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Abstract: During wintertime temperature inversion episodes, ozone in the Uinta Basin sometimes
exceeds the standard of 70 ppb set by the US Environmental Protection Agency. Since ozone formation
depends on sunlight, and less sunlight is available during winter, wintertime ozone can only form if
snow cover and albedo are high. Researchers have encountered difficulties replicating high albedo
values in 3-D weather and photochemical transport model simulations for winter episodes. In this
study, a process to assimilate MODIS satellite data into WRF and CAMx models was developed,
streamlined, and tested to demonstrate the impacts of data assimilation on the models’ performance.
Improvements to the WRF simulation of surface albedo and snow cover were substantial. However,
the impact of MODIS data assimilation on WRF performance for other meteorological quantities
was minimal, and it had little impact on ozone concentrations in the CAMx photochemical transport
model. The contrast between the data assimilation and reference cases was greater for a period with
no new snow since albedo appears to decrease too rapidly in default WRF and CAMx configurations.
Overall, the improvement from MODIS data assimilation had an observed enhancement in the
spatial distribution and temporal evolution of surface characteristics on meteorological quantities
and ozone production.

Keywords: MODIS; data assimilation; WRF; winter ozone; Uinta Basin

1. Introduction

Ozone (O3) in the troposphere negatively impacts respiratory health, especially for
those with lung diseases [1]. The United States Clean Air Act of 1970 and the National Am-
bient Air Quality Standards establish the regulatory practices for planning and executing
the reduction in O3 precursor emissions to obtain the established air quality standard [2].
Tropospheric O3 in Utah’s Uinta Basin during wintertime temperature inversion episodes
sometimes exceeds the standard of 70 ppb set by the US Environmental Protection Agency
(EPA) [1,3], and the EPA declared portions of Uintah and Duchesne Counties below 6250 feet
in elevation an O3 nonattainment area in 2018 [4]. Only two places worldwide are known
to experience wintertime O3 exceeding EPA standards with any regularity. One is the Uinta
Basin, and the other is Wyoming’s Upper Green River Basin [5].

Atmospheric ozone formation occurs in the troposphere from reactions involving
nitrogen (NOx) oxides and volatile organic compounds (VOC). Most NOx and VOC emis-
sions are from oil and gas development in the Uinta Basin [6]. Wintertime temperature
inversion conditions trap these pollutants near ground level. The increasing ground-level
concentrations of pollutants and the photochemical reactions of these pollutants form
tropospheric O3 [7].

The number of ozone exceedance days in the Uinta Basin each year is closely tied to the
local meteorology, especially snow cover and temperature inversions. Years with persistent
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snow cover and high barometric pressure tend to have more days with strong winter
inversions and high ozone concentrations. During inversion episodes, O3 concentrations
tend to be higher at lower elevations, where inversion conditions are stronger and last
longer. In the absence of snow cover and winter inversions, O3 concentrations in the Basin
are similar to those in other rural, high-elevation locations around the western United
States [7].

In areas in the US that do not comply with the federal O3 standard, regulatory agencies
are required to use 3-D photochemical transport models to test the efficacy of regulatory
strategies to reduce the emissions of NOx and VOC and the formation of O3 [8,9]. While
EPA has established guidelines for how to use models and other analyses to demonstrate
attainment before strategy implementation [2], model outcomes are ultimately only as good
as the models themselves.

Roth et al. [10] reviewed 18 model applications and found that two-thirds of the models
applied for planning emission reduction strategies were inadequate due to limitations of air
quality and meteorological databases and high uncertainties in the emission representation
of the models [10]. Further, most modelers have found that the Weather Research and
Forecasting (WRF) model’s default configuration cannot capture the observed level of
surface albedo (i.e., reflection of sunlight from the earth’s surface). The maximum albedo
simulated by WRF is less than 0.7, whereas an albedo above 0.8 are often observed in reality,
including in the Uinta Basin when snow cover is present [11]. Underestimation of albedo
will lead to inaccuracies in meteorological quantities and underestimation of photolysis
rates and ozone formation. Because of this problem, most of the modeling studies for the
Uinta Basin have implemented manual, snow-related corrections to the WRF model to
increase the surface albedo outcome. Neemann, et al. [11] used a uniform albedo correction
of 0.8 over the entire Basin; the resultant modeled albedo was unrealistically uniform. Most
photochemical modelers after Neemann et al. have used this same approach [12,13].

