

Keywords: solid sorbent; lithium orthosilicate; CO2 capture; high temperature; adsorption; Design
of Experiments

1. Introduction

Carbon dioxide (CO2) emissions due to anthropogenic activities play a significant
role in global warming and climate change. Nowadays, the CO2 concentration in the
atmosphere is rising at a rate of 2 ppm per year [1,2]. This progressive increase is responsible
for climate change, which has a critical effect on global environmental processes such as
the long-term increase of the global temperature [3], melting of polar ice [2], severe weather
events, and much more [4,5]. To mitigate the effect of human activities, renewable energy
sources are becoming more widespread; however, fossil fuels and natural gas remain the
primary sources of energy [6–8]. Therefore, developing novel and economically viable
technologies for reducing CO2 emissions is essential [9].

Carbon Capture and Storage (CCS), particularly post-combustion CO2 capture, is one
of the most promising techniques to reduce emissions in the hard-to-abate sectors [10,11].
CCS offers a feasible pathway for separating CO2 from exhaust gases without requiring
substantial changes to the existing chemical processes. High-temperature selective adsorp-
tion by employing solid sorbents is gaining attention as an effective approach for capturing
CO2 from gas streams in industrial processes [12]. In recent years, numerous studies have
focused on the use of solid sorbents for CO2 adsorption, such as CaO-based [13–15], Li-
based [16–21], or Na-based sorbents [22,23]. Among these, lithium orthosilicate (Li4SiO4)
emerges as a key material for such applications due to its high theoretical adsorption
capacity (367 mg CO2/g sorbent) than other alkaline ceramics, such as lithium zirconate
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(Li2ZrO3) and sodium zirconate (Na2ZrO3), which can adsorb 287 and 237 mg/g, respec-
tively. Additionally, the cost of raw materials for Li2ZrO3 and Na2ZrO3 synthesis is higher
due to the expensive nature of ZrO2, in contrast to the more economical SiO2 used in
Li4SiO4. Moreover, Li2ZrO3 demonstrates a slower sorption rate under comparable condi-
tions, while Na2ZrO3 exhibits poorer regeneration performance due to sintering effects, in
comparison to Li4SiO4 [23]. Furthermore, Li4SiO4 presents a wide adsorption temperature
range (450–700 ◦C) and excellent regenerability at lower temperatures than those required
by other absorbents (e.g., CaO) [17,24,25]. Calcium oxide offers advantages such as low
raw material costs, as well as high CO2 adsorption capacity and sorption rate. However,
its industrial application faces significant challenges, including the requirement for a high
regeneration temperature (>800 ◦C) and a substantial reduction in adsorption capacity over
long-term operation due to sintering phenomena [23].

The CO2 adsorption-desorption process by Li4SiO4 can be described by the reversible reaction:

Li4SiO4 + CO2 ←→ Li2SiO3 + Li2CO3 (1)

that leads to the formation of two solid products, lithium metasilicate (Li2SiO3) and lithium
carbonate (Li2CO3). The adsorption process can be divided into two stages: a first initial
fast chemical regime, where CO2 reacts directly with Li4SiO4, forming a products layer on
the surface of the sorbent particles, followed by a diffusive stage, where CO2 must diffuse
through the products layer to continue the reaction [26]. At low CO2 partial pressures,
typical of industrial flue gas emissions, Li4SiO4 adsorption kinetics is limited due to the
slow diffusion of CO2 throughout the solid layer. Therefore, to overcome this issue, several
strategies for enhancing its reactivity have been proposed, such as the addition of alkali
carbonates (potassium carbonate, K2CO3, or sodium carbonate, Na2CO3). These additives
form eutectic carbonate mixtures with the Li2CO3 product resulting from the carbonation
reaction that melts at the sorption temperatures [27–30]. The molten eutectic mixtures
facilitate CO2 diffusion through the product layer, significantly enhancing the adsorption
rate. Thus, alkali-doped Li4SiO4 results promising for CO2 capture, especially at the low
CO2 concentrations typical of exhaust hot gases from gas turbines.

As evidenced by recent reviews [17,24,25], CO2 adsorption by Li4SiO4 is greatly
affected by the operating conditions of the process (adsorption temperature and CO2 con-
centration). Moreover, the adsorption performance is also influenced by the microstructure
of the sorbent (such as particle size, surface area, and porosity), which mainly depends
on the sorbent synthesis condition and the doping method used. Nevertheless, up to the
present time, doped-Li4SiO4 adsorption capacities were investigated through a One factor
at a Time (OFAT) methodology, thus making only one process parameter varying at a time
focusing on its individual effect on CO2 removal [19,27–29,31–34]. Since these variables
could have interactions with each other, the optimization of the process is not easy.

The Design of Experiments (DoE) is based on a statistical approach carried out by
randomized experiment planning that allows to evaluate both individual and interactive
effects of process parameters, which is very different from the typical deterministic ap-
proach of OFAT methods. The latter generally requires a large number of tests to evaluate
the effect that a given input can have on the output of a process, leading to conclusions
with a limited validity range. Instead, a factorial design (a typical example of DoE) allows
to develop a more robust model of the process by minimizing the number of tests required
and, therefore, optimizing the resources available [35–38]. A good experimental design
must avoid systematic error, allow estimation of the experimental error (pure, random
error), and have broad validity [39].

In this work, Li4SiO4-based sorbents were fabricated using a solid-state methodol-
ogy that started from lithium hydroxide, LiOH, and silica, SiO2. Solid-state doping with
K2CO3 was employed for obtaining a sorbent with high CO2 capture capacity. Systematic
fabrication tests were conducted applying the DoE methodology to identify the sorbents
synthesis conditions (such as the synthesis temperature and K2CO3 content) and the ad-
sorption process operating conditions (like CO2 concentration and adsorption temperature)
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that mostly affect the adsorption performance of the K2CO3-doped Li4SiO4 sorbents. A
Response Surface Method (RSM) design was then executed to evaluate the interactions
among the synthesis and process variables and to identify the factors that significantly
influence the doped sorbent performance, i.e., the Li4SiO4 conversion and the adsorption
capacity. The RSM analysis provided parametric models that were used to find optimal con-
ditions for maximizing the adsorption performance of Li4SiO4-based sorbents at different
concentrations of CO2.

