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Abstract: The comparison between Federal Equivalent Method (FEM) and Federal Reference Method
(FRM) monitors in measuring fine particulate matter (PM2.5) concentrations frequently raises concerns
about the accuracy and reliability of data. The comparability, or lack thereof, of data between FRM
and FEM monitors may have significant implications for maintaining compliance with the National
Ambient Air Quality Standards (NAAQSs). This study investigates the performance of continuous
FEM monitors collocated with FRM monitors across 10 EPA regions in the U.S., focusing on PM2.5

measurements collected from 276 monitoring stations. Through an analysis of annually averaged
paired concentration data, the study examines concentration ratios (FEM/FRM) and associated
biases (in %, defined as [(FEM/FRM)−1] × 100) in FEM monitors across different manufacturers,
measurement methods, EPA regions, and sampling location types. The study findings reveal a varied
distribution of FEM/FRM ratios, with more than 50% of the FEM monitors having FEM/FRM > 1.1
and approximately 30% having FEM/FRM > 1.2. Substantial variations in estimated biases are
identified among monitor types, measurement methods, EPA regions, and sampling site locations.
Light scatter-based FEM monitors, notably Teledyne models 640 and 640x, dominate all locations
(urban, suburban, and rural), with rural areas exhibiting higher mean bias values for both light
scatter and beta attenuation FEM monitors (41% and 23%, respectively). On average, light scatter-
based FEM monitors demonstrate higher biases compared to beta attenuation monitors across all
EPA regions (28% vs. 12%). Irrespective of the measurement method employed, FEM monitors
demonstrate a significant positive bias (mean bias 22%) relative to FRM monitors, which could result
in an overestimation of PM2.5 design values (DVs) by 13–21% at monitoring sites designating FEMs as
primary monitors for NAAQSs compliance designations. These findings emphasize the critical need
to address method comparability issues, especially considering the recent tightening of NAAQSs for
PM2.5 (annual) from 12 µg/m3 to 9 µg/m3 in the U.S.

Keywords: PM2.5; NAAQS; permitting; FRM; FEM

1. Introduction

To assess compliance with the U.S. National Ambient Air Quality Standards (NAAQSs)
outlined in Title 40 of the Code of Federal Regulations (CFR), Part 50, air quality monitoring
is typically conducted using either Federal Reference Method (FRM) or Federal Equivalent
Method (FEM). Title 40 Part 50 of the CFR includes details about FRMs and FEMs that
should be used for monitoring criteria air pollutants to determine compliance with the
established NAAQS. This regulation plays a crucial role in ensuring that air quality is
monitored consistently and accurately across different regions in the U.S. [1]. In the U.S.,
the monitoring of fine particulate matter (PM2.5) has traditionally depended on networks
owned and operated by state, local, and tribal (SLT) agencies, utilizing regulatory-grade
samplers and monitors [2]. PM2.5 is considered, and typically regulated as, a “method-
defined pollutant”, in that specific methods and protocols are established and stipulated
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for its measurement and assessment by regulatory agencies like the U.S. Environmental
Protection Agency (EPA). These standardized procedures ensure consistency and accuracy
in monitoring PM2.5 concentrations, utilizing specialized equipment and protocols to
sample, analyze, and report PM2.5 levels in the atmosphere. For PM2.5, 40 CFR Appendix L
to Part 50 provides a Reference Method for the measurement of PM2.5 mass concentration
in ambient air, while the Equivalent Methods are designated in accordance with 40 CFR
Part 53 [3].

FRMs are designed to offer the most robust and scientifically defensible concentration
measurements [4]. The FRM data are not the “true” or “actual” PM2.5 but they are the
“reference” values used to determine compliance with the NAAQSs [5]. FRMs play a
pivotal role as the standard for comparison, serving as the benchmark against which other
measurement methods are evaluated. In contrast, FEMs are performance-based methods
and designed to deliver a level of compliance decision-making quality comparable to that
provided by FRMs. They may incorporate newer and innovative technologies, offering
benefits such as reduced overall operating costs and the ability to fulfill multiple monitoring
objectives. Both FRMs and FEMs serve as standard methods for PM2.5 measurements,
and FEM monitors can be deployed either concurrently with, or as substitutes for, FRM
monitors [5]. The FRM samplers employ gravimetric analysis to determine the 24 h average
PM2.5 concentrations. On the other hand, FEM monitors calculate 1 h average PM2.5
concentrations using different principles or operational conditions [6].

