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Abstract: Renewable energy sources are essential to address climate change, fossil fuel depletion,
and stringent environmental regulations in the subsequent decades. Horizontal-axis wind turbines
(HAWTs) are particularly suited to meet this demand. However, their efficiency is affected by
environmental factors because they operate in open areas. Adverse weather conditions like rain
reduce their aerodynamic performance. This study investigates wind turbine power prediction under
rainy conditions by integrating Blade Element Momentum (BEM) theory with explainable artificial
intelligence (XAI). The S809 airfoil’s aerodynamic characteristics, used in NREL wind turbines, were
analyzed using ANSYS FLUENT and symbolic regression under varying rain intensities. Simulations
at a Reynolds number (Re) of 1 × 106 were performed using the Discrete Phase Model (DPM) and k–ω

SST turbulence model, with liquid water content (LWC) values of 0 (dry), 10, 25, and 39 g/m3. The
lift and drag coefficients were calculated at various angles of attack for all the conditions. The results
indicated that rain led to reduced lift and increased drag. The innovative aspect of this research is the
development of machine learning models predicting changes in the airfoil coefficients under rain with
an R2 value of 0.97. The proposed XAI framework models rain effects at a lower computational time,
enabling efficient wind farm performance assessment in rainy conditions compared to conventional
CFD simulations. It was found that a heavy rain LWC of 39 g/m3 could reduce power output
by 5.7% to 7%. These findings highlight the impact of rain on aerodynamic performance and the
importance of advanced predictive models for optimizing renewable energy generation.

Keywords: wind turbines; rainy weather impact; blade element momentum theory; computational fluid
dynamics; S809 airfoil analysis; symbolic regression; explainable AI; aerodynamic optimization; k–ω SST
model; discrete phase modeling; energy efficiency; predictive analytics

1. Introduction

Wind energy continues to play a crucial role in the global shift toward renewable
energy sources, witnessing significant growth in installed capacity and its contribution to
global electricity production. Reports from the International Energy Agency (IEA) [1] and
the Global Wind Energy Council [2] confirm the upward trend in wind energy adoption,
underscoring its importance in meeting carbon reduction targets. This global commitment
directly influences national policies and fosters the expansion of wind energy projects
worldwide [3].

The performance of wind turbines is significantly influenced by weather conditions,
particularly rain, which affects their aerodynamic efficiency. Rainfall impacts the air density
and viscosity around the turbine blades, altering their aerodynamic properties [4,5]. This
interaction leads to shifts in the laminar–turbulent transition on the blade surfaces [6].
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Understanding these hydrodynamic effects is crucial in evaluating how weather conditions
affect turbine performance [7].

Research on the impact of rainfall initially focused on the aerodynamic performance
of aircraft in such conditions. Over the past few decades, extensive computational fluid
dynamics (CFD) and experimental investigations have explored how rainfall affects aircraft
airfoils. Notable experimental studies include those by Rhode [8], Hansman and Barsotti [9],
Hansman and Craig [10], Marchman et al. [11], and Bezos [12]. Prominent CFD studies
include those by Valentine and Decker [13], Thomson and Marrochello [14], Tan et al. [15],
Wan and Wu [16], and Zhang and Cao [17]. These studies commonly used NACA airfoils,
particularly the NACA 64-210 and NACA 0012, revealing that rain decreases the lift
coefficient and increases the drag coefficient. Below is a concise review of the investigation
of rainfall on airfoils used in wind turbines.

In 2012, Douvi and Margaris [18] applied a two-phase flow approach in CFD to analyze
the aerodynamic characteristics of a NACA 0012 airfoil under dry and simulated heavy rain
conditions with a liquid water content (LWC) of 30 g/m3. Their analysis at higher Reynolds
numbers (1 × 106 and 3 × 106) showed that heavy rain worsens aerodynamic performance,
reducing the lift coefficient and increasing the drag coefficient. They also demonstrated a
decline in the power coefficient of a two-bladed horizontal-axis wind turbine in severe rain,
with a percentage shift in the power coefficient ranging from 2% to 7% depending on the
blade angle of attack. However, the methods used to calculate the power coefficient, such
as the Blade Element Momentum (BEM) approach, were not specified.

In 2012, Cai et al. [19] conducted a multiphase CFD simulation using the coupled
Lagrangian–Eulerian technique to evaluate the S809 airfoil’s performance in rainy weather,
finding that intense precipitation significantly reduces efficiency.

In 2013, Douvi et al. [20,21] investigated various rainfall rates’ impact on the NACA
0012 airfoil’s aerodynamic properties using both computational and experimental methods
at a low Reynolds number (1 × 105). Their research revealed that increased LWC led to
more significant aerodynamic deterioration, especially up to the stall angle, and that stall
onset was delayed at all rainfall rates.

In 2016, Cohan and Arastoopour [22] evaluated the S809 wind turbine airfoil’s perfor-
mance under different precipitation rates using coupled Discrete Phase Model (DPM) and
Volume Of Fluid (VOF) 2D CFD analyses. They observed that the airfoil’s performance is
extremely sensitive to the rainfall rate during periods of minimal precipitation. However,
subsequent increases in rainfall do not significantly affect the performance of the airfoil
once the rate of precipitation is adequate to generate a water film on its surface. They
discovered intriguing results indicating that at higher rainfall rates, the lift coefficient is
greater than in the absence of rain, but this is accompanied by an unfavorable increase in
the drag coefficient, whereas previous research suggested that rain only causes a decrease
in the lift coefficient.