2. Materials and Methods
2.1. Sorbents Production and Characterization

The production of Li4SiO4-based sorbents was carried out using a solid-state method
already tuned in a previous work of the research group [27], starting from lithium hydroxide
(LiOH, powder, reagent-grade, Sigma-Aldrich, St. Louis, MO, USA) and crystalline silicon
dioxide (SiO2, 0.5–5 µm powder, Sigma-Aldrich) as reagents. For each experiment, 3 g of
total reagent powders were mixed with 5 mL of distilled water in a ceramic mortar using a
Li:Si molar ratio of 2:1. The obtained slurry was ground with a pestle for about 10 min, then
dried at 90 ◦C overnight, and calcined in air in a muffle furnace. The calcining temperature
was selected as a variable in the DoE study and ranged from 600 to 900 ◦C, while calcining
time was set to 10 h. After that, the calcined powders were mixed with potassium carbonate
(K2CO3, powder, reagent-grade, Sigma-Aldrich) as activity promoter, finally obtaining the
doped sorbents. The amount of K2CO3 was varied between 10 and 40 wt% (by weight of
Li4SiO4), as it was also selected as a design variable.

The produced sorbents were characterized by X-ray diffraction (XRD) to evaluate
the phase composition and assess Li4SiO4 formation for each fabrication condition. The
diffractometer used was a Bruker D2 Phaser (Bruker Corporation, Billerica, MA, USA)
using a Cu-Kα radiation and a Ni filter equipped with a Lynxeye detector. The analysis
was conducted over a 2θ range between 15◦ and 65◦ at a pitch of 0.02◦. The sorbents’
morphology was also investigated employing scanning electron microscopy (SEM) using a
FEI Quanta FEG 450 (FEI Inc., Hillsboro, OR, USA). Prior to the analysis, each sample was
coated with a thin gold layer to avoid charge build up.

2.2. CO2 Capture Experiments Setup and Procedure

The carbon dioxide adsorption performance of Li4SiO4-based sorbents was determined
by isothermal tests conducted in a thermogravimetric analyzer (TGA, Q500 TA Instruments,
New Castle, DE, USA) varying the adsorption temperature and CO2 concentration in the
treated gas according to the DoE matrix. For each experiment, approximately 20 mg of
powder was placed in a platinum sample pan and first pre-conditioned in nitrogen flow
(100 mL/min) raising the temperature with a heating rate of 20 ◦C/min to the selected
adsorption temperature (varied between 500 and 700 ◦C). Then, the gas stream was changed
into a CO2/N2 mixture with different concentrations (4–50 vol% of CO2) and a total flow
rate of 100 mL/min at atmospheric pressure. The increase in sample weight resulting
from CO2 adsorption was monitored over time, and the CO2 uptake was calculated as in
Equation (2):

CO2 uptake (mg/g) =
(mt −m0)

m0
·1000 (2)

where mt is the sample mass at generic time t (mg), and m0 is the initial sample mass (mg).
The sorbent’s adsorption capacity was then evaluated as the CO2 uptake after 120 min of
adsorption. Moreover, the Li4SiO4 conversion was determined by TGA tests according to
Equation (3):

XLi4SiO4(%) =
CO2 uptake
fLi4SiO4·CST

·100 (3)

where fLi4SiO4 is the mass fraction of Li4SiO4 in the sorbent and CST is the theoretical CO2
uptake of Li4SiO4 (367 mg/g Li4SiO4). After the adsorption process, lasting 120 min,
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the sorbent was regenerated by converting the feed gas to 100% N2 and maintaining the
temperature at 700 ◦C for 30 min.

2.3. Experimental Design and Parametric Models

The Design of Experiments is an analytical method that allows to evaluate the effect
due to input parameters of a process (variables, or factors) on the outputs (responses)
through the development of a probabilistic model able to predict the desired responses. For
this study, DoE methodology has been applied to evaluate the sorbent performances and to
select optimal production parameters to maximize CO2 removal. The randomized runs
for the experimentation and the model construction were attained using Design Expert
(Version 11) software. Four factors were selected as significant for the adsorption process
among all the variables involved in the synthesis of the sorbent and in the adsorption phase
(Table 1): synthesis temperature (600–900 ◦C), K2CO3 content (10–40 wt%), adsorption
temperature (500–700 ◦C), and CO2 concentration (4–50 vol%). The synthesis time was not
considered for the DoE analysis since it was found to be negligible, according to preliminary
evaluations. A RSM approach was applied in order to find non-linear interactions between
the factors, following a 24 full-factorial face-centered Central Composite Design (CCD). The
experimental matrix was determined using Equation (4):

N = 2n + 2n + nc (4)

where N is the total experimental runs required for a full-factorial CCD, n is the variables
number, 2n is the number of axial runs, and nc is the number of replicates on the central
point (i.e., conducted at the center of the design). The design matrix (Table 2) was thus
constituted of 30 total runs, including 16 runs at factorial points, 8 runs at axial points, and
6 replicates at the central point.

Table 1. Variable levels used in the RSM experimental design.

Variables (Factors) Unit
Levels

−1 0 +1

Synthesis temperature ◦C 600 750 900
K2CO3 content wt% 10 25 40

Adsorption temperature ◦C 500 600 700
CO2 concentration vol% 4 27 50

Table 2. Experimental design matrix and responses results for RSM design of experiments.

