Evaluation of Fine Particulate Matter (PM2.5) Concentrations Measured by Collocated Federal Reference Method and Federal Equivalent Method Monitors in the U.S.
Abstract
:1. Introduction
2. Methods
2.1. Source of FEM and FRM Data
2.2. Data Selection, Preparation, and Analysis
3. Results and Discussion
3.1. FEM Monitors by Manufacturer, Method of Measurement, and Location
3.2. FEM/FRM Concentration Ratios
3.2.1. Distribution of Ratios
3.2.2. Ratios by FEM Equipment Manufacturer
3.2.3. Ratios by Method of Measurement
3.2.4. Ratios by EPA Region
3.3. FEM/FRM Bias
3.3.1. Bias by Equipment Manufacturer
3.3.2. Bias by Method of Measurement
3.3.3. Bias by EPA Region
3.3.4. Bias by Location Type
3.3.5. Potential Bias in PM2.5 Annual Design Values (DVs)
3.3.6. Implications of FRM/FEM Bias and Future Directions
4. Study Boundaries
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- USEPA. Ambient Air Monitoring Reference and Equivalent Methods; 40 CFR, Part 50. Federal Code of Regulations; US Government Printing Office: Washington, DC, USA, 2024.
- Kelp, M.M.; Fargiano, T.; Lin, S.; Liu, T.; Turner, J.; Kutz, N.; Mickley, L. Data-driven placement of PM2.5 air quality sensors in the United States: An approach to target urban environmental injustice. Geohealth 2023, 7, e2023GH000834. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Ambient Air Monitoring Reference and Equivalent Methods; 40 CFR, Part 53, Federal Code of Regulations; US Government Printing Office: Washington, DC, USA, 2024.
- Clements, A.; Vanderpool, R. EPA Tools and Resources Webinar FRMs/FEMs and Sensors: Complementary Approaches for Determining Ambient Air Quality. 2019. Available online: https://www.epa.gov/sites/default/files/2019-12/documents/frm-fem_and_air_sensors_dec_2019_webinar_slides_508_compliant.pdf (accessed on 25 May 2024).
- Le, T.C.; Shukla, K.K.; Chen, Y.T.; Chang, S.C.; Lin, T.Y.; Li, Z.; Pui, D.Y.; Tsai, C.J. On the concentration differences between PM2. 5 FEM monitors and FRM samplers. Atmos. Environ. 2020, 222, 117138. [Google Scholar] [CrossRef]
- Noble, C.A.; Vanderpool, R.W.; Peters, T.M.; McElroy, F.F.; Gemmill, D.B.; Wiener, R.W. Federal reference and equivalent methods for measuring fine particulate matter. Aerosol Sci. Technol. 2001, 34, 457–464. [Google Scholar] [CrossRef]
- USEPA. Part 50—National Primary and Secondary Ambient Air Quality Standards. e-CFR: Title 40. Protection of Environment. Chapter I. ENVIRONMENTAL PROTECTION AGENCY. Subchapter C. AIR PROGRAMS. Available online: https://www.ecfr.gov/current/title-40/chapter-I/subchapter-C/part-50 (accessed on 1 July 2024).