Many researchers have successfully used Moderate-Resolution Imaging Spectrora-
diometer (MODIS) to improve WRF and photochemical model performance. For example,
Werner et al. [14], compared pollution episodes in Eastern Europe and Poland during the
summer and winter of 2017 during episodes of a poor forecast performance from the WRF-
Chem model for PM2.5 concentrations, and found that data assimilation of surface and
MODIS satellite data improved model results and forecasting of PM2.5. Ghude et al. [15]
and Chen et al. [16], also demonstrated similar improvements in the forecast performance
of PM2.5 in Delhi, India, and the Atlantic Ocean, respectively. Parajuli et al. [17] found
similar improvements in simulation with dust optical depth and aerosol optical depth
when applying nudging with spectral MODIS satellite data to simulations in the Middle
East and North Africa. The validation results of Endale et al. [18] indicated that the aerosol
optical depth of MODIS-terra over Dire Dawa, Ethiopia, showed the best correlation with
multispectral satellite sensors with differences in performance by season. All seasons had
higher aerosol optical depth except during winter [18].

Zhang et al. [19] showed that ensemble assimilation of precipitation-affected radiance
improved the quality of precipitation forecasts, including intensity and spatial distribution,
when verified by independent, ground-based precipitation observations. Paul et al. [20]
demonstrated improved performance for regional monsoonal rainfall by incorporating
spectral nudging to reduce bias in the simulation of deforested regions in Central India.
Meng et al. [21] improved the systematic cold bias of WRF temperature modeling for the
Tibetan Plateau by assimilating albedo data from WRF. Kim and Kim [22] assimilated
satellite radiance data to improve WRF performance in the Arctic. Ran et al. [23–25] used
MODIS data assimilation to improve the simulation of meteorology and air quality.

The primary motivation for this study was to improve weather models of winter
temperature inversion and photochemical models of O3 formation by assimilating remote
sensing observations. This study achieves this by incorporating MODIS’s surface albedo
and snow cover data into the WRF and CAMx models. The novelty of this study is that
it applies MODIS remote sensing data to models of periods with winter O3 formation
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and investigates the impacts of data assimilation on the models’ performance. Improved
models increase the potential value of regulatory strategies to attain ambient air quality
standards that depend on model performance.

2. Materials and Methods
2.1. Study Area

The Uinta Basin (Figure 1) in northeastern Utah, USA is one of a few places experi-
encing high O3 concentrations closely tied to the local meteorology of snow cover and
temperature inversions [5–7]. The years with persistent snow cover and high barometric
pressure tend to have more days with strong winter inversions and high ozone concentra-
tions. During inversion episodes, O3 concentrations tend to be higher at lower elevations,
where inversion conditions are stronger and last longer. In the absence of snow cover
and winter inversions, O3 concentrations in the Basin are similar to those in other rural,
high-elevation locations around the western United States [7].
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Figure 1. WRF one-way nested 12-4-1.33 km domains (A) and details of a 1.33 km domain, including
topography and location of oil and gas wells (B). The white rectangle is Domain 2 and the red
rectangle is Domain 3 from Table 4.

2.2. Data Sources

The Moderate-Resolution Imaging Spectroradiometer (MODIS) is a National Aeronau-
tics and Space Administration (NASA) (White Sands, New Mexico, USA) satellite-based
instrument with high radiometric sensitivity in 36 spectral bands ranging from 0.4 µm
to 14.4 µm, and MODIS data used in this study were accessed from NASA’s MODIS
website [26]. Table 1 describes the MODIS datasets utilized for this study.

Table 1. List and description of MODIS datasets applied in this study.

Dataset Reference Descriptions Horizontal Resolution Temporal Resolution

MCD43A1 Schaaf [27]

MODIS Terra + Aqua
BRDF/Albedo Model
Parameters Daily L3
Global—500 m V006

500 m Daily

MCD19A1 Lyapustin [28]

MODIS Terra + Aqua Land
Surface BRF Daily L2G Global
500 m, 1 km and 10 km S.I.N.
Grid V006

500 m Daily
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Table 1. Cont.