Run

Input Variables Responses

A
Synthesis

Temperature
(◦C)

B
K2CO3
Content
(wt%)

C
Adsorption
Temperature

(◦C)

D
CO2

Concentration *
(vol%)

Y1
XLi4SiO4

(%)

Y2
Adsorption

Capacity
(mg/g)

1 750 25 600 27 76.32 224.15
2 750 25 700 27 75.78 222.58
3 750 25 600 50 66.54 195.44
4 600 10 500 50 66.76 222.80
5 750 25 600 27 69.37 203.73
6 900 10 500 50 35.61 118.86
7 750 25 600 27 66.50 195.30
8 600 40 700 50 96.88 254.07
9 750 25 600 27 64.30 188.86
10 900 40 500 4 41.36 108.45
11 750 25 600 4 49.16 144.38
12 600 40 500 50 78.50 205.85
13 900 40 500 50 39.76 104.27
14 900 10 500 4 31.37 104.71
15 750 40 600 27 62.56 164.05
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Table 2. Cont.

Run

Input Variables Responses

A
Synthesis

Temperature
(◦C)

B
K2CO3
Content
(wt%)

C
Adsorption
Temperature

(◦C)

D
CO2

Concentration *
(vol%)

Y1
XLi4SiO4

(%)

Y2
Adsorption

Capacity
(mg/g)

16 750 25 500 27 43.77 128.56
17 900 10 700 50 93.54 312.19
18 600 25 600 27 92.26 270.98
19 600 40 500 4 72.95 191.36
20 600 10 700 4 3.390 11.310
21 750 25 600 27 65.93 193.62
22 900 40 700 50 95.89 251.45
23 750 25 600 27 64.67 189.95
24 900 40 700 4 26.19 68.670
25 750 10 600 27 58.39 194.87
26 900 10 700 4 6.600 22.030
27 600 10 700 50 92.20 307.72
28 600 10 500 4 58.90 196.58
29 600 40 700 4 23.40 61.330
30 900 25 600 27 65.60 192.67

* The values of CO2 concentration levels used for the experimental design were adjusted to the real CO2 concentra-
tion in the inlet gas flow in the thermogravimetric analyzer measured with flowmeters: (−1) level corresponded
to 4.1 vol%, (0) level corresponded to 25.8 vol% and (+1) level corresponded to 47.5 vol%. The real values were
used in the design to minimize the pure error and obtain a more predictive model of the responses.

The responses chosen to evaluate the sorbent performances were Li4SiO4 conver-
sion (Y1) and sorbent’s adsorption capacity (Y2), expressed as in Equations (3) and (2),
respectively. Both values of responses were taken at the end of the adsorption isotherm
(120 min), when the reaction was supposed to have reached equilibrium. The responses
results from the RSM experimental design are reported in Table 2. For each response, the
analysis of variance (ANOVA) was performed to find parametric models that best fit the
experimental data. The second-order general equation obtained for the responses is shown
in Equation (5):

Y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i +

k

∑
1<i<j

βijxixj (5)

where β0 is the constant coefficient that corresponds to the overall mean of the experimental
data, βi are the linear coefficients of xi, which is the i-th variable of the experimental design,
βii are the quadratic coefficients, and βij are the two-factor interaction coefficients.

3. Results and Discussion
3.1. Sorbents Characterization

The pure Li4SiO4 powders obtained in each run of the experimental design (both
for the preliminary screening and the RSM design) were analyzed by XRD to verify the
formation of the lithium orthosilicate phase. Figure 1 reported, as an example, the diffrac-
tograms of the sorbents obtained by the RSM experimentations calcined for 10 h at different
temperatures (600–900 ◦C). As shown, the sorbents exhibited a pattern with major peaks
of the Li4SiO4 crystalline phase, confirming that the selected temperatures were sufficient
for assessing the sorbent synthesis. The sorbent calcined at 600 ◦C presented small peaks
attributable to the reagent lithium carbonate. The presence of Li2CO3 is probably attributed
to an incomplete conversion of SiO2 and LiOH due to the low synthesis temperature; LiOH
is then carbonated owed to contact with air during calcining [27,40].

The Li4SiO4 powders were also characterized by SEM to assess the sorbents morphol-
ogy and particle dimensions. Figure 2 displays SEM images of the pure sorbents calcined
for 10 h at different temperatures (relative to samples 10, 11, and 19 of the experimental
runs of Table 2). The sorbent calcined at 600 ◦C (Figure 2a,d) showed dense and non-porous
particles with sizes below 5 µm agglomerated in clusters of very large dimensions (greater
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than 100 µm). By increasing the calcining temperature to 750 and 900 ◦C, the Li4SiO4
sorbents presented a significant sintering of the particles, showing essentially a non-porous
particle morphology and greater diameters of about 30–50 µm.
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(a,d) 600 ◦C, (b,e) 750 ◦C, and (c,f) 900 ◦C. Images obtained at different magnifications: first row
1000× and second row 4000×.

Moreover, Figure 3 reports images of the morphology of the doped sorbents calcined at
different temperatures obtained by SEM analysis. For example, the sorbent with 10 vol% of
potassium carbonate was analyzed. All the doped sorbents showed the same morphology
and particle size evidenced for the pure Li4SiO4, demonstrating that the solid-state doping
method did not affect the overall structure of the sorbent. K2CO3 was constituted by porous
particles that were well distributed among the dense Li4SiO4 particles, as can be seen in
Figure 3b,c.
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3.2. Preliminary Variables Selection for Parametric Modeling

To fully comprehend the adsorption process of doped Li4SiO4 sorbents and how it
is influenced by the sorbent’s synthesis and process conditions, a DoE methodology was
applied. Initially, five variables were selected as potentially significant for the adsorption
process. The variables concerned both the sorbent preparation conditions and the adsorp-
tion operating conditions: calcining temperature and time, K2CO3 content, adsorption
temperature, and CO2 concentration. For the synthesis temperature, the low level was set
to 600 ◦C since it represents the minimum temperature necessary for the Li4SiO4 synthesis
from the precursors [41], while the high level (900 ◦C) is the typical synthesis temperature
for a solid-state method. A higher value could lead to Li4SiO4 decomposition to Li2SiO3
by lithium sublimation [42]. The calcining time was varied from 4 h, which is a typical
synthesis time used in literature for a complete conversion of reagents to Li4SiO4 [43], to
10 h. A longer synthesis time was not considered since, at 900 ◦C, could promote lithium
sublimation [42]. The K2CO3 content was chosen from a previous study on Li4SiO4-based
sorbents [44]. A promoter amount exceeding 40 wt% was not considered appropriate since
it would reduce the amount of active sorbent.