In 2017, Wu et al. [4] conducted a study on a two-way coupled Eulerian–Lagrangian
multiphase technique to examine the behavior of the NACA 0015, an extensively used
airfoil in vertical-axis wind turbines (VAWTs), in rainy circumstances. They found that rain
significantly impairs VAWT performance, with higher LWC and larger raindrop diameters
exacerbating performance deterioration.

In 2021, Douvi et al. [23] studied the impact of rainfall on the aerodynamic perfor-
mance of a horizontal-axis wind turbine (HAWT) with a NACA 4418 airfoil using ANSYS
FLUENT using Multiple Reference Frame (MRF) analysis. They observed substantial
decreases in aerodynamic efficiency in wet conditions compared to dry, with reductions
of 11.84%, 16.87%, and 23.9% for LWCs of 10 g/m3, 30 g/m3, and 60 g/m3, respectively.
Increasing the raindrop diameter while maintaining a constant LWC further decreased the
power coefficient.

In 2022, Gahlot et al. [24] conducted RANS simulations on the S809 airfoil, showing a
30% to 40% decrease in power generation due to rainfall across various wind speeds. Wu
et al. [25] used the Eulerian multiphase single-rotating frame collision theory method (ESCM-
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WAR) hybrid approach to study 5 MW floating wind turbines in wind–rain conditions,
finding that the thrust and torque from the rain load increased with the rainfall intensity.

In 2023, Hu et al. [26] experimented with how rainfall affected wind turbine blade
aerodynamic performance under different test settings. The experiment used a common
wind turbine airfoil/blade model at Iowa State University’s Icing Research Tunnel. They
measured the life and drag forces on the airfoil/blade model as a function of the inflow-
ing airflow speed and rainfall rate. They also employed a high-resolution digital PIV
system to assess the raindrop impingement-induced airflow characteristics over the air-
foil/blade model and their correlations with rainfall-induced aerodynamic deterioration
under different test settings.

Recently, in 2024, Letzgus and Müller [27] developed an explainable AI framework for
robust and transparent data-driven wind turbine power curve models. However, this work
focused on determining the power from wind turbine operational data and does not address
the effects of rain. In contrast, our work focuses on the effects of rain and is suitable for the
design phase. The present state of the art in previous studies predominantly shows that rain
reduces the lift coefficient and increases the drag coefficient of airfoils. However, there is a
lack of specific models quantifying these aerodynamic changes. Addressing this research
gap, our innovative contribution lies in developing explainable AI (XAI) models specifically
for the S809 airfoil, commonly used in NREL wind turbines. By generating data for various
rainy conditions, we create a symbolic regression model that predicts the effects of rain
on the airfoil’s aerodynamic performance. The uniqueness of this work is the application
of a machine learning model, which we integrate with Blade Element Momentum (BEM)
theory to predict the power. This integration allows for the prediction of wind turbine
power under varying rain conditions at a significantly reduced computational cost. The
objectives of this study are to advance the current understanding of rain effects on wind
turbines and provide a practical, efficient method for predicting wind turbine performance
in rainy conditions using machine learning, thus filling a critical gap in the literature.

This study combines computational fluid dynamics (CFD) and explainable artificial
intelligence (XAI) techniques like symbolic regression to create a comprehensive predictive
framework. CFD provides detailed simulations of the rain impact on airflow and aerody-
namics prediction. Using the insights gained from the CFD and symbolic regression models,
Blade Element Momentum (BEM) theory offers predictions on the aerodynamic perfor-
mance of wind turbine blades under varying rain conditions. By leveraging these advanced
modeling techniques, this research enhances the predictive accuracy of turbine perfor-
mance under rainy conditions, optimizes energy output, and extends the lifespan of turbine
components, contributing to the sustainability and resilience of wind energy systems.

To ensure thorough comprehension of our investigation, we have structured this paper
into the following subsections: Section 2.1 describes the two-phase CFD modeling approach
used to simulate the impact of rain on the airfoil. Section 2.2 details the machine learning
model employed for symbolic regression. Section 2.3 provides an overview of the Blade
Element Momentum (BEM) theory. Section 3 discusses the findings from our CFD analyses
and XAI models, along with their BEM implications. This comprehensive approach ensures
accurate predictions of wind turbine performance in rainy conditions.

2. Methodology

The S809 airfoil is a widely utilized airfoil in the design of wind turbine blades,
especially those developed by the National Renewable Energy Laboratory (NREL). Its
performance characteristics under various conditions are thoroughly researched, making
it an ideal candidate for studies focused on wind energy. The rationale for choosing the
S809 airfoil in this study is twofold. Firstly, its established use in NREL wind turbines
provides a reliable foundation for our research, ensuring that our findings are applicable to
real-world scenarios. Secondly, the authors have a history of employing the NREL Phase VI
wind turbine in their previous work [28,29], which utilizes the S809 airfoil. This continuity
allows us to build on prior research, enhancing the relevance of our current study on the
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aerodynamic impacts of rain on wind turbine performance. The methodology for this
paper involves several key steps, starting with data generation through computational
fluid dynamics (CFD) simulations using the S809 airfoil.