Dataset Reference Descriptions Horizontal Resolution Temporal Resolution

MCD19A2 Lyapustin [29]

MODIS Terra + Aqua Land
Aerosol Optical Thickness
Daily L2G Global 1 km S.I.N.
Grid V006

1 km Daily

MOD10A1/MYD10A1 Hall [30]
MODIS Terra + Aqua Snow
Cover Daily L3 Global 500 m
Grid. Only MOD10A1 is used

500 m Daily

MCD15A3H Myneni [31]

MODIS Terra + Aqua Leaf
Area Index/FPAR 4-Day L4
Global 500 m (4 days
composite)

500 m Daily

Meteorological and ozone data used for comparison were from Lyman and Tran [7]
and were collected as described therein.

2.3. Data Analysis Methods

Figure 2 explains the method used to assimilate MODIS data into the WRF and CAMx
models. All MODIS data from their original horizontal resolution (500 m or 1 km) were
re-gridded to the model resolution of 1.3 km using the Earth System Modeling Framework.
The Second Simulation of a Satellite Signal in the Solar Spectrum vector code (6SV) was
utilized to construct a lookup table for the diffuse radiation fraction, which was then used
in the bidirectional reflectance distribution function (BRDF) albedo to determine diurnal
values of snow and spectrum shortwave albedo.
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Except for the MODIS Leaf Area Index (LAI), which replaces the original and cli-
matology seasonal LAI variable in WRF’s input file, this study incorporated all other
MODIS-derived quantities in the WRF surface nudging module before entering the WRF
core model. Finally, this study used the wrfcamx module to process WRF outputs and
prepare meteorology inputs in binary format for CAMx.

This study adapted specific WRF and CAMx model source codes to incorporate
MODIS data assimilation (see Tables S1 and S2 for specifics). One notable aspect of
this approach is the integration of MODIS data using the WRF surface nudging module
(wrfsfdda). This allowed this study to leverage various standard options for controlling
data assimilation. These options include toggling data assimilation on or off, adjusting
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the frequency of replacing WRF estimates with MODIS data, modifying weighting factors,
ramping times, and more.

2.4. Re-Gridding MODIS Data to the WRF Model Domain

This study applied the Earth System Modeling Framework (ESMF5F) to the NCAR
Command Language (NCL6F) front end to re-grid MODIS data from their original horizon-
tal resolution (Table 1) to the WRF horizontal resolution of 1.3 km. Several interpolation
methods are supported by ESMF, including “bilinear”, “patch”, “conserve”, and “nearest-
stod/nearestdtos”. Sensitivity tests suggested the “conserve” method produces the best
preservation of MODIS data in the WRF domain. Since the resolution of the MODIS grid
is higher than that of the WRF, the downscaling of MODIS data to the WRF grid involves
minimum interpolation, which explains the better performance of the “conserve” method
over other interpolation methods.

2.5. Determining Diurnal Surface Albedo from the MODIS MCD43A1 Dataset

MODIS MCD43A1 provides weighting parameters associated with the RossThick-
LiSparseReciprocal bidirectional reflectance distribution function (BRDF) that best describes
the anisotropy of each pixel. These parameters are used to estimate black sky (αBSA) and
white sky (αWSA) albedo for any solar zenith angle (θSun), model weighting parameters
(iso = isotropic, vol = volumetic, and geo = geometic) and selected bin of wavelength (λ) using
the following equations:

αBSA(θSun, λ) = fiso(λ)giso(θSun) + fvol(λ)gvol(θSun)+ f geo(λ)ggeo(θSun) (1)

αWSA(λ) = fiso(λ)g3iso + fvol(λ)g3vol+ f geo(λ)g3geo (2)

Blue sky albedo (αBLUE) refers to albedo calculated under real-world conditions with
a combination of diffuse and direct lighting based on atmospheric and view-geometry
conditions. Blue sky albedo can be determined by:

αBLUE = αBSA(1 − D) + αWSAD (3)

Parameters on the right-hand side of Equations (1) and (2) are provided by MCD43A1.
The Second Simulation of a Satellite Signal in the Solar Spectrum–Vector (6SV8F) model
calculates the split factor D between diffuse and direct lighting [32]. Although 6SV simulates
diffuse and direct effects under different atmospheric and surface conditions, the specified
parameters in the model, as shown in Table 2, with the assumption that these parameters
best represent winter conditions in the Uintah Basin.