The CO2 concentration in vol% refers to the volume fraction of CO2 in the TGA feed
gas, consisting of a CO2/N2 mixture flow. The low level was set to 4 vol% (corresponding
to a CO2 partial pressure of 0.04 atm), which is typical of exhaust hot gases from gas tur-
bines [45–48], while the high level (50 vol%) depended on the thermogravimetric analyzer
operating limit. Then, the adsorption temperature range (500–700 ◦C) was chosen consider-
ing the curve of the equilibrium partial pressure of CO2 at different temperatures, which has
been evaluated on the basis of the Gibbs free energy changes of the adsorption/desorption
reaction (Equation (1)) [49]. The heterogeneous reaction that occurs between Li4SiO4 and
CO2 is an equilibrium reaction; therefore, for each CO2 partial pressure, there is a ther-
modynamic equilibrium temperature below which the sorption reaction could proceed
(∆G < 0); otherwise, the desorption process takes place (∆G > 0). At the equilibrium of
Equation (1), the following equation can be valid since ∆G = 0 is satisfied:

∆G0
r (T) = ∆H0

r (T)− T·∆S0
r (T) = −RTln

(
Keq

)
(6)

where ∆G0
r , ∆H0

r , and ∆S0
r represent the variation of standard Gibbs energy, standard

enthalpy, and standard entropy of the carbonation reaction, respectively; R is the ideal
gas constant; and T is the temperature. Keq is the equilibrium constant for the reaction
(Equation (1)) and is defined as in Equation (7):

Keq =
1

pCO2

(7)

where pCO2 is the CO2 partial pressure in the treated gas.
The pCO2–temperature equilibrium curve can be evaluated from Equations (6) and (7),

as found in a previous work of the authors [49], and it is reported in Figure 4. As shown,
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the two-dimensional design space (for the two factors of adsorption temperature and CO2
concentration) covers the entire region where the adsorption reaction is activated both at
the low and high CO2 concentration levels (4 and 50 vol%).
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Figure 4. Equilibrium CO2 concentration at different temperatures for CO2 adsorption reaction
with Li4SiO4. (The orange rectangle represents the design space for the two factors of adsorption
temperature and CO2 concentration).

Preliminary calcining and adsorption tests were conducted with experimental tests
using TGA to assess the effect of calcining time on the synthesis and the adsorption
performance of the sorbent. Calcining in TGA was performed by placing the mixed reagent
powders in the platinum crucible and heating them to the selected synthesis temperature
(600 or 900 ◦C) under air flow. The temperature was maintained for several hours to observe
the weight loss during the synthesis reaction. The results are reported in Figure 5. As
shown, the main difference among the two thermograms (Figure 5a,b) was related to the
synthesis temperature. A weight loss was observed in the range between 400 and 600 ◦C
and this was attributed to the LiOH decomposition to lithium oxide, Li2O [40]. Therefore,
when the Li4SiO4 synthesis took place at 600 ◦C, the time needed to reach the complete
LiOH decomposition and, supposedly, the complete conversion of reagents was higher than
for the synthesis at 900 ◦C, where the sample weight became stable even before reaching
the isotherm section. Whereas, for the same synthesis temperature, the synthesis time (4 or
10 h of isotherm) did not affect markedly the conversion of reagents. A variation in weight
loss less than 0.5% was observed from 4 to 10 h.

Moreover, preliminary adsorption tests were carried out on 10 wt% K2CO3 doped-
Li4SiO4 sorbents prepared with different synthesis times and temperatures. The results of
the adsorption experiments in terms of both adsorption capacity and Li4SiO4 conversion
are reported in Figure 6, considering an adsorption temperature of 500 ◦C and a CO2
concentration of 4 vol%.

As illustrated, the adsorption performance was almost unchanged by varying the
calcining time from 4 to 10 h. The main difference in the CO2 uptake could be ascribed
to the calcining temperature effect. An increase in the calcining temperature from 600 to
900 ◦C led to a decrease in the adsorption capacity and sorbent conversion, which changed
from about 240 to 200 mg/g and from 73 to 62%, respectively. These preliminary results are
in accordance with the adsorption capacities of K2CO3-doped Li4SiO4 sorbents reported in
recent literature. Zhang et al. [30] and Wang et al. [29] prepared sorbents by the solid-state
method doped with K2CO3 (17.5 and 10 wt%, respectively), obtaining a CO2 uptake of
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276.7 and 239.6 mg/g, respectively. Nevertheless, it is important to highlight that these
adsorption capacities have been obtained at 600 ◦C and 20 vol% of CO2 in the treated gas.
According to Figure 6 results, the produced sorbents present a better adsorption capacity
since they can achieve the same uptake even at much lower CO2 content.
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Figure 6. CO2 adsorption profiles at 500 ◦C and 4 vol% CO2 stream of 10 wt% K2CO3 doped-Li4SiO4

synthesized at different temperatures (600, 900 ◦C) and times (4, 10 h).

Further considerations on the calcining temperature effect will be dealt with in the
modeling section. These experimental considerations evidence that the synthesis time was
poorly significant in affecting the adsorption performance of the sorbent. Therefore, it was
not considered in the following RSM analysis and was set to a value that allowed us to
obtain a complete conversion of the reactants into Li4SiO4 for all the synthesis temperatures
of the design space. Thus, a synthesis time of 10 h was selected, and the five variables were
consequently reduced to four.