- Long, R.W.; Urbanski, S.P.; Lincoln, E.; Colón, M.; Kaushik, S.; Krug, J.D.; Vanderpool, R.W.; Landis, M.S. Summary of PM2.5 measurement artifacts associated with the Teledyne T640 PM Mass Monitor under controlled chamber experimental conditions using polydisperse ammonium sulfate aerosols and biomass smoke. J. Air Waste Manag. Assoc. 2023, 73, 295–312. [Google Scholar] [CrossRef]
- Hanley, T. Continuous FEM Network Status and Method Update. In Proceedings of the National Association of Clear Air Agencies Monitoring Steering Committee Meeting, Boston, MA, USA, 13–14 May 2019. [Google Scholar]
- Frey, H.C.; Adams, P.; Adgate, J.L.; Allen, G.; Balmes, J.; Boyle, K.; Chow, J.C.; Dockery, D.W.; Felton, H.; Gordon, T.; et al. Advice from the Independent Particulate Matter Review Panel (formerly EPA CASAC Particulate Matter Review Panel) on EPA’s Policy Assessment for the Review of the National Ambient Air Quality Standards for Particulate Matter (External Review Draft–September 2019). Docket ID No. EPA–HQ–OAR–2015–0072 (Comment ID: EPA-HQ-OAR-2015-0072-0037), and Clean Air Scientific Advisory Committee, US Environmental Protection Agency, Washington, DC. 2019. Available online: https://www.regulations.gov/comment/EPA-HQ-OAR-2015-0072-0037 (accessed on 10 July 2023).
- USEPA. Reconsideration of the National Ambient Air Quality Standards for Particulate Matter (EPA-HQ-OAR-2015-0072; FRL-8635-02-OAR). 2023. Available online: https://www.regulations.gov/document/EPA-HQ-OAR-2015-0072-1543 (accessed on 27 January 2023).
- Owenby, M.W. Tennessee Comments on Proposed Reconsideration of the National Ambient Air Quality Standards for Particulate Matter (Docket No. EPA-HQ-OAR-2015-0072). 2023. Available online: https://www.regulations.gov/comment/EPA-HQ-OAR-2015-0072-1980 (accessed on 29 March 2023).
- Dunn, R.E. Georgia Environmental Protection Division comments on EPA’s Reconsideration of the National Ambient Air Quality Standards for Particulate Matter (Docket ID No. EPA-HQ-OAR-2015-0072). 2023. Available online: https://www.regulations.gov/comment/EPA-HQ-OAR-2015-0072-1972 (accessed on 29 March 2023).
- Sloan, J. Association of Air Pollution Control Agencies, to P. Tsirigotis, U.S. EPA, (AAPCA Letter). 2022. Available online: https://cleanairact.org/wp-content/uploads/2022/11/AAPCA-Letter-Particulate-Matter-Monitoring-FINAL-11-23-2022.pdf (accessed on 25 May 2023).
- USEPA. Final Rule: Reconsideration of the National Ambient Air Quality Standards for Particulate Matter (EPA–HQ–OAR–2015–0072; FRL–8635–02–OAR). 2024. Available online: https://www.federalregister.gov/documents/2024/03/06/2024-02637/reconsideration-of-the-national-ambient-air-quality-standards-for-particulate-matter (accessed on 6 March 2024).
- Takahashi, K.; Minoura, H.; Sakamoto, K. Examination of discrepancies between beta-attenuation and gravimetric methods for the monitoring of particulate matter. Atmos. Environ. 2008, 42, 5232–5240. [Google Scholar] [CrossRef]
- Shukla, K.; Aggarwal, S.G. A technical overview on beta-attenuation method for the monitoring of particulate matter in ambient air. Aerosol Air Qual. Res. 2022, 22, 220195. [Google Scholar] [CrossRef]
- Hagler, G.; Hanley, T.; Hassett-Sipple, B.; Vanderpool, R.; Smith, M.; Wilbur, J.; Wilbur, T.; Oliver, T.; Shand, D.; Vidacek, V.; et al. Evaluation of two collocated federal equivalent method PM2. 5 instruments over a wide range of concentrations in Sarajevo, Bosnia and Herzegovina. Atmos. Pollut. Res. 2022, 13, 101374. [Google Scholar] [CrossRef]
- Barhate, P.G.; Le, T.C.; Shukla, K.K.; Lin, Z.Y.; Hsieh, T.H.; Li, Z.; Pui, D.Y.; Tsai, C.J. Effect of aerosol sampling conditions on PM2. 5 sampling accuracy. J. Aerosol Sci. 2022, 162, 105968. [Google Scholar] [CrossRef]
- Le, T.C.; Barhate, P.G.; Zhen, K.J.; Mishra, M.; Pui, D.Y.; Tsai, C.J. Optimization of sampling conditions to minimize sampling errors of both PM2. 5 mass and its semi-volatile inorganic ion concentrations. Aerosol Sci. Technol. 2023, 57, 1264–1279. [Google Scholar] [CrossRef]
- Teledyne, A.P.I. User Manual Model T640 PM Mass Monitor. 2021. Available online: https://www.teledyne-api.com/prod/downloads/08354c%20t640%20user%20manual.pdf (accessed on 1 July 2024).