CFD with the Reynolds-Averaged Navier–Stokes (RANS) and Discrete Phase Model
(DPM) is utilized to model the effects of rain on the aerodynamic performance of the airfoil,
specifically focusing on the lift coefficient (CL) and drag coefficient (CD).

The generated data are then employed to train a symbolic regression-based explainable
artificial intelligence (XAI) model. The results from the XAI model are subsequently input
into the Blade Element Momentum (BEM) theory to calculate the forces, which are further
used to determine the power output of the wind turbine.

This entire process is illustrated in the flow chart shown in Figure 1. Each of these
steps is detailed in the following subsections. Figure 2 provides a more detailed explanation
of the rain model development part.

CL, No Rain
CD, No Rain

BEM

Compute Forces using BEM for 
Corrected CL and CD for from XAI

WIND TURBINE POWER

Compute power using BEM force values
Rain Model

CL, Rain and CD, Rain 

Stall Delay Model [48]

XAI FRAMEWORK

Figure 1. Overall flowchart describing development of XAI-based framework for prediction of power
during rainy conditions.

DATA GENERATION
CFD Rain Simulations using ANSYS Fluent

Dry, Wet [LWC =10, 25, 39 g/m3] & AOA

CL, No Rain

CL RainLWC

AOA (α)

XAI (new model for CL in rain)

Model Training using Symbolic
Regression

XAI (new model for CD in rain)

Model Training using Symbolic
Regression

CD Rain

CD, No Rain

LWC

AOA (α)

Figure 2. Flowchart describing XAI-based framework for rain model development.

2.1. Data Generation Using CFD Simulations
2.1.1. Rain Modeling

Rain modeling involves characterizing raindrop sizes, their distribution, and their
interactions with the wind. Accurate models are essential for simulating and understanding
the dynamics of rainfall. Two critical parameters in rain modeling are liquid water content
(LWC) and terminal velocity (UT), which significantly influence the behavior and impact of
rainfall in computational simulations.

Liquid Water Content (LWC)

The intensity of rainfall is a critical factor in the CFD modeling of precipitation. Liquid
water content (LWC) is a significant parameter often used to quantify the intensity of
rainfall [30]. LWC refers to the mass of liquid water present per unit volume of air, often
measured in grams per cubic meter (g/m3) [30]. Previous studies have utilized various
LWC values, including 3, 8.7, 10, 14.6, 16, 20.548, 23, 25, 30, 37.745, 39, 41.096, 44, 46, 60,
75.491, and 80 g/m3 [3,4,9,10,12,13,16,18,20,21,24,31–37]. For this study, we selected three
commonly used and evenly spaced levels of LWC: 10, 25, and 39 g/m3.

Terminal Velocity (UT)

The behavior of a raindrop in the atmosphere is not characterized by free fall; its veloc-
ity does not necessarily increase with distance or time of descent. As a raindrop descends,
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it is subjected to aerodynamic drag and buoyancy forces in addition to gravity [38]. The
resistance of the air increases as the speed of the raindrop increases until it reaches the
utmost velocity, which is known as the terminal velocity, at which point the gravitational
force is equivalent to the resultant force of the drag and the buoyancy. Afterward, the
raindrop will descend at a consistent terminal velocity [30] prior to making impact with
the airfoil surface [37]. Markowitz [39] developed the widely used formula for terminal
velocity shown in Equation (1), which depends on the raindrop size.

UT = 9.58

(
1 − exp

[
−
(

Dp

1.77

)1.147
])

(1)

where Dp represents the diameter of the raindrop in mm.
The raindrop diameters reported in various studies [3,4,9,10,13,16,18–22,24,25,32–34,36]

range from 0 to 6 mm, with approximately 1 mm being the most frequently used. Conse-
quently, the size of the raindrop used in this study was 1 mm.

2.1.2. Computational Fluid Dynamics (CFD) Setup
Numerical Modeling

The modeling of the impact of rain on the airfoil is achieved using a two-phase
flow method that relies on the Eulerian–Lagrangian technique. The Eulerian–Lagrangian
technique solves the conservation equations for the continuous phase and integrates the
equations of motion for the discrete phase. This method is known as the Discrete Phase
Model (DPM) approach [40]. This study treats air as a continuous phase, whereas rain-
drops are treated as a discrete phase. The air, considered as a continuous fluid phase, is
analyzed by solving the Reynolds-Averaged Navier–Stokes (RANS) transport equations.
The raindrops as a discrete phase is resolved by tracking the individual droplets within the
computed airflow field. In this technique, the discrete phase has the ability to exchange
momentum, mass, and energy with the continuous phase. In this investigation, the subse-
quent assumptions are implemented: the flow is regarded as incompressible; raindrops are
presumed to be non-evaporating, non-interacting, and maintain a spherical shape before
deformation; and the trajectories of the rain droplets are estimated at specified intervals
throughout the fluid phase simulation. ANSYS FLUENT [40] has the ability to forecast
the trajectory of raindrops by estimating the force balance on the rain particle using a
Lagrangian reference frame. Further information on the Discrete Phase Model (DPM) can
be obtained in the literature [4,18–22,32–37,40–43].

Model Description and Boundary Conditions

The simulations were performed on a computational domain in two dimensions. The
inlet had a uniform velocity of 14.2070 m/s, which corresponds to a chord length of 1 m
and a Reynolds number (Re) of 1 × 106. The airfoil surface was subjected to the no-slip
condition, and the outlet was designated as a fixed pressure outlet. External effects on the
flow field around the airfoil were prevented by the computational domain’s ample size.
An 8 m chord injection line was chosen to inject rain particulates into the airfoil, and it was
positioned 2 chord lengths upstream of the leading edge of the airfoil.