Table 2. Parameter settings used as inputs for 6SV model to calculate the split factor D between
diffuse and direct lighting [32].

Parameters Values Descriptions

Atmospheric profile 3 Midlatitude winter
Aerosol model 1 Continental model
Sensor level 1000 km Set to satellite altitude
Ground reflectance type 0 Homogenous surface
Directional effect 1 Directional effect is considered
Directional effect model 10 MODIS operational BDRF

Weigh factors for MODIS BDRF 1.0, 0.77, 0.2
Weights for Lambertian kernel,
RossThick kernel, LiSparse kernel
in MODIS BDRF

Atmospheric correction mode −1 No atmospheric correction

Other inputs of the 6SV model, including view angles (zenith θView, and azimuth ϑView)
are taken from MCD19A1, and aerosol optical depth (AOD) is taken from MCD19A2. Al-
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though MCD19A2 is a daily dataset, its coverage is sporadic (i.e., not all pixels covering the
model domain are available in each scan). Therefore, a monthly average AOD was derived
from MCD19A2 to produce complete coverage over the WRF model domain. This study
used the 6SV model to create a lookup table for D values for a wide range of wavelengths,
solar angles, view angles, and aerosol optical depth (λ, θsolar, ϑsolar, θview, AOD).

2.6. WRF Model Configurations

For the reference simulation (referred to as REF), this study used the well-tested grid
definitions, topography, land use, boundary/initial conditions, and physics options described
in Tables 3–5, and Figure 1. These configurations are the same as the 2017 Air Resource
Management Strategy (ARMS) modeling study [33], except that surface data nudging was not
used in the current study. The modeling episode was from 1 to 28 February 2011, divided into
four 5.5-day batches and one 8.5-day batch. The first 12 h of each batch served as spin-up time
and were discarded from the analysis. This period covered three distinct inversion events
around 4–9 February, 12–17 February and 21–25 February.

Table 3. Grid definitions for the WRF Preprocessor System.

Parameter Name Parameter Value

Projection Lambert conformal
Reference latitude 40 N
Reference longitude −97 W
truelat1 33
truelat2 = 45
stand_lon = −97
ref_x 190.5
ref_y 90.5

Table 4. WRF model grid configurations and topographical, land use, and initial/boundary conditions.

Domain 1 Domain 2 Domain 3

Grid size (x, y) 201 × 191 253 × 253 298 × 322

Vertical levels 37 37 37

Vertical coordinates Terrain-following Eta
(non-hybrid)

Terrain-following Eta
(non-hybrid)

Terrain-following Eta
(non-hybrid)

Vertical grid spacing 12–16 m in boundary layer 12–16 m in boundary layer 12–16 m in boundary layer

Horizontal resolution (km) 12 4 1.33

Model time step (s) 25 8.33 2.77

Topographic dataset USGS GTOPO30 USGS GTOPO30 USGS GTOPO30

Land use dataset NLCD2011 modified
9s

NLCD2011 modified
9s

NLCD2011 modified
9s

Initial and boundary
conditions N.A.M.-12 km Continuous updates nested

from 12 km domain
Continuous updates nested
from 4 km domain

Top and bottom boundary
conditions

- Top: Rayleigh dampening
for the vertical velocity
- Bottom: physical, non
free-slip option

- Top: Rayleigh dampening
for the vertical velocity
- Bottom: physical, non
free-slip option

- Top: Rayleigh dampening
for the vertical velocity
- Bottom: physical, non
free-slip option

Veg parm table variables
modified for winter
simulations

SNUP, MAXALB SNUP, MAXALB SNUP, MAXALB

Snow cover initialization - SNODAS - SNODAS - SNODAS
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Table 5. Physics options used in the WRF.

WRF Treatment Option Selected

Microphysics Thompson
Longwave Radiation RRTMG
Shortwave Radiation RRTMG
Land Surface Model (LSM) NOAH
Planetary Boundary Layer (PBL) Scheme MYJ

Cumulus Parameterization Kain–Fritsch in the 12 km domains. None in
the 4 and 1.3 km domain.