- Met One Instrument, Inc. BAM 1020 Particulate Monitor Operation Manual. 2016. Available online: https://metone.com/wp-content/uploads/2024/02/BAM-1020-9805-Manual-Rev-G-Reduced.pdf (accessed on 1 July 2024).
- Thermo Fisher Scientific. Model 5014i/Beta Instruction Manual. 2014. Available online: https://assets.thermofisher.com/TFS-Assets%2FCAD%2Fmanuals%2Fepm-model-5014i-beta-manual-en.pdf (accessed on 1 July 2024).
- Thermo Fisher Scientific. Model 5030 Instruction Manual. 2013. Available online: https://tools.thermofisher.com/content/sfs/manuals/EPM-manual-Model%205030%20SHARP.pdf (accessed on 1 July 2024).
- Thermo Fisher Scientific. TEOM® 1405 Ambient Particulate Matter Monitor Instruction Manual. 2008. Available online: https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2FEPM-TEOM1405-Manual.pdf (accessed on 1 July 2024).
- United States Government Accountability Office. Air Pollution: Opportunities to Better Sustain and Modernize the National Air Quality Monitoring System. 2019. Available online: https://www.gao.gov/products/gao-21-38 (accessed on 29 July 2023).
- Di, Q.; Amini, H.; Shi, L.; Kloog, I.; Silvern, R.; Kelly, J.; Sabath, M.B.; Choirat, C.; Koutrakis, P.; Lyapustin, A.; et al. An ensemble-based model of PM2. 5 concentration across the contiguous United States with high spatiotemporal resolution. Environ. Int. 2019, 130, 104909. [Google Scholar] [CrossRef]
- Kelp, M.M.; Lin, S.; Kutz, J.N.; Mickley, L.J. A new approach for determining optimal placement of PM2.5 air quality sensors: Case study for the contiguous United States. Environ. Res. Lett. 2022, 17, 034034. [Google Scholar] [CrossRef]
- Marlier, M.E.; Brenner, K.I.; Liu, J.C.; Mickley, L.J.; Raby, S.; James, E.; Ahmadov, R.; Riden, H. Exposure of agricultural workers in California to wildfire smoke under past and future climate conditions. Environ. Res. Lett. 2022, 17, 094045. [Google Scholar] [CrossRef]
- Magi, B.I.; Cupini, C.; Francis, J.; Green, M.; Hauser, C. Evaluation of PM2.5 measured in an urban setting using a low-cost optical particle counter and a Federal Equivalent Method Beta Attenuation Monitor. Aerosol Sci. Technol. 2020, 54, 147–159. [Google Scholar] [CrossRef]
- Chang, C.T.; Tsai, C.J.; Lee, C.T.; Chang, S.Y.; Cheng, M.T.; Chein, H.M. Differences in PM10 concentrations measured by β-gauge monitor and hi-vol sampler. Atmos. Environ. 2001, 35, 5741–5748. [Google Scholar] [CrossRef]
- Pilinis, C.; Seinfeld, J.H.; Grosjean, D. Water content of atmospheric aerosols. Atmos. Environ. 1989, 23, 1601–1606. [Google Scholar] [CrossRef]
- Khlystov, A.; Stanier, C.O.; Takahama, S.; Pandis, S.N. Water content of ambient aerosol during the Pittsburgh Air Quality Study. J. Geophys. Res. Atmos. 2005, 110. [Google Scholar] [CrossRef]