Equation (1) was used to calculate the terminal velocity, which was 3.9 m/s, because
the diameter of the raindrop was 1 mm. In our particular case, the volume flow rate
was 113.656 m3/s, as we estimated an injection area of 8 × 1 m (unit width) and a free
stream velocity of 14.2070 m/s, as illustrated in Figure 3. Based on the computed volume
flow rate above, the mass flow rates of the rain were 1.14, 2.84, and 4.43 kg/s for the rain
conditions of LWC 10, 25, and 39 g/m3, respectively. The mass flow rate for each injection
point was 0.00189, 0.0047, and 0.0074 kg/s for LWC 10, 25, and 39 g/m3, respectively, as
we considered 600 injection points. The k–ω SST turbulence model was implemented in
ANSYS FLUENT 2023. Calculations were conducted for angles of attack (AOA) that ranged
from 0 to 12.23 degrees.
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Figure 3. Sketch illustrating the rain modeling method used in this study, describing the injection
surface placement in front of the airfoil.

Computational Grids and Grid Independence Study

The computational domain was discretized using structured C-type grids. Four
distinct grids were used to calculate the lift coefficients for the purpose of conducting grid
independence research. Four grids were produced for the S809 airfoil, each with a different
number of cells: approximately 250,000, 500,000, 750,000, and 1,000,000. Figure 4 shows
the comparison of the lift coefficients at an angle of attack of 8.2◦ for four distinct grids,
along with the corresponding experimental value under dry conditions. Table 1 shows
the average Y+ values around the airfoil for the four distinct grids that were taken into
account. The CL value for a grid size of 1 million closely matches the experimental data and
the Y+ value is below 2. Furthermore, ANSYS FLUENT is only able to utilize grids with a
maximum of 1,048,576 cells due to the limitations of the student license. In our particular
case, a grid with one million cells yields satisfactory results, and due to the limitations, this
mesh was finished in preparation for further investigation.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Number of Cells ×106

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

C L

CL Experimental

CL CFD
CL Experimental

Figure 4. The number of cells vs. the lift coefficient (CL). The red dotted line indicates the experimental
values from the NREL Report [44].
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Table 1. Mesh independent study using k–ω SST turbulence model.

Number of Cells Velocity (m/s) AoA Ux (m/s) Uy (m/s) CL AvgY+

250,000 14.2070 8.2000 14.0618 2.0263 0.7232 123.776
500,000 14.2070 8.2000 14.0618 2.0263 0.8783 38.3781
750,000 14.2070 8.2000 14.0618 2.0263 0.9471 16.9811

1,000,000 14.2070 8.2000 14.0618 2.0263 0.9565 1.99931

Experiment [44] 0.952

2.2. Symbolic Regression (XAI) Model

Symbolic regression is a versatile technique used to approximate mathematical func-
tions [45]. It involves systematically modifying operators within a set of explicit formulae
to explore the mathematical space and identify the most appropriate metamodel. These for-
mulae can be represented in a tree structure, and combinatorial optimization techniques are
employed to find the optimal tree. Symbolic regression’s strengths lie in its interpretability
and its ability to uncover underlying physical relationships from data [46]. It offers several
benefits over other regression methods, including flexibility in selecting operators, the class
of functions, and the expression size.

Simulated annealing (SA), introduced by Kirkpatrick et al. [47], is a popular method used
in symbolic regression. This technique starts with a single solution and iteratively explores
neighboring solutions, gradually decreasing the probability of accepting worse solutions over
time. Simulated annealing’s main advantage is its ability to locate a global minimum, along
with ease in determining constants and a relatively low computational cost [46].

In simulated annealing-based symbolic regression [48], the algorithm begins with a broad
search of the solution space, which becomes more focused as parameters are adjusted during
each iteration. The decision to retain the current solution or move to a neighboring one is
based on probabilistic criteria that decay over time. While complex functions may fit the data
better, they are prone to overfitting and can be difficult to interpret. Therefore, the goal is to
find a mathematical expression that is both simple and fits the data well using a multi-objective
combinatorial optimization (MOCO) method, such as Pareto-simulated annealing [46].

Pareto-simulated annealing-based symbolic regression as shown in Figure 5 enhances
traditional methods by initiating with linear regression for estimating constants and uti-
lizing interval arithmetic to ensure the model’s consistency. The process starts with trans-
formation functions represented as binary trees, where nodes signify operators, input
parameters, or constants. These functions undergo iterative modifications governed by
the Pareto-simulated annealing algorithm, which adjusts the annealing temperature to
balance exploration and exploitation effectively. Each iteration involves selecting a random
transformation function for modification, ensuring its integrity using interval arithmetic
to prevent invalid operations. The coefficients of the transformation functions are recalcu-
lated using linear regression, transforming the problem into a linear one and improving
computational efficiency. Model quality is assessed using the root mean squared error
(RMSE) and validation RMSE to prevent overfitting. Pareto-simulated annealing treats
model fit and complexity as separate objectives, generating a Pareto front representing
the trade-offs between these two aspects. A novel complexity measure, based on the mini-
mal degree of polynomial necessary for approximation within a predefined error margin,
is employed to avoid overfitting and enhance interpretability. Compared to traditional
Kriging models and symbolic regression based on genetic programming, Pareto-simulated
annealing-based symbolic regression offers several advantages. It efficiently handles con-
stants via linear regression, requires fewer evaluations to converge, and produces more
interpretable models. This method demonstrates competitive performance across various
test cases, establishing its potential as a robust tool for metamodeling in simulation-based
optimization [46]. The detailed algorithm for implementing Pareto-simulated annealing-
based symbolic regression is outlined by Stinstra et al. [46] and was executed using the
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TuringBot 2.18.1 Python library on an AMD Ryzen™ 9 5900 CPU with 24 threads over
approximately 1100 CPU hours.