Both the Reference and Equivalent methods adhere to stringent measurement perfor-
mance criteria to ensure the accuracy and effectiveness of air quality management decisions.
The EPA’s Office of Research and Development (ORD) in Research Triangle Park, North
Carolina, is mandated by Congress to review new instrument designs and formally des-
ignate approved monitors as either FRMs or FEMs [4]. The Code of Federal Regulations
(CFR) Title 40, Part 50, is a section of the CFR that pertains to EPA regulations concerning
primary and secondary NAAQSs [7]. Part 50 specifically outlines the methods and pro-
cedures for measuring air quality parameters for six criteria for air pollutants, including
particulate matter. Reference monitors set the standard for manual PM2.5 measurements,
following criteria in Appendix L of Part 50 and Subparts A and E of Part 53. Equivalent
Class I Monitors, also manual, meet these criteria and comply with Subparts A, C, and E
of Part 53. Equivalent Class II Monitors, like the others, share these criteria and adhere
to Subparts A, C, E, and F of Part 53, expanding their applicability. Equivalent Class III
Monitors, automated, meet the standards of Appendix L of Part 50 and Subparts A, C, E,
and F of Part 53, offering automated operation with enhanced efficiency and data collection
capabilities [7].

The utilization of FEM monitors, which began in 2008, has become increasingly
widespread across the U.S. air monitoring networks [8], with nearly 50% of the PM2.5
NAAQS network using a continuous FEM monitor as the ‘primary’ sampler [9]. However,
FEMs are not immune to challenges, and one significant concern is the potential for data
bias. It has been reported that FEMs tend to overpredict collocated FRMs by 5–15% [9].
Monitoring agencies face ongoing challenges in achieving satisfactory performance levels
for their continuous FEM PM2.5 monitors, hindering their ability to demonstrate compliance
with the PM2.5 NAAQS. Among the roughly 900 FEM monitors operational, data from 40%
of them cannot be regarded as official FEM measurements due to performance issues [10].

On 6 January 2023, the EPA proposed a revision to the primary annual PM2.5 standard,
aiming to lower it from 12 µg/m3 to a range of 9 to 10 µg/m3 [11]. Alongside the proposal,
the EPA solicited comments on the issue of comparability between FRM and FEM data. Nu-
merous comments were received, revealing biases in FEM monitors in various regions. For
example, FEM biases were observed in Tennessee’s monitoring networks, with certain FEM
monitors reporting an average of 2.4 µg/m3 higher than collocated FRM monitors on an
annual basis, and up to 7.6 µg/m3 higher on a daily basis [12]. FEM monitors (particularly
Teledyne T640/T640x) in Georgia exhibit an inherent bias in PM2.5 concentrations when
compared to the FRM samplers [13]. In certain monitoring sites in EPA Region 5, FEM
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monitors exhibited substantial biases, approaching approximately 20% annually when
compared to FRM data for the year 2021 [14]. On 7 February 2024, the EPA strengthened
PM NAAQSs, setting the primary (health-based) annual PM2.5 standard at 9.0 µg/m3 [15].

Previous studies investigating FEM/FRM bias predominantly focused on specific
regions or a limited number of monitoring sites [5,16,17] and chamber studies [8]. Moreover,
many of these evaluations were conducted outside the U.S. [18], leaving the assessment of
FEM monitors within the U.S. air monitoring network relatively unexplored. Our work
represents a significant advancement in this important area by expanding upon previous
studies and conducting a nationwide evaluation of collocated FEM monitors. This study
encompasses a diverse array of equipment types and monitoring techniques operating
in various settings (e.g., urban, suburban, and rural) across multiple EPA regions. This
study aims to assess the accuracy and reliability of PM2.5 concentration measurements from
collocated FRM and FEM monitors in the U.S. by evaluating these measurements across
different manufacturers, measurement methods, and geographical locations. It investigates
potential biases in FEM monitors compared to FRM monitors, providing insights into their
performance and comparability. Ultimately, this study contributes to enhancing air quality
monitoring practices and informing regulatory decision-making.