- Shin, S.E.; Jung, C.H.; Kim, Y.P. Estimation of the optimal heated inlet air temperature for the beta-ray absorption method: Analysis of the PM10 concentration difference by different methods in coastal areas. Adv. Environ. Res. 2012, 1, 69–82. [Google Scholar] [CrossRef]
- Kiss, G.; Imre, K.; Molnár, Á.; Gelencsér, A. Bias caused by water adsorption in hourly PM measurements. Atmos. Meas. Tech. 2017, 10, 2477–2484. [Google Scholar] [CrossRef]
- Kenny, L.C.; Merrifield, T.; Mark, D.; Gussman, R.; Thorpe, A. The development and designation testing of a new USEPA-approved fine particle inlet: A study of the USEPA designation process. Aerosol Sci. Technol. 2004, 38, 15–22. [Google Scholar] [CrossRef]
- Kenny, L.C.; Gussman, R.A. A Direct Approach to the Design of Cyclones for Aerosol Monitoring Applications. J. Aerosol Sci. 2020, 31, 1407–1420. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Lowenthal, D.H.; Richards, L.W. Comparability between PM2.5 and particle light scattering measurements. Environ. Monit. Assess. 2002, 79, 29–45. [Google Scholar] [CrossRef] [PubMed]
- Donateo, A.; Contini, D.; Belosi, F. Real-time measurements of PM2.5 concentrations and vertical turbulent fluxes using an optical detector. Atmos. Environ. 2006, 40, 1346–1360. [Google Scholar] [CrossRef]
- Grimm, H.; Eatough, D.J. Aerosol measurement: The use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction. J. Air Waste Manag. Assoc. 2009, 59, 101–107. [Google Scholar] [CrossRef] [PubMed]
- McMurry, P.H. A review of atmospheric aerosol measurements. Atmos. Environ. 2000, 34, 1959–1999. [Google Scholar] [CrossRef]
- Flores, J.M.; Bar-Or, R.Z.; Bluvshtein, N.; Abo-Riziq, A.; Kostinski, A.; Borrmann, S.; Koren, I.; Koren, I.; Rudich, Y. Absorbing aerosols at high relative humidity: Linking hygroscopic growth to optical properties. Atmos. Chem. Phys. 2012, 12, 5511–5521. [Google Scholar] [CrossRef]
- Bermudez, R. Continuous PM2.5–Road to Transition. In Proceedings of the National Ambient Monitoring Conference, Pittsburgh, PA, USA, 22–25 August 2022. [Google Scholar]
- USEPA. Notice of Opportunity to Comment on Proposed Update of PM2.5 Data from T640/T640X PM Mass Monitors. Federal Register, EPA–HQ–OAR–2023–0642; FRL: 11720–01–OAR. 2024. Available online: https://www.federalregister.gov/documents/2024/02/15/2024-02935/notice-of-opportunity-to-comment-on-proposed-update-of-pm25-data-from-t640t640x-pm-mass-monitors (accessed on 15 February 2024).
- USEPA. Development of an FRM alignment factor for the Teledyne API (TAPI) Model T640/x Instruments. EPA-HQ-OAR-2023-0642-0029. 2024. Available online: https://downloads.regulations.gov/EPA-HQ-OAR-2023-0642-0029/content.pdf (accessed on 11 April 2024).
- Iowa, D.N.R. Iowa Wildfire Smoke Episode on 8/1/21: Performance of the T640 and other FEM/FRM Methods. NACAA Monitoring Steering Committee “Virtual” Meeting with EPA, 29–30 November 2021. Available online: https://www.4cleanair.org/msc_virtually_meeting_with_epa_11_2021/ (accessed on 10 May 2024).