2.7. CAMx Model Configurations

This study used the Comprehensive Air Quality Model (CAMx) version 6.59F in the
same configuration as the 2017 Air Resource Management Strategy (ARMS) modeling
study [33] in its finest domain (1.3 km), which is presented as d03 in Figure 1. Table 6
provides details on the CAMx domain configurations. The Utah Department of Environ-
mental Quality‘s emission inventory for oil and gas production in the Uintah Basin in
2014 (UBEI2014) was processed using Sparse Matrix Operator Kerner Emissions (SMOKE)
version 4.510F (Community Modeling and Analysis System, Chapel Hill, NC, USA) and
projected to model episode 1 to 28 February 2011, with scaling factors derived from oil and
gas production rates in 2014 and 2011, to provide emissions for the CAMx run.

Table 6. Summary of CAMx model configurations.

Science Options Configuration

Model Code Version CAMx V6.5
Horizontal Grid 1.33 km (298 × 322)
Vertical Grid 25 vertical layers
Initial and Boundary Conditions Processed from ARMS2017
Boundary Conditions 12 km BCs from WAQS 2011b
Land-Use Data Land-use fields from meteorological model

Photolysis Rate Preprocessor TUV V4.8 (Clear sky photolysis rates from
TOMS data)

Gas-Phase Chemistry CB6r4

Aerosol Phase CF (coarse- and fine-mode aerosols)
Diffusion Scheme
Horizontal Grid Explicit horizontal diffusion
Vertical Grid K-theory 1st-order closure
Deposition Scheme
Dry Deposition ZHANG03 with modifications based on [34]
Wet Deposition CAMx-specific formulation
Numerical Solvers
Gas-phase Chemistry Euler Backward Iterative (E.B.I.) solver
Horizontal Advection Piecewise Parabolic Method (P.P.M.)
Vertical Advection Implicit scheme with vertical velocity update

2.8. Implementation of MODIS Data Assimilation to the WRF/CAMx Model Platform
2.8.1. WRF Model Modification

This study modified specific WRF source codes to allow the model to assimilate
MODIS surface albedo and snow cover. Notably, this study implemented the assimilation
to WRF through WRF’s surface assimilation module, which enables the WRF modeler to
turn MODIS data assimilation on or off and to control assimilation frequency (e.g., every 1,
2, 6 h, or longer). As a component of the surface assimilation model, the surface albedo
was also controlled by other standard options in the WRF fdda module. New variables (see
Supplementary Materials Tables S1 and S2) were added to the input file of the wrfsfdda
module (wrfsfdda_d<domain>). Unlike hourly surface albedo, which has a diurnal cycle
after being processed as described in Section 2.2, the hourly snow cover is aggregated from
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the MODIS re-gridded daily snow cover data, which means all hours within the same date
have identical snow cover values.

MODIS snow cover and LAI were also written to the WRF input files (wrfinput_d<domain>).
MODIS LAI replaced the default climatology LAI in wrfinput, which often is incorrect and in
coarse resolution. In WRF simulation, LAI was read in from wrfinput as an initial condition
and evolved with other simulated parameters such as snow depth and snow cover.

2.8.2. CAMx Model Modification

Although CAMx reads in most of the meteorological inputs from WRF output files,
CAMx determines its own albedo and snow cover as the functions of snow water equiva-
lent, snow age, and land-use type. This means WRF albedo and snow cover improvements
are not carried over to CAMx in the standard model configuration. To force CAMx to use
MODIS-assimilated data from WRF, CAMx code modifications were made (see Supplemen-
tary Materials Tables S1 and S2). These included modifications to the wrfcamx module so
that the MODIS albedo and snow cover are written to CAMx inputs.

If no information about snow age is available, CAMx assumes an albedo of near-fresh
snow conditions. Therefore, CAMx-albedo may be higher than that estimated by WRF
before decreasing gradually as the snow ages. This implies that the albedo calculated by
the CAMx model in standard configuration could be higher than the albedo value taken
from WRF inputs.