Figure 5. Flow chart explaining symbolic regression procedure.

In this study, we are proposing a new model to capture the effects of rain on aero-
dynamic performance. The lift coefficient (CL) and drag coefficient (CD) under rainy
conditions are derived by incorporating rain-induced changes (∆CL and ∆CD). These
changes are influenced by the liquid water content (LWC), and the resulting coefficients are
calculated as follows:

CL,rain = CL,no rain + ∆CL (2)

CD,rain = CD,no rain + ∆CD (3)

Here, CL,rain and CD,rain represent the lift and drag coefficients under rainy conditions,
respectively, while CL,no rain and CD,no rain denote the corresponding coefficients in the
absence of rain. The terms ∆CL and ∆CD capture the differences in the lift and drag
coefficients due to rain, which depend on the specific LWC and AOA.

This formulation enables the calculation of aerodynamic coefficients by adding the
rain-induced changes to the baseline values obtained under dry conditions. For example,
if the LWC is 10 g/m³, the changes in the coefficients, ∆CL and ∆CD, are evaluated at this
LWC and added to CL,no rain and CD,no rain to obtain the coefficients under rainy conditions.

Our model provides a systematic approach to understanding and quantifying the
impact of rain on aerodynamic performance. It allows for more accurate predictions and
adjustments in the design and analysis of airfoils subjected to rainy conditions. The exact
model details will be discussed in the Results Section 3.3.

2.3. Integration with Blade Element Momentum (BEM)

The Blade Element Momentum (BEM) hypothesis is extensively used for the purpose
of wind turbine design and performance evaluation. This approach combines the principles
of momentum theory with blade element theory. Momentum theory is derived from the
principles of conserving linear and angular momentums. The rotor is substituted by a
permeable or porous disk and partitioned into N concentric elements, with forces being
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computed at each element. Blade element theory involves dividing the blade again into
N elements and calculating the forces in each element based on the airfoil properties of
the lift coefficient (CL) and drag coefficient (CD). The process of deriving, implementing,
and correcting the BEM technique is well explained in the works of Burton et al. [49],
Hansen [50], and Kabir [29].

Multiple software products use the BEM methodology. These are some notable tools:
Qblade [51], Aerodyn [52], HAWC2 [53], WTPerf [54], FAST [55], GH Bladed [56], and
PHATAS [57]. Furthermore, the present authors in their previous study [29] developed
MATLAB code for BEM. A significant drawback of the BEM approach is the occurrence
of a 3D phenomenon known as stall delay [28]. To compensate for stall delay, several XAI
models have been proposed to be added into the 2D airfoil characteristics [28,29]. The
present authors in their previous study [58] developed an XAI model using a machine
learning technique, which was proven to be more accurate. Therefore, the authors used
a stall delay model based on their previous work [58] to conduct a BEM analysis using
MATLAB code [29].

3. Results and Discussion
3.1. Comparison of Dry Condition with Experimental Results

The numerical simulations were performed at a Reynolds number of 1 × 106 across a
range of angles of attack from 0◦ to 17.21◦. This study integrates both experimental and
predicted CL and CD values for the S809 airfoil, sourced from wind tunnel tests conducted
at Ohio State University (OSU), Colorado State University (CSU), and the Delft University
of Technology (DUT) [28,44]. The experimental data from DUT at the specified Reynolds
number were used as a benchmark to validate the numerical simulation results.

In aerodynamic analysis, the airflow around an airfoil causes an increase in velocity
on the top (suction) surface, leading to a pressure drop, while the velocity decreases on
the bottom (pressure) surface, causing a pressure rise. Additionally, friction between the
air and the airfoil surfaces results in further velocity reduction [29]. The resulting force
and momentum on the airfoil are due to the pressure differential and skin frictional drag.
The net force can be decomposed into two components: lift, which is perpendicular to the
airflow direction, and drag, which is parallel [29]. To predict the lift and drag coefficients,
the k–ω SST turbulence model was utilized in the CFD simulations. These predictions were
then compared with the experimental data for consistency.

The initial focus of this study was on evaluating the lift and drag coefficients under
dry conditions to establish a baseline for later investigations under varying rain conditions.
Figure 6 shows the simulation results of the lift coefficient for the S809 airfoil as a function
of the angle of attack. The relationship between the lift coefficient and the angle of attack is
approximately linear up to 12◦. The simulation results correlate well with the experimental
data at low to mid-range angles of attack, with minor deviations at higher angles. This
pattern is consistent with previous studies of the S809 airfoil at the same Reynolds num-
ber [59–61]. These results affirm the reliability of our CFD simulations, supporting their
use for further investigations under rainy conditions.