- USEPA. Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II: Ambient Air Quality Monitoring Program. 2017. Available online: https://www.epa.gov/sites/default/files/2020-10/documents/final_handbook_document_1_17.pdf (accessed on 1 July 2024).
FEM Monitors by Manufacturer (Model) | By Method | ||||||
---|---|---|---|---|---|---|---|
Teledyne T640 | Teledyne T640x | Teledyne T640, T640x | Met One BAM 1020, 1022 | Thermo Scientific | Light Scatter | Beta Attenuation | |
Min | 0.91 | 0.95 | 0.91 | 0.72 | 0.84 | 0.75 | 0.72 |
Max | 1.70 | 1.65 | 1.70 | 2.44 | 1.35 | 1.70 | 2.44 |
Median | 1.21 | 1.19 | 1.20 | 0.98 | 1.08 | 1.20 | 1.00 |
Mean | 1.20 | 1.21 | 1.21 | 1.01 | 1.08 | 1.20 | 1.03 |
Percentiles | |||||||
25th | 1.16 | 1.15 | 1.15 | 0.91 | 1.05 | 1.15 | 0.92 |
50th | 1.21 | 1.19 | 1.20 | 0.98 | 1.08 | 1.20 | 1.00 |
75th | 1.25 | 1.24 | 1.25 | 1.06 | 1.12 | 1.25 | 1.08 |
90th | 1.29 | 1.35 | 1.32 | 1.19 | 1.17 | 1.32 | 1.17 |
Sample size (n) | 78 | 62 | 140 | 100 | 25 | 143 | 125 |
EPA Region | R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 |
---|---|---|---|---|---|---|---|---|---|---|
Sample Size (n) | 26 | 16 | 31 | 44 | 51 | 17 | 10 | 27 | 40 | 14 |
Min | 0.77 | 0.90 | 0.94 | 0.89 | 0.87 | 0.91 | 0.81 | 0.75 | 0.72 | 0.89 |
Max | 1.39 | 1.31 | 1.70 | 1.27 | 2.44 | 1.43 | 1.51 | 1.55 | 1.65 | 1.55 |
Median | 1.05 | 1.10 | 1.16 | 1.16 | 1.19 | 1.06 | 1.18 | 1.05 | 1.06 | 0.99 |
Mean | 1.06 | 1.11 | 1.17 | 1.15 | 1.17 | 1.11 | 1.12 | 1.05 | 1.09 | 1.03 |
Percentiles | ||||||||||
25th | 0.91 | 1.05 | 1.09 | 1.10 | 1.08 | 0.99 | 0.91 | 0.93 | 0.95 | 0.93 |
50th | 1.05 | 1.10 | 1.16 | 1.16 | 1.19 | 1.06 | 1.18 | 1.05 | 1.06 | 0.99 |
75th | 1.19 | 1.20 | 1.23 | 1.22 | 1.25 | 1.24 | 1.24 | 1.14 | 1.20 | 1.06 |
90th | 1.26 | 1.30 | 1.33 | 1.25 | 1.31 | 1.34 | 1.49 | 1.25 | 1.32 | 1.35 |
Bias (%) in FEM Monitors by Manufacturer (Model) | Bias by Method | ||||||
---|---|---|---|---|---|---|---|
Teledyne T640 | Teledyne T640x | Teledyne T640, T640x | Met One BAM 1020, 1022 | Thermo Scientific | Light Scattering | Beta Attenuation | |
Mean | 29.4 | 28.6 | 29.0 | 11.5 | 14.6 | 28.3 | 12.1 |
Median | 27.2 | 24.0 | 25.8 | 0.8 | 12.9 | 25.7 | 5.0 |
Upper whisker | 42 | 44.3 | 44.3 | 33.5 | 27.4 | 44.3 | 39.2 |
3rd quartile | 31.6 | 30.3 | 31.6 | 13.6 | 18.4 | 31.15 | 14.9 |
1st quartile | 21.5 | 18.6 | 19.95 | −8.15 | 8.9 | 19.7 | −6.2 |
Lower whisker | 6.8 | 9.8 | 6.8 | −34 | −4 | 6.8 | −34 |