3.3. Modeling of the CO2 Adsorption Process and Statistical Analysis

A Response Surface Method DoE was conducted to investigate the combined effect of
the variables on the adsorption process and to develop non-linear models of the selected
responses Li4SiO4 conversion and sorbent’s adsorption capacity. The obtained experimental
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design matrix along with the responses results are reported in Table 2. Using the software
Design Expert 11, regression calculations were executed to find the polynomial model that
best fits the experimental data for each response. The analysis of variance (ANOVA) was
conducted to confirm the statistical significance of all terms in the regression models, by
means of statistical parameters. Each term of the resulting models corresponds to a main or
interaction effect of a variable (or combination of variables) on the response. ANOVA splits
data variability into two sources of variation, the model and the experimental error, and it
uses F-values and p-values calculated for each term to verify their significance. Significant
model terms were considered the ones having a p-value < 0.05. The goodness of models
also depends on the determination coefficient R2 and on its modification, adjusted R2,
which only increases when terms really affecting the model are selected. Predicted R2 was
also checked as a measure of the predictivity of the model. ANOVA results and modeling
statistics related to the RSM design for both responses are shown in Tables 3 and 4.

Table 3. ANOVA results and modeling statistics of Li4SiO4 conversion (Y1) for RSM DoE.

Sum of
Squares df Mean Square F-Value p-Value

Model 18,056.83 14 1289.77 80.42 <0.0001 significant
A-Synthesis temperature 1238.99 1 1238.99 77.25 <0.0001

B-K2CO3 content 457.49 1 457.49 28.52 <0.0001
C-Adsorption
temperature 512.43 1 512.43 31.95 <0.0001

D-CO2 concentration 151.10 1 151.10 9.42 0.0078
AC 1145.37 1 1145.37 71.41 <0.0001
AD 16.81 1 16.81 1.05 0.3221
BD 103.61 1 103.61 6.46 0.0226
CD 5735.35 1 5735.35 357.60 <0.0001
A2 325.90 1 325.90 20.32 0.0004
B2 135.92 1 135.92 8.48 0.0107
C2 163.32 1 163.32 10.18 0.0061
D2 252.20 1 252.20 15.73 0.0012

A2C 410.97 1 410.97 25.62 0.0001
A2D 266.52 1 266.52 16.62 0.0010

Residual 240.57 15 16.04
Lack of fit 138.33 10 13.83 0.6765 0.7204 not significant
Pure error 102.24 5 20.45
Cor Total 18,297.40 29

Model statistics
R2 0.9869

Adjusted R2 0.9746
Predicted R2 0.9602

Table 4. ANOVA results and modeling statistics of adsorption capacity (Y2) for RSM DoE.

Sum of
Squares df Mean Square F-Value p-Value

Model 1.599·105 13 12,300.57 41.24 <0.0001 significant
A-Synthesis temperature 10,692.54 1 10,692.54 35.85 <0.0001

B-K2CO3 content 369.47 1 369.47 1.24 0.2821
C-Adsorption temperature 4420.24 1 4420.24 14.82 0.0014

D-CO2 concentration 1303.36 1 1303.36 4.37 0.0529
AC 10,010.29 1 10,010.29 33.56 <0.0001
AD 137.69 1 137.69 0.4617 0.5066
BD 3633.50 1 3633.50 12.18 0.0030
CD 51,918.23 1 51,918.23 174.08 <0.0001
A2 2018.70 1 2018.70 6.77 0.0193
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Table 4. Cont.

Sum of
Squares df Mean Square F-Value p-Value

C2 2485.75 1 2485.75 8.33 0.0107
D2 3527.27 1 3527.27 11.83 0.0034

A2C 3563.28 1 3563.28 11.95 0.0032
A2D 2536.04 1 2536.04 8.50 0.0101

Residual 4771.81 16 298.24
Lack of fit 3889.86 11 353.62 2.00 0.2288 not significant
Pure error 881.95 5 176.39
Cor Total 1.647·105 29

Model statistics
R2 0.9710

Adjusted R2 0.9475
Predicted R2 0.8237

For both Li4SiO4 conversion and adsorption capacity, a quadratic model with addi-
tional mid-cubic terms was found to best fit the experimental data. The ANOVA results
showed that the models were both statistically significant (p-value < 0.05). Moreover, no
significant lack of fit denoted the reliability of their predictive quality (p-value > 0.1). An
estimation of pure error was also reported and evaluated through the replicates on the
central points. The sum of squares of pure error was found to be at least two orders of
magnitude lower than that of the models, representing their goodness in fitting the experi-
mental data. High values of the determination coefficients R2 (0.9869 and 0.9710 for the
Li4SiO4 conversion and adsorption capacity models, respectively) and adjusted R2 > 0.85
also denoted the goodness of the models selected.