2. Methods
2.1. Source of FEM and FRM Data

We relied on the EPA’s PM2.5 Continuous Monitor Comparability Assessments tool (https://
www.epa.gov/outdoor-air-quality-data/pm25-continuous-monitor-comparability-assessments)
(accessed on 1 August 2023) as our primary data source for obtaining PM2.5 concentra-
tion measurements from collocated FRM and FEM monitors. This tool offers a detailed
site-specific technical report evaluating the comparability of PM2.5 continuous monitors
when paired with an FRM sampler using various metrics. These reports aid monitoring
agencies in determining if PM2.5 continuous monitors in their network align with their
monitoring objectives, such as NAAQS comparison or Air Quality Index reporting. Lever-
aging this tool, we accessed site-specific data across the U.S. for the most recent three years
(2020–2022 or 2019–2021). Since FRM measurements provide a 24 h integrated average,
the assessment tool evaluates FEM monitors for the corresponding 24 consecutive hours
when both FEM and FRM were operational (i.e., from midnight-to-midnight local standard
time on days when the FRM is active). For this study, we used only annually averaged
PM2.5 concentrations. We selected monitoring sites to ensure a representative sample
across diverse geographic and environmental conditions. The primary criteria included
geographic distribution (urban, suburban, and rural) and data availability, requiring a
minimum of three years of continuous data from both FEM and FRM monitors.

2.2. Data Selection, Preparation, and Analysis

In this study, we employed two key statistical metrics, namely the mean and bias,
to thoroughly assess the compatibility between collocated FEM and FRM monitors. The
means were utilized to establish a straightforward ratio of concentrations recorded by FEM
monitors to those by FRM monitors. This ratio was computed by dividing the average of
all data collected by FEM monitors by the average of all data collected by FRM monitors.
A ratio of FEM/FRM = 1 denotes perfect agreement between FEM and FRM monitors.
Conversely, FEM/FRM < 1 signifies that the FEM monitor underestimates FRM, while
FEM/FRM > 1 indicates that the FEM monitor overestimates the FRM monitor. Addition-
ally, we employed paired biases expressed as a percentage difference between FEM and
FRM measurements. This formula, represented as % difference = [(FEM/FRM) − 1] × 100,
facilitated the quantification of the deviation between FEM and FRM readings. A positive
bias suggests that the FEM monitor overestimates FRM data, whereas a negative bias
indicates the opposite.

While the tool offered the option to consider only measurements above a certain
concentration threshold (≥3 µg/m3) for comparability assessment, our evaluation encom-

https://www.epa.gov/outdoor-air-quality-data/pm25-continuous-monitor-comparability-assessments
https://www.epa.gov/outdoor-air-quality-data/pm25-continuous-monitor-comparability-assessments
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passed all measurements by default unless specified otherwise. This inclusive approach
ensured a comprehensive examination of the performance of FEM monitors across various
concentration levels. Furthermore, our assessment operated under the assumption that the
FRM deployed at each site represented a true value when compared to PM2.5 continuous
monitoring, despite acknowledging the inherent uncertainty (e.g., evaporation loss due to
the volatile properties of semivolatile species in PM2.5 collected on the after-filter associated
with FRM measurements [19,20].

We augmented our dataset by collecting essential information, such as equipment
manufacturer and model specifications for both FRM and FEM monitors, in addition to
site identification, county, state, and EPA region data for each monitoring station. This
comprehensive dataset served as a foundation for conducting a detailed analysis of the
factors influencing measurement compatibility, enabling us to draw robust conclusions
from our study.

3. Results and Discussion

We identified a total of 276 monitoring sites with collocated FRM and FEM monitors,
from which we acquired compatibility assessment data, spanning 50 states and 10 EPA
regions. In the ensuing subsections, we present a detailed analysis that encompasses
three primary aspects: (i) an examination of the distribution of FEM monitors categorized
by manufacturers, methods of measurement, and location types, (ii) an exploration of
FEM/FRM concentration ratios, and (iii) an in-depth investigation into the biases observed
between FEM and FRM measurements. This comprehensive approach aims to provide a
nuanced understanding of the monitoring landscape, shedding light on the diversity in
monitor distribution, concentration relationships, and potential biases inherent in the data.

3.1. FEM Monitors by Manufacturer, Method of Measurement, and Location

There are two prominent manufacturers of PM2.5 continuous FEM monitors: Met
One Instruments Inc. (Grant Pass, OR, USA) and Teledyne API (San Diego, CA, USA).
Within the Met One FEM monitors, notable models include the BAM 1020 and BAM
1022, while Teledyne contributes models 640 and 640x to the market. The distribution of
FEM monitors among the manufacturers is represented in Figure 1a. Notably, among the
276 FEM monitors analyzed, Teledyne captures the majority, with 51% (140 units), while
Met One closely follows with 36% (100 units). Additionally, 11% (31 units) of the monitors
are attributed to Thermo Scientific (Waltham, MA, USA).
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Figure 1. Distribution of FEM monitors by (a) equipment manufacturer and (b) method of measurement.