Sample Size (n) | 78 | 62 | 140 | 100 | 25 | 143 | 125 |
R1 | R2 | R3 | R4 | R5 | R6 | R7 | R8 | R9 | R10 | |
---|---|---|---|---|---|---|---|---|---|---|
Mean | 17.8 | 17.1 | 25.2 | 17.7 | 26.6 | 24.2 | 52.0 | 18.0 | 12.6 | 8.4 |
Median | 19.4 | 20.7 | 23.8 | 19.7 | 25.0 | 5.0 | 25.4 | 13.2 | 12.5 | 1.5 |
Upper whisker | 53.0 | 36.7 | 53.4 | 31.6 | 54.1 | 56.0 | 43.3 | 64.4 | 59.8 | 33.5 |
3rd quartile | 26.7 | 25.9 | 31.6 | 25.2 | 31.6 | 29.6 | 29.5 | 30.2 | 22.9 | 11.7 |
1st quartile | 0.7 | 9.5 | 14.8 | 12.3 | 14.7 | −0.2 | −10.0 | −0.6 | −3.7 | −10.0 |
Lower whisker | −24.0 | −10.0 | −3.6 | −3.2 | −9.8 | −10.0 | −23.0 | −30.0 | −34.0 | −20.0 |
Sample Size (n) | 26 | 16 | 31 | 44 | 51 | 17 | 10 | 27 | 40 | 14 |
Urban | Suburban | Rural | ||||
---|---|---|---|---|---|---|
Light Scatter | Beta Attenuation | Light Scatter | Beta Attenuation | Light Scatter | Beta Attenuation | |
Mean | 25.5 | 5.6 | 26.8 | 14.7 | 41.3 | 22.9 |
Median | 25 | 3.4 | 24.1 | 8.9 | 30.7 | −3.6 |
Upper whisker | 44.3 | 28.9 | 38.9 | 33.5 | 36.7 | 39.2 |
3rd quartile | 30.5 | 11.9 | 29.5 | 18.4 | 36.7 | 13.2 |
1st quartile | 18.9 | −6.3 | 19.5 | −1 | 26.5 | −12 |
Lower whisker | 6.8 | −30 | 9.2 | −20 | 18.2 | −20 |
Sample Size (n) | 65 | 53 | 57 | 54 | 21 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, T.R.; Emerson, Z.I.; Mentz, K.H. Evaluation of Fine Particulate Matter (PM2.5) Concentrations Measured by Collocated Federal Reference Method and Federal Equivalent Method Monitors in the U.S. Atmosphere 2024, 15, 978. https://doi.org/10.3390/atmos15080978
Khan TR, Emerson ZI, Mentz KH. Evaluation of Fine Particulate Matter (PM2.5) Concentrations Measured by Collocated Federal Reference Method and Federal Equivalent Method Monitors in the U.S. Atmosphere. 2024; 15(8):978. https://doi.org/10.3390/atmos15080978
Chicago/Turabian StyleKhan, Tanvir R., Zachery I. Emerson, and Karen H. Mentz. 2024. "Evaluation of Fine Particulate Matter (PM2.5) Concentrations Measured by Collocated Federal Reference Method and Federal Equivalent Method Monitors in the U.S." Atmosphere 15, no. 8: 978. https://doi.org/10.3390/atmos15080978
APA StyleKhan, T. R., Emerson, Z. I., & Mentz, K. H. (2024). Evaluation of Fine Particulate Matter (PM2.5) Concentrations Measured by Collocated Federal Reference Method and Federal Equivalent Method Monitors in the U.S. Atmosphere, 15(8), 978. https://doi.org/10.3390/atmos15080978