As shown in Table 3, the effects that resulted high significance for the Li4SiO4 conver-
sion (high values of sum of squares and p-value < 0.01) were the main effects of all factors,
their quadratic terms, and the two-factor interactions AC (synthesis temperature-adsorption
temperature) and CD (adsorption temperature-CO2 concentration). In particular, the main
effect of factor A-synthesis temperature had a sum of square two times greater than other
main effects, indicating that the synthesis temperature can markedly affect the sorbent
morphology (as can be seen by SEM analysis reported in Figure 2) and thus the conversion.
Moreover, the interaction CD was found to be the most significant effect, showing the
highest sum of squares among all the effects. This was related to the thermodynamic
of the adsorption reaction on Li4SiO4, for which at 700 ◦C, the adsorption performance
was high for 50 vol% of CO2, whereas it was very low at 4 vol% due to the activation
of the desorption process (Figure 4). Likewise, for the adsorption capacity (Table 4), the
main effect of the A-synthesis temperature and the interactions AC (synthesis temperature-
adsorption temperature) and CD (adsorption temperature-CO2 concentration) resulted in
the most significant effects since they had the highest sum of squares. Whereas the main
effect of factor D-CO2 concentration was almost not significant (p-value ≈ 0.05), and the
factor B-K2CO3 content results were not significant. However, factor B was considered
in the model to support hierarchy, since the interaction effect BD (K2CO3 content-CO2
concentration) results were significant. BD significance indicates that the addition of K2CO3
to Li4SiO4 affected the adsorption capacity mostly in relation to the CO2 content in the
gas flow, and this was also noted in our previous study [27]. The addition of K2CO3 to
Li4SiO4 more markedly improved the CO2 uptake at low CO2 concentrations (4 vol%) than
at higher concentrations (50 vol%), since a high pCO2 seemed to compensate for the lower
diffusivity of the CO2 in the product layer.

The adequacy of the obtained models was verified by diagnostic plots. For each re-
sponse, the accordance between experimental data and predicted values was confirmed by
the close distribution of run data to the line of the correspondent plot (Figure 7). The rela-
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tionship between the factors, single or in interaction, can be visualized through the response
model equations, which are reported in terms of actual factors in Equations (8) and (9).

Y1 = 2249− 6.245A + 2.147B− 3.336C + 10.78D + 1.070·10−2 AC− 3.793·10−2 AD− 7.818·10−3BD
+8.725·10−3CD + 3.906·10−3 A2 − 3.219·10−2B2 − 7.940·10−4C2 − 2.095·10−2D2

−6.757·10−6 A2C + 2.508·10−5 A2D
(8)

Y2 = 6269− 17.83A + 0.8924B− 9.099C + 34.64D + 3.151·10−2 AC− 0.1169AD− 4.630·10−2BD
+2.625·10−2CD + 1.113·10−2 A2 − 2.959·10−3C2 − 7.486·10−2D2 − 1.990·10−5 A2C
+7.736·10−5 A2D

(9)
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Three-dimensional response surface plots of the models for both responses are reported
in Figures 8 and 9, and the relationships between factors and responses are discussed in the
sections below. The 3D model graphs displayed the trend of both responses in the design
space as a function of two significant variables, setting the other two variables at the center
or factorial values.

3.3.1. Effect of Synthesis Temperature

According to the ANOVA results presented in Tables 3 and 4, synthesis temperature
was an important variable that affected both the Li4SiO4 conversion and the adsorption
capacity, and it demonstrated a quadratic effect on the responses (due to A2 term) visible
by a curvature in the model graphs of Figures 8a,b and 9a,b. However, its effect on the
responses could not be considered individually as this factor presented interactions with
adsorption temperature (AC, A2C) and CO2 concentration (AD, A2D). Figures 8a and 9a
display higher values of XLi4SiO4 and adsorption capacity when the synthesis temperature
was 600 ◦C, reaching about 92% and 270 mg/g, respectively, when the K2CO3 content
was 25 wt%, the CO2 in the treated gas was 27 vol% and the adsorption temperature was
600 ◦C. Moreover, these values increased as the CO2 concentration increased from 4 to
50 vol% (Figures 8b and 9b), rising from nearly 40 to 100% and from 100 to 280 mg/g
for XLi4SiO4 and adsorption capacity, respectively (maintaining 25 wt% of K2CO3 and
600 ◦C of sorption temperature). These results were related both to sorbent morphology
and adsorption reaction kinetics. As shown by the SEM analysis reported in Figure 2,
a lower synthesis temperature led to a less sintered sorbent with smaller particle size
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and thus to higher adsorption capacities and conversions [40,50–52]. Kim et al. [40] and
Yang et al. [50] confirmed this trend, evidencing that Li4SiO4 sorbents produced at a low
synthesis temperature (i.e., 600 ◦C) presented higher specific surface area and higher
adsorption capacity. Moreover, when the CO2 concentration increased from 4 to 50 vol%,
the CO2 concentration gradient between the bulk and the particle surface increased, so that
increasing the amount of CO2 adsorbed [17,26,53].
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3.3.2. Effect of K2CO3 Content

As evident by ANOVA (Table 3), the variable K2CO3 content affected Li4SiO4 con-
version, and it also demonstrated a quadratic effect on the response (due to the B2 term),
visible by a slight curvature in the model graph of Figure 8c. On the contrary, for the
adsorption capacity, the factor K2CO3 content results were not significant (Table 4), and
this is shown by a linear contour plot in Figure 9c. This different result can be explained
by considering that an increase in K2CO3 content helped the reaction kinetics by reducing
diffusion resistance through the product layer that covered the sorbent particles, leading
to higher Li4SiO4 conversion. Nevertheless, higher values of K2CO3 content reduced the
amount of active sorbent (Li4SiO4, which actually reacted with CO2), leading to a lower
adsorption capacity [44]. However, the interaction effect BD (K2CO3 content-CO2 concen-
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tration) results were significant, and this is represented on 3D response surface plots by
a slight curvature of the surface when CO2 concentration varies from 4 to 50 vol%. The
addition of K2CO3 to Li4SiO4 more markedly improved the adsorption performance at low
CO2 concentrations, where the diffusion resistance was high due to the lower gradient for
the CO2 mass transfer into the product layer. Li4SiO4 conversion and adsorption capacity
increased from 40 to 55% and from 135 to 160 mg/g, respectively, when the K2CO3 content
increased from 10 to 40 wt % for 4 vol% of CO2 in the treated gas (considering synthesis and
adsorption temperature of 600 ◦C). Whereas at higher pCO2, the increasing concentration
gradient compensated for the lower diffusivity of the CO2 in the product layer [27,30].
When the CO2 concentration was 50 vol% and the K2CO3 content increased from 10 to
40 wt %, Li4SiO4 conversion ranged from 90-95%, while the adsorption capacity remained
almost constant to 260 mg/g (synthesis and adsorption temperature set to 600 ◦C). The
same effect has been observed by [30], which found that the optimum amount of K2CO3
for maximizing CO2 uptake depended on the CO2 concentration in the treated gas.
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3.3.3. Effect of Adsorption Temperature and CO2 Concentration