3. Results
3.1. Impact of MODIS Data Assimilation on WRF Model Performance

Figure 3 compares surface albedo simulated in the WRF default configuration (referred
to as REF hereafter) to WRF simulations that included MODIS data assimilation (referred
to as MODIS hereafter) as an average across 1–28 February 2011. Compared to REF, MODIS
not only gives higher albedo in the Uinta Basin, but the spatial distribution of albedo is
more realistic. A comparison of the snow cover fraction in Figure 4 shows that, while snow
cover in the Uinta Basin is somewhat lower in MODIS than in REF, its distribution is more
realistic. In REF, snow cover is more complete and more uniform at many locations in the
model. Initialization of the model with the SNODAS data product [35] could be one of the
reasons for the snow cover distribution in REF.
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monitoring stations.)
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Figure 5 compares the time evolution of WRF estimates of snow depth, snow water
equivalent, and snow cover between the REF and MODIS cases as an average over six
locations in the Uinta Basin. This figure shows that every time WRF was re-initialized
with SNODAS data (indicated by green bars), snow depth, snow water equivalent, and
snow cover sharply increased. This result was observed in REF and MODIS, as they were
both periodically re-initialized with SNODAS data. All three parameters tended to decay
faster in REF than in MODIS. Also, from 11 February onward, several storms brought extra
snow to the Basin, and WRF consistently estimated more snow in REF than in MODIS.
The zigzag-like snow cover pattern in MODIS in Figure 5 is the effect of data assimilation,
as the snow cover fraction was directly taken from the MODIS dataset. Snow cover was
typically higher in REF than in MODIS, likely caused by SNOWDAS data reinitialization.
The conclusion is that snow-related characteristics were retained longer in MODIS than in
REF for extended simulations and without reinitialization.
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Planetary boundary layer height is the height of the mixed layer of the atmosphere
that is in direct contact with the earth’s surface. The lapse rate is a measure of inversion
strength. This study found no meaningful differences in the planetary boundary layer
height and lapse rate between REF and MODIS at Ouray (Figure 6). Boundary layer height
tended to be slightly shallower in MODIS compared to REF, but the lapse rate was slightly
weaker in MODIS. Figure S1 shows a comparative time series for other meteorological
parameters, as well as statistical analyses including mean absolute error (MAE), bias (BIAS),
and index of agreement (IOA). Overall, the MODIS data assimilation technique did not
consistently result in better WRF performance. One exception was the simulation of wind
speed (Figure S1). On some days when storm fronts passed through the Basin, the REF
simulation estimated unrealistically high wind speed, whereas wind speeds were lower
and closer to observed values in the MODIS simulation.
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3.2. Impact of MODIS Data Assimilation on CAMx Model Performance

Figure 7 compares the photolysis rate of ozone at Ouray in REF and MODIS. From
1–10 February, no new snow was simulated in the model. Since snow tends to decay quicker
in the REF simulations than in the MODIS simulations, the photolysis rate in the MODIS
simulations exceeded that in REF at the end of this period. However, on 11 February and
afterward (indicated as the part of the figure to the right of the green vertical bar), as new
snow was estimated in WRF, and because of the fresh-snow effect in CAMx, the photolysis
rate in REF was consistently higher than in MODIS. This shows that the higher albedo
obtained in WRF with the MODIS satellite data assimilation technique did not necessarily
translate to a higher photolysis rate in the CAMx model. A positive effect of MODIS data
assimilation on the CAMx photolysis rate could be expected if the simulation included
an extended period where no new snow was simulated. Additionally, an online coupling
meteorology-and-chemistry model such as WRF-Chem may benefit more from MODIS
data assimilation than a decoupled model platform such as WRF-CAMx.
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Figure 7. Comparison of photolysis rates simulated by CAMx using the default configuration (REF)
and MODIS data assimilation (MODIS). (Green line = a new snow event.)

As expected from the photolysis rate comparison, this study found similar patterns
in ozone concentrations between the REF and MODIS simulations. Simulated ozone, as
shown in Figure 8 for the Ouray air quality monitoring station, was related to the photolysis
rate shown in Figure 7. Neither scenario simulated ozone at levels observed during this
episode, probably because of challenges with model emissions and chemistry, which also
impact winter O3 [13].
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Figure 8. Comparison of ozone at Ouray as simulated by CAMx using the default configuration
(REF) and MODIS data assimilation (MODIS). (Red dash line = EPA National Ambient Air Quality
Standard (NAAQS) for ozone).