3.2. Impact of Rain Conditions on Airfoil Dynamics

The simulations under rainy conditions were conducted for angles of attack ranging
from 0◦ to 12.23◦ at liquid water contents (LWCs) of 10, 25, and 39 g/m3 and a Reynolds
number of 1 × 106. The lift coefficient (CL) as a function of the angle of attack (AOA) for
various rain conditions is shown in Figure 7.

The analysis shows that as the LWC increases, the detrimental effects on aerodynamic
performance become more pronounced. At lower LWCs, the reduction in lift is relatively
moderate, but as the LWC reaches higher values (25 and 39 g/m3), the negative impact on
the lift becomes substantial. This trend highlights the sensitivity of airfoil performance to
rain conditions and underscores the importance of accounting for such factors in aerody-
namic designs and assessments.
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It is evident from Figure 7 that there is consistent degradation in (CL) performance
with an increase in LWC. The diminution in the lift coefficient varies from 0.85% to 3.74%
for the LWC of 10 g/m3, from 1.91% to 8.20% for the LWC of 25 g/m3, and from 2.98% to
12.70% for the LWC of 39 g/m3.

Additionally, Figure 8 clearly demonstrates a steady increase in the (CD) results as the
LWC increases. The increase in the drag coefficient ranges from 1.92% to 6.19% for an LWC of
10 g/m3, from 4.94% to 13.90% for an LWC of 25 g/m3, and from 5.96% to 21.24% for an LWC
of 39 g/m3.
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Figure 6. Plot of lift coefficient (CL) versus angle of attack (AOA) for dry conditions.
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Figure 7. Plot of lift coefficient (CL) versus angle of attack (AOA) under no rain and various liquid
water content (LWC) conditions.

Multiple perspectives are presented in the literature on the factors that contribute to
the diminution in aerodynamic performance of airfoils when exposed to rain. This study
focuses on the development of corrective models using machine learning that can be used
in BEM to address the impact of rain. Below is an overview of the many concepts [24] that
have been considered.
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• The wavy surface of the water layer on the airfoil may induce this consequence in a
way similar to the presence of irregularities or roughness on the airfoil surface.

• The cause for this degradation can also be due to the additional displacement thickness
from the water layer and the loss of airflow momentum due to the drag forces exerted
by water droplets, which can significantly modify the airfoil’s pressure field and
eventually alter the force.

• While in computational fluid dynamics (CFD), the walls are assumed to be rigid
and erosion is not accounted for, in actuality and experimental assessments, and
weathering of the wind turbine blade surface due to rain or water may disrupt the
boundary layer and lead to a significant increase in drag.

0 2 4 6 8 10 12
Angle of Attack (AoA) [degrees]

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

D
ra

g 
C

oe
ff

ic
ie

nt
 (C

D
)

No Rain
LWC = 10 g/m³
LWC = 25 g/m³
LWC = 39 g/m³

Figure 8. Plot of drag coefficient (CD) versus angle of attack (AOA) under no rain and various liquid
water content (LWC) conditions.

3.3. Proposed XAI Model

In this study, we propose a model to capture the effects of rain on aerodynamic
performance. Three non-dimensional exploratory variables, the angle of attack (α), the
liquid water content (LWC), and the baseline coefficients (CL,no rain and CD,no rain), are used
to model the rain effect on the lift and drag coefficients. The objective of the symbolic
regression algorithm is to determine mathematical expressions for the changes in the lift
coefficient (∆CL) and drag coefficient (∆CD) under rainy conditions. A total of 70 percent
of the data were used for training the XAI model. For validation, this study employed
a hold-out cross-validation strategy to prevent overfitting: 15 percent of the data were
reserved for hyper-parameter tuning and another 15 percent were set aside for testing. The
optimized hyper-parameters included the coefficients of the derived functional form.

The expressions for ∆CL and ∆CD are given by:

∆CL = f (α, LWC, CL,no rain) (4)

∆CD = g(α, LWC, CD,no rain) (5)

where f (α, LWC, CL,no rain) and g(α, LWC, CD,no rain) are functions determined through the
symbolic regression process. For the purposes of this study, the dummy equations for these
functions are provided as follows:

∆CL = C1 · LWC · eC2·α ·
√

CL,no rain (6)

∆CD = C3 · LWC ·
√

α · CD,no rain (7)
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where C1 ≈ −0.00083, C2 ≈ 0.00278, and C3 ≈ 0.00025 are coefficients determined through
the symbolic regression process.

After determining the expressions for ∆CL and ∆CD, the lift and drag coefficients
under rainy conditions (CL,rain and CD,rain) can be computed from the coefficients under no
rain (CL,no rain and CD,no rain) using the following equations:

CL,rain = CL,no rain + ∆CL (8)

CD,rain = CD,no rain + ∆CD (9)

The proposed model captures the impact of rain on aerodynamic performance through
three key variables: the angle of attack (α), the liquid water content (LWC), and the baseline
coefficients (CL,no rain and CD,no rain). The degradation in lift (∆CL) is directly proportional
to the LWC, highlighting how rain alters airflow, thereby reducing the lift. Similarly, the
drag increase (∆CD) is influenced by the LWC and α, demonstrating how rain-induced
surface roughness and changes in airflow dynamics lead to higher drag. The selection of α
and LWC as input variables ensures the model accurately reflects the physical principles
underlying the rain’s impact on aerodynamic performance.