Based on the ANOVA results (Tables 3 and 4) and the model’s equations (Equations (8) and (9)),
the term mostly affecting either Li4SiO4 conversion or adsorption capacity was the two-
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factor interaction CD (adsorption temperature-CO2 concentration). It showed the highest
sum of squares and a positive effect on the responses (the coefficient in the model’s equa-
tions was the highest in terms of coded factors and has a positive sign). The positive
effect could be noted in response surface graphs of Figures 7d and 8d, where both Li4SiO4
conversion and adsorption capacity increased with increasing the adsorption temperature
and CO2 concentration. This term is strictly correlated to the adsorption reaction thermody-
namic since the first condition for obtaining high CO2 removal performance is to work in a
region where adsorption is favored [17,26,53]. It is important to highlight that, at 4 vol%
CO2, both the Li4SiO4 conversion and adsorption capacity showed a decrease by increasing
the adsorption temperature from 500 to 700 ◦C (Figures 7d and 8d). This was associated
with the adsorption reaction equilibrium, for which at 500 ◦C the adsorption process was
favored, whereas at 700 ◦C, the desorption process was activated (Figure 4) [17,27,54].

3.4. Optimization and Validation Tests

The process of CO2 capture using K2CO3-doped Li4SiO4 sorbents requires high CO2
adsorption capacities to be efficient for practical applications. Moreover, high Li4SiO4
conversions are necessary for the process to be economically feasible. Therefore, the
parametric models obtained by RSM analysis were used for a multi-objective optimization
that allows to predict the optimal combination of variables for maximizing both the Li4SiO4
conversion and the adsorption capacity. As evidenced by response surface plots, by varying
input parameters the two responses did not behave the same way. As previously observed,
K2CO3 kinetically improved the sorbent performance in terms of conversion but, on the
other hand, it represents an inert that reduces the amount of active sorbent (Li4SiO4),
with a consequent reduction of adsorption capacity for high K2CO3 content [44]. The
optimization was carried out for three different CO2 concentrations (4, 27, 50 vol%), letting
the other factors (synthesis temperature, K2CO3 content, and adsorption temperature) vary
in their range and maximizing the two responses. The optimum conditions for the process
variables and the predicted values for the responses, obtained for the three different CO2
concentrations by numerical optimization, are reported in Tables 5 and 6.

Table 5. Optimization results of the process variables.

Process Variable
Optimum Value

4 vol% CO2 27 vol% CO2 50 vol% CO2

A-Synthesis temperature (◦C) 600 600 600
B-K2CO3 content (wt%) 36.9 28.5 17.1

C-Adsorption temperature (◦C) 500 557 662

Table 6. Predicted and experimental response values at optimum conditions.

CO2 Concentration Response Predicted Value Experimental Result Error (%)

4 vol%
Y1: Li4SiO4 conversion (%) 75.6 73.2 1.86

Y2: Adsorption capacity (mg/g) 206.0 196.4 3.44

27 vol%
Y1: Li4SiO4 conversion (%) 89.9 83.7 5.15

Y2: Adsorption capacity (mg/g) 252.2 239.2 3.41

50 vol%
Y1: Li4SiO4 conversion (%) 98.5 94.3 4.25

Y2: Adsorption capacity (mg/g) 300.1 295.6 1.47

For each different optimization (at different CO2 concentrations), the models predicted
an optimum working point that was different from all the runs (factorial, center, and
axial points) already performed during experimentation, and with predicted values of
Li4SiO4 conversion and adsorption capacity higher than the values already observed
in the experimental runs. This suggests a good models predictivity. All the optimum
values obtained for the process variables (Table 5) show that a synthesis temperature of
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600 ◦C would lead to the highest CO2 removal sorbent performance, whatever the CO2
concentration. This was probably due to the less sintered structure with smaller particle
size of the sorbent (Figure 2), as explained in Section 3.3.1. The amount of K2CO3 required
to maximize both Y1 and Y2 decreased as the CO2 concentration increased. This result
could be explained as a consequence of Fick’s law for diffusive mass transfer; the higher
the CO2 concentration is, the higher the driving force (concentration gradient between
the bulk and the particle surface) is for diffusion. Thus, the amount of K2CO3 required
to improve CO2 diffusivity through the product layer was lower. Then, for the low CO2
concentration, it is necessary to work with high K2CO3 content to contrast the low driving
force with an improved diffusivity coefficient [27,30]. Similar results have been found
by [30], which observed that the optimum K2CO3 content for maximizing CO2 uptake
varied with CO2 concentration. However, no systematic study has been performed that
takes into account the effect of adsorption temperature, which significantly affects sorption
performance and, consequently, the optimal K2CO3 amount. On the contrary, the optimum
adsorption temperature required to maximize both responses increases with increasing
CO2 concentration. This result is associated with the adsorption reaction equilibrium, so
the optimum temperature would tend to be as close as possible to the thermodynamic
equilibrium temperature, which increases as CO2 concentration increases (Figure 4), as
widely discussed in Section 3.3.3.

To evaluate the model adequacy and the validity of the optimization procedure, multi-
ple confirmation runs were performed. Three additional experiments for each optimization
at different CO2 concentrations were carried out under the proposed optimal conditions
reported in Table 5. The average values of the three repeated experiments are presented in
Table 6, together with the calculated average error between the predicted values and the
experimental validation tests. As shown, the experimental and predicted responses values
are in agreement, with an error range of about 1–5%. Therefore, the obtained RSM models
can correlate the process variables to the Li4SiO4 conversion and the adsorption capacity
with high accuracy. These results demonstrate the suitability of the RSM DoE methodology
for the modeling and optimization of the CO2 capture process on K2CO3-doped lithium
orthosilicate sorbents.