4. Discussion

Meng et al. [21] utilized MODIS to improve the accuracy of albedo simulation and
their impact on regional climate models and global atmospheric general circulation models
in the Tibetan Plateau. They demonstrated that the overestimation of snow cover causes
an overestimation of surface albedo and cold temperature bias. The age of the snow also
contributes to the overestimation of surface albedo, and light-absorbing aerosols could also
be influencing model results [21]. Both Meng et al. [21] and our study involve assimilating
MODIS albedo data into models to assess the impact of model outputs or simulations on
understanding precipitation or ozone formation dynamics, respectively.

Ran et al. [24] also used MODIS albedo data assimilation as well as vegetation data
assimilation to improve the representation of soil nitric oxide (NO) emissions in the Com-
munity Multiscale Air Quality (CMAQ) and their implications for air quality. They found
that surface O3 was biased high for April, August, and October and that MODIS vegetation
data did improve their simulations during the growing season. WRF/CMAQ models
used in their study had improvements in temperature, humidity, wind, and O3 simula-
tions [24]. While all studies contribute to advancing modeling capabilities by integrating
high-resolution remote sensing data, the Uinta Basin study provides critical insights into
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real-world O3 exceedances and regulatory challenges during wintertime inversions and
snow cover.

Improvements to WRF simulation of surface albedo and snow cover were substantial.
However, the impact of MODIS data assimilation on WRF performance for other meteoro-
logical quantities was minimal. The contrast between the data assimilation and reference
cases may have been greater for a period with no new snow since albedo appears to de-
crease too rapidly in default WRF and CAMx configurations. Overall, the improvement
from MODIS data assimilation was too small to impact meteorological quantities and ozone
production significantly. Tran et al. [13] found that the assimilation of surface and vertical
meteorological data led to improvements in WRF performance, and a combination of the
approach of Tran et al. with the MODIS data assimilation performed in this work could
maximize the quality and representativeness of the model at the Basin-wide scale.

Additional satellite-based datasets could be used to improve WRF and CAMx perfor-
mance further. For example, using the same framework developed in this project, model
cloud cover could be improved, or solar attenuation by aerosols could be more accurately
accounted for.

5. Conclusions

This study addresses the complex formation of wintertime O3 in Utah’s Uinta Basin,
focusing on the impact of MODIS remote sensing data assimilation on the performance of
atmospheric models. Our findings reveal significant insights into the interplay between
model configurations, meteorological phenomena, and the role of MODIS data in improving
model performance. By integrating MODIS-derived surface albedo and snow cover data
into the WRF and CAMx model frameworks, we observed notable enhancements in the
spatial distribution and temporal evolution of surface characteristics. MODIS assimilation
led to more realistic representations of snow cover, albedo, and photolysis rates, thereby
improving the accuracy of O3 simulations.

Despite the improvements achieved through MODIS data assimilation, several lim-
itations persist in our modeling approach. Uncertainties in emission inventories, model
physics, and chemical mechanisms warrant further investigation to enhance model fidelity.
Additionally, future studies should explore the potential of online coupled meteorology-
chemistry models, such as WRF-Chem, to capitalize on the benefits of MODIS data assimi-
lation for comprehensive air quality assessments.

The findings of this study have significant implications for air quality management
and regulatory practices in the Uinta Basin. Accurate modeling of O3 formation processes
is essential for developing effective mitigation strategies and attainment plans to meet
National Ambient Air Quality Standards. By incorporating MODIS data assimilation
techniques into atmospheric models, regulatory agencies can enhance their understanding
of O3 dynamics and optimize emission reduction measures to achieve air quality goals.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos15080954/s1, Table S1: Summary of WRF model modifi-
cations.; Table S2: Summary of CAMx model modifications.; Figure S1: Comparison of the overall
performance of WRF using the WRF default configuration (REF) and MODIS data assimilation
(MODIS). Observed values are also shown. The panels show water vapor mixing ratio, temperature
at 2 m above ground, wind speed at 10 m, and wind direction at 10 m (in descending order). Skill
scores are shown at the bottom of each boxplot (REF/MODIS; see text for an explanation of scores).
The green boxes indicate the days when storm fronts passed through the Basin.
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