The symbolic regression algorithm employed in this study automatically identifies
the most relevant parameters and constructs the model using a variety of mathematical
operators, such as multiplication, division, exponentiation, and square root. This approach
helps avoid overfitting and ensures robustness, allowing the model to generalize well
across different conditions. By combining these operators, the algorithm effectively cap-
tures the complex relationships between the variables, providing a nuanced and accurate
representation of the effects of rain on lift and drag coefficients.

The results from this proposed model, which incorporates the effects of rain into the
calculation of ∆CL and ∆CD, are then passed to the stall delay correction model developed
by the same group [58] to compute the three-dimensional lift coefficient (CL,3D) from the
two-dimensional lift coefficient (CL,2D) with the effects of rain included. Integrating these
two models allows for a more comprehensive understanding of both rain effects and stall
delay, providing a holistic approach to aerodynamic performance prediction.

This combined model is a crucial component of the proposed explainable AI (XAI)
framework, which will subsequently be integrated into the Blade Element Momentum
(BEM) method. The enhanced BEM method will utilize these refined aerodynamic coef-
ficients to more accurately compute the power output of wind turbines, accounting for
both rain conditions and stall delay effects. This integration ensures that the predictive
model captures all relevant physical phenomena, leading to more reliable and robust
power calculations.

The results of the proposed model are depicted in Figures 9 and 10. Figure 9 presents
the comparison of the lift coefficient (CL,Rain) as a function of the angle of attack (AOA)
for different liquid water content (LWC) values. Each subplot in this figure represents
a different LWC: 10 g/m3, 25 g/m3, and 39 g/m3. Similarly, Figure 10 illustrates the
comparison of the drag coefficient (CD,Rain) as a function of the AOA for the same LWC
values. The proposed model demonstrates a high degree of accuracy with an R2 value of
0.97 for both coefficients. The formulations for the changes in the lift coefficient and drag
coefficient due to rain are given by Equations (4) and (5), respectively.
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Figure 9. A comparison of the lift coefficient (CL,Rain) as a function of the angle of attack (AOA)
for different liquid water content (LWC) values. Each subplot represents a different LWC: 10 g/m3,
25 g/m3, and 39 g/m3. The blue line represents the proposed XAI model’s CL,Rain, while the black
hollow squares represent the CFD CL,Rain. The model demonstrates a high degree of accuracy with
an R2 value of 0.97.
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Figure 10. A comparison of the drag coefficient (CD,Rain) as a function of the angle of attack (AOA)
for different liquid water content (LWC) values. Each subplot represents a different LWC: 10 g/m3,
25 g/m3, and 39 g/m3. The blue line represents the proposed XAI model’s CD,Rain, while the black
hollow squares represent the CFD CD,Rain. The model demonstrates a high degree of accuracy with
an R2 value of 0.97.
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3.4. BEM Results Using XAI Model

The XAI model developed using symbolic regression was integrated into the Blade
Element Momentum (BEM) framework to calculate the aerodynamic forces on the wind
turbine blades. These forces were then used to compute the thrust, torque, and, finally,
power output under various conditions.

Table 2 presents the wind turbine performance metrics at various wind speeds and
LWC levels using the BEM framework. The data reveal how the power output decreases
with increasing LWC, indicating the impact of rain conditions on turbine efficiency.

Table 2. Wind turbine performance metrics at various wind speeds and LWC levels using BEM.

Metric Wind Speed Dry LWC 10 g/m3 LWC 25 g/m3 LWC 39 g/m3

Power
(kW)

7 m/s 5.92 kW 5.87 kW 5.70 kW 5.58 kW
10 m/s 11.31 kW 11.10 kW 10.87 kW 10.69 kW
15 m/s 12.40 kW 12.09 kW 11.88 kW 11.68 kW
20 m/s 11.29 kW 10.97 kW 10.76 kW 10.56 kW
25 m/s 10.29 kW 9.98 kW 9.77 kW 9.57 kW

At a wind speed of 7 m/s, the power output decreases from 5.92 kW (dry) to 5.58 kW
(LWC 39 g/m3), showing a 5.74% reduction. Similarly, at 10 m/s, the power drops from
11.31 kW (dry) to 10.69 kW (LWC 39 g/m3), representing a 5.48% reduction. At 15 m/s,
the power decreases from 12.40 kW (dry) to 11.68 kW (LWC 39 g/m3), indicating a 5.81%
reduction. For 20 m/s, the power drops from 11.29 kW (dry) to 10.56 kW (LWC 39 g/m3),
showing a 6.46% reduction. Finally, at 25 m/s, the power decreases from 10.29 kW (dry) to
9.57 kW (LWC 39 g/m3), resulting in a 7% reduction.

Figure 11 illustrates the power output versus the wind speed under varying conditions
of liquid water content (LWC). The figure further emphasizes the trend of decreasing power
output with increasing LWC across different wind speeds, corroborating the data presented
in Table 2.
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Figure 11. Plot of power output versus wind speed under varying conditions of liquid water
content (LWC).