The optimized sorbents, for the three CO2 concentrations investigated, displayed
excellent adsorption capacity and conversion in each sorption condition. Notably, at 4 vol%
of CO2, the optimized sorbent could capture 196.4 mg CO2/g sorbent (corresponding to a
conversion of almost 73%) after 120 min of adsorption; the adsorption capacity increased
to 239.2 and 295.6 mg/g (about 84 and 94% of Li4SiO4 conversion) with increasing the
CO2 concentration to 27 and 50 vol%, respectively. These CO2 uptakes are comparable
with the adsorption capacities of alkali doped-Li4SiO4 sorbents reported in the recent
literature [28,29,31–34], demonstrating their effectiveness, especially considering the low
CO2 concentration (4 vol%) in the flue gas used in this work for the experimentations, while
all the other sorbents were tested at 15 or 100 vol% of CO2. For example, the adsorption
capacity attained by [29,30,34] for K2CO3-doped Li4SiO4 sorbents varied between values
of about 240 and 280 mg CO2/g sorbent in a 15–20 vol% CO2 atmosphere, similar to our
optimized sorbent (239.2 mg/g in 27 vol% CO2).

The doped-Li4SiO4 sorbent optimized for maximum conversion and adsorption ca-
pacity, considering a CO2 concentration in the treated gas of 4 vol%, was subjected to cyclic
CO2 adsorption/desorption tests to evaluate its regenerability and stability. These proper-
ties are essential for a good CO2 sorbent in view of its use in industrial processes, such as in
a fixed bed for capturing CO2 emissions from exhaust flue gas from gas turbines. Multiple
adsorption (CO2/N2 mixture of 4/96 vol%) and desorption (100 vol% N2) cycles were
performed in the TGA system at 1 bar. The adsorption temperature was set to 500 ◦C (as
obtained by the optimization results) and maintained for 60 min; then, the desorption pro-
cess was carried out elevating the temperature to 700 ◦C for 30 min. The results are shown
in Figure 10, evidencing an excellent regeneration capacity for 20 adsorption/desorption
cycles without activity decay.
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Figure 10. Cyclic adsorption/desorption performance of optimized K2CO3-doped Li4SiO4 (synthesis
temperature 600 ◦C, 36.9 wt% K2CO3). Test conditions: adsorption at 500 ◦C for 60 min in 4 vol%
CO2 stream; desorption at 700 ◦C for 30 min in 100 vol% N2.

The CO2 uptake of the first cycle was about 203 mg/g and remained almost constant for
the subsequent cycles. This performance resulted in values higher or almost equal to those
obtained for similar K2CO3-doped sorbents. Zhang et al. [30] reached only 163.1 mg CO2/g,
and this value reduced to 97.6 mg/g after 22 adsorption/desorption cycles in 20 vol% CO2.
Wang et al. [29] presented a sorbent that was able to adsorb 188.0 mg CO2/g in the first
cycle, while its adsorption capacity decreased to 159.4 mg/g after 22 cycles. The sol-gel
prepared Li4SiO4 of Cui et al. [33] displayed good stability for over 20 cycles when doped
with K2CO3 maintaining a CO2 uptake of 310 mg/g in 15 vol% CO2.

The high adsorption capacities and the good regeneration and stability obtained at
very low CO2 content suggest that K2CO3-doped Li4SiO4 sorbents could be suitable for CO2
capture in industrial applications, such as in gas-fired power plants. Furthermore, the RSM
methodology could be effectively used for tailoring the sorbent synthesis conditions, thus
optimizing its adsorption performance for different adsorption conditions. Improvements
to the parametric modeling and study of CO2 adsorption by Li4SiO4-based sorbents could
concern the application of RSM DoE methodology, scaling up the production process and
the testing conditions to obtain representative predictions of the sorbent behavior. Moreover,
the long-term stability and sorbent’s regeneration efficiency could be investigated as DoE
responses obtaining predictive models of such important characteristics of the sorbent.

4. Conclusions

In this work, a new approach for the production of K2CO3-doped Li4SiO4 sorbents for
CO2 capture at high temperatures was investigated and validated for different operating
conditions. The Design of Experiments methodology was applied to study and identify
the synthesis and operating variables that mostly affect the adsorption performance of the
produced sorbents, defined in terms of Li4SiO4 conversion and adsorption capacity. Four
operating variables were systematically varied: synthesis temperature, K2CO3 content,
adsorption temperature, and CO2 concentration in the treated gas. Using the Response
Surface Method, non-linear parametric models were found capable of accurately fitting the
experimental data, allowing to predict the optimal combination of variables for maximizing
both Li4SiO4 conversion and adsorption capacity. The optimization results indicated that
sorbents synthesized at 600 ◦C ensured the maximum CO2 uptake for different CO2 concen-
trations (4, 27, and 50 vol%), due to a less sintered microstructure. The optimized sorbents
showed an adsorption capacity of 196.4 mg/g at 500 ◦C and 4 vol%, which increased to
295.6 mg/g when the CO2 concentration was 50 vol% and the adsorption temperature was
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662 ◦C. The present study suggests that the developed parametric RSM models are effec-
tively capable of predicting the sorbent performance and indicating the proper synthesis
condition for maximizing the CO2 capture at each operating condition, thus providing
information for a process scale-up. Moreover, the produced K2CO3-doped Li4SiO4 sorbents
demonstrated high adsorption capacity even at very low CO2 concentrations, making them
suitable for CO2 removal in industrial processes. Future developments of this research
activity could involve a parametric study of the effect of different doping agents on the
sorbent’s adsorption capacity, as well as an investigation into the impact of steam in the
gas stream to be treated.
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