Categorizing the FEM monitors based on particulate measurement methods reveals
two distinct groups: light scattering and beta attenuation (Figure 1b). T640 and 640x,
manufactured by Teledyne, stand out as real-time, continuous PM mass monitors utilizing
scattered light spectrometry for particulate concentration measurements. In contrast,
Met One’s BAM (Models 1020 and 1022), along with Thermo Scientific (Models 5014i,
5030 SHARP), employ beta attenuation for concentration measurement. An overarching
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observation is that light scatter monitors dominate the landscape, constituting 52%, while
beta attenuation monitors closely follow at 45% among the collocated FEM monitors.

The Teledyne monitors (T640 and T640x) utilize light scattering to quantify the con-
centration of fine particulate matter in ambient air [21]. Briefly, the monitor emits a beam
of light, typically using a laser diode or an LED, into the air sample containing suspended
particulate matter. As the emitted light interacts with airborne particles, scattering occurs,
leading to the dispersion of light in various directions. A dedicated detector within the
monitor captures a portion of this scattered light, enabling the measurement of its intensity.
The amount of light scattered is proportional to the concentration of PM2.5 particles in the
air sample. In contrast, the Met One BAM monitors (Models 1020, 1022) and Thermo Scien-
tific Model 5014i employ a sampling inlet to collect fine particulate on a filter tape, utilizing
beta ray transmission to quantify the concentration of particulate matter amassed within a
designated sampling period [22,23] Thermo Scientific Model 5030 SHARP combines light
scattering photometry and beta attenuation for continuous PM measurements [24]. Thermo
Scientific Model 1405 employs a unique approach by capturing particulate matter on a filter
connected to an oscillating glass rod. The concentration of particulate matter is determined
in proportion to the change in the oscillating frequency [25].

Figure 2 illustrates the distribution of FEM monitors across various locations, cat-
egorized by measurement methods. In urban areas, 65 monitors employ light scatter
technology, while 53 monitors utilize beta attenuation, with an additional 3 monitors
employing alternative measurement methods. Likewise, in suburban areas, 57 monitors
utilize light scatter technology, 54 employ beta attenuation, and 3 utilize other measure-
ment techniques. In rural locations, the distribution includes 21 light scatter monitors,
18 beta attenuation monitors, and 2 monitors employing other methods. The data suggest
variations in the choice of measurement methods across different environments, with light
scatter being the predominant method in all three settings. However, there exists a notable
discrepancy in the distribution of FEM monitors between urban (and suburban) and rural
areas. In rural regions, monitoring sites are often spaced farther apart compared to urban
areas, and certain rural areas may lack any monitoring infrastructure altogether. EPA data
reveal that as of 2019, two-thirds (2120 out of 3142) of the counties in the U.S. lacked ambi-
ent air quality monitors [26], underscoring the limited monitoring coverage in rural areas.
The Clean Air Act regulations prioritize population density as well as high-emitting point
sources, such as power plants and traffic, when designing criteria pollutant monitoring
networks [27–29]. Consequently, more monitoring sites are typically situated in urban
areas than in rural ones. The sparse monitoring coverage in rural areas poses challenges in
fully understanding air quality issues such as wildfires that might be prevalent in some
of these regions. This deficiency is particularly concerning given that a vast majority of
industrial facilities, such as forest product mills operating in rural areas, are often faced
with air permitting challenges due to the lack of nearby ambient regulatory monitors for
compliance demonstrations.