The results demonstrate a consistent decrease in power output with increasing LWC,
with the most significant reduction occurring at higher wind speeds. This trend indicates
that the impact of rain is more pronounced under these conditions. The degradation in per-
formance can be attributed to the effects of raindrops on the airflow over the turbine blades,
which disrupts the smooth flow, increases aerodynamic drag, and reduces overall efficiency.
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These findings highlight the importance of considering rain effects in the design and
operation of wind turbines to ensure optimal performance under various environmental
conditions. The integration of the XAI model within the BEM framework provides a robust
tool for predicting and mitigating the adverse impacts of rain on wind turbine performance.
Future research could focus on refining these models and exploring mitigation strategies to
minimize the impact of rain on wind turbine efficiency.

4. Conclusions and Future Works

This research examined the significant influence of unfavorable weather conditions,
particularly rain, on the aerodynamic performance and power generation of horizontal-axis
wind turbines (HAWTs) by integrating Blade Element Momentum (BEM) theory with
explainable artificial intelligence (XAI). This study offers a comprehensive examination
of the S809 airfoil, a commonly used airfoil in wind turbines at the National Renewable
Energy Laboratory (NREL), in different rainfall situations.

The research utilized ANSYS FLUENT to perform computational fluid dynamics (CFD)
simulations. The simulations employed a two-phase flow model known as the Discrete
Phase Model (DPM) to describe rain. The simulations were run at a Reynolds number
(Re) of 1 × 106 and liquid water content (LWC) values of 0 (dry), 10, 25, and 39 g/m3.
The simulations demonstrated that when exposed to rain, the S809 airfoil experiences
a substantial decrease in lift and a rise in drag, resulting in a detrimental impact on its
aerodynamic efficiency. The decrease in aerodynamic efficiency was consistent at all angles
of attack, demonstrating the harmful impact of rain on the functioning of wind turbines.
The decline in lift coefficient ranges from 0.85% to 3.74% for an LWC of 10 g/m3, from
1.91% to 8.20% for an LWC of 25 g/m3, and from 2.98% to 12.70% for an LWC of 39 g/m3.
The drag coefficient rises by 1.92% to 6.19% for an LWC of 10 g/m3, 4.94% to 13.90% for an
LWC of 25 g/m3, and 5.96% to 21.24% for an LWC of 39 g/m3.

The novel contribution of this research lies in the development of machine learning
models using symbolic regression, which predicted changes in aerodynamic coefficients
under rainy conditions with high accuracy. These models demonstrated a good prediction
with an R2 = 0.97, highlighting their potential to improve the accuracy of wind turbine
performance forecasts under challenging weather circumstances using BEM.

The application of the BEM method to estimate the power output of the NREL Phase
VI wind turbine under both dry and wet conditions, coupled with machine learning-based
correction models, predicted for aerodynamic penalties. The research revealed that rain
with an LWC of 10 g/m3 could decrease wind turbine power output within the range of
0.85% to 3.07%. Similarly, rain with an LWC of 25 g/m3 was found to result in a reduction
in wind turbine power output ranging from 3.70% to 5.06%. Additionally, rain with an
LWC of 39 g/m3 was observed to lead to a decrease in wind turbine power output between
5.74% and 7%. This finding is critical as it quantifies the impact of rain on renewable energy
generation, highlighting the need for adaptive strategies and advanced predictive models
to mitigate these effects.

In the future, the authors intend to conduct unsteady simulations using a Large Eddy
Simulation (LES) of the airfoil and also investigate the effect of rain on the NREL Phase
VI wind turbine using a sliding mesh analysis of the full rotor CFD simulation, building
upon their previous research [28,62]. Also, the authors intend to take into account different
airfoils used in wind turbines to enhance the generalizability of our models.

In summary, this research contributes significantly to the understanding of how en-
vironmental conditions, specifically rain, affect the performance of wind turbines. By
integrating advanced computational simulations with machine learning techniques, it
offers a comprehensive approach to predicting and managing the aerodynamic penalties
associated with rain. These insights are essential for improving the reliability and efficiency
of wind energy systems, thereby supporting the ongoing transition to sustainable energy so-
lutions. The findings emphasize the importance of considering environmental factors in the
design and operation of wind turbines, ensuring optimized performance and maximizing
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the potential of renewable energy sources in varying climatic conditions. This investigation
not only provides a robust framework for forecasting wind turbine performance in rainy
conditions but also showcases the potential of integrating BEM theory with XAI to boost
wind farm operational efficiency and safety, heralding future innovations in renewable
energy technology and management practices.
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Nomenclature

CD Drag Coefficient
CL Lift Coefficient
Dp Diameter of Raindrop (mm)
Re Reynolds Number
UT Terminal Velocity (m/s)
Greek Symbols
α Angle of Attack (degrees)
Abbreviations
AOA Angle of Attack
BEM Blade Element Momentum
CFD Computational Fluid Dynamics
CSU Colorado State University
DPM Discrete Phase Model
DUT Delft University of Technology
ESCM-WAR Enhanced Soil Moisture Content Model–Wind And Rain Hybrid Approach
GWEC Global Wind Energy Council
HAWT Horizontal-Axis Wind Turbine
IEA International Energy Agency
LWC Liquid Water Content
MOCO Multi-objective Combinatorial Optimization
MRF Multiple Reference Frame
NREL National Renewable Energy Laboratory
OSU Ohio State University
RANS Reynolds-Averaged Navier–Stokes
Re Reynolds Number
SST Shear Stress Transport
VAWT Vertical-Axis Wind Turbine
VOF Volume of Fluid
XAI Explainable Artificial Intelligence
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