3.2. FEM/FRM Concentration Ratios
3.2.1. Distribution of Ratios

The frequency distribution of FEM/FRM concentration ratios provides valuable in-
sights into the agreement or discrepancy between measurements obtained from FEM and
FRM monitors. Figure 3 illustrates the distribution of monitors (in the Y-axis) categorized
into eight bins based on FEM/FRM concentration ratios, ranging from <0.9 to >1.2, with
a 0.05 increment. The categories “0.95–1.0” and “0.95–1.05” represent FEM/FRM ratios
around 1.0, indicating a high level of agreement between FEM and FRM monitors. With
48 monitors falling into these categories out of 276, representing about 17.4% of the total,
this demonstrates that a notable proportion of monitoring locations exhibit close agreement
between FEM and FRM measurements. The highest frequency is observed in the category
“greater than 1.20”, with 78 data points, indicating a substantial number of cases where
FEM measurements exceed FRM measurements. The dataset reveals a varied distribution
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of FEM/FRM ratios, emphasizing that perfect agreement (ratio = 1) is not the most common
scenario. Deviations from the ideal agreement (i.e., FEM/FRM = 1) are observed in both
directions, with more than 50% of the FEM monitors having FEM/FRM > 1.1 while nearly
30% having FEM/FRM > 1.2. Ratios consistently greater than 1.0 may suggest a systematic
bias in FEM measurements.

Atmosphere 2024, 15, x FOR PEER REVIEW 6 of 22 
 

 

Figure 2. Distribution of FEM monitors by location type (n = 276). 

3.2. FEM/FRM Concentration Ratios 

3.2.1. Distribution of Ratios 

The frequency distribution of FEM/FRM concentration ratios provides valuable in-

sights into the agreement or discrepancy between measurements obtained from FEM and 

FRM monitors. Figure 3 illustrates the distribution of monitors (in the Y-axis) categorized 

into eight bins based on FEM/FRM concentration ratios, ranging from <0.9 to >1.2, with a 

0.05 increment. The categories “0.95–1.0” and “0.95–1.05” represent FEM/FRM ratios 

around 1.0, indicating a high level of agreement between FEM and FRM monitors. With 

48 monitors falling into these categories out of 276, representing about 17.4% of the total, 

this demonstrates that a notable proportion of monitoring locations exhibit close agree-

ment between FEM and FRM measurements. The highest frequency is observed in the 

category “greater than 1.20”, with 78 data points, indicating a substantial number of cases 

where FEM measurements exceed FRM measurements. The dataset reveals a varied dis-

tribution of FEM/FRM ratios, emphasizing that perfect agreement (ratio = 1) is not the 

most common scenario. Deviations from the ideal agreement (i.e., FEM/FRM = 1) are ob-

served in both directions, with more than 50% of the FEM monitors having FEM/FRM > 

1.1 while nearly 30% having FEM/FRM > 1.2. Ratios consistently greater than 1.0 may sug-

gest a systematic bias in FEM measurements. 

We explored FEM/FRM concentration ratios for FEM monitors across various states 

(Figure 4). In each state, the ratio represents the mean value for all collocated monitors 

assessed. For example, at a monitoring site in Georgia, where both types of monitors are 

placed together, the FEM monitor shows PM2.5 concentrations that are 1.2 times higher or 

more than those measured by the FRM monitor. It is essential to understand that this map 

offers a broad perspective on FEM monitor performance when collocated with FRM mon-

itors. At monitoring sites, where FEM monitors like the Teledyne T640/640x or Met One 

BAM 1020/1022 are used separately, their performance may differ from the assessments 

conducted in this study. 

Figure 2. Distribution of FEM monitors by location type (n = 276).

Atmosphere 2024, 15, x FOR PEER REVIEW 7 of 22 
 

 

Figure 3. Frequency distribution of FEM/FRM concentration ratios. 

 
Figure 4. Spatial distribution of FEM/FRM concentration ratios (n = 276). 

Several states exhibit FEM/FRM ratios greater than 1, indicating a tendency for FEM 

monitors to overestimate PM2.5 concentrations compared to FRM monitors. Notable exam-

ples include Illinois (1.44), Oklahoma (1.35), North Dakota (1.55), and Pennsylvania (1.21). 

States with FEM/FRM ratios less than 1 suggest a trend of FEM monitors underestimating 

PM2.5 concentrations compared to FRM monitors. Maine (0.83), Rhode Island (0.93), and 

South Dakota (0.81) are among the states where underestimation is observed. The range 

of ratios across states indicates significant variability in the agreement between FEM and 

FRM measurements. Some states, such as New Hampshire (1.13), Texas (1.00), and Wash-

ington (1.01), demonstrate ratios close to 1, suggesting relatively better agreement be-

tween the two methods. The observed variations in ratios could be influenced by factors 

such as calibration methods, monitor types, and regional differences in air quality and 

meteorological characteristics. For instance, states with high pollutant concentrations may 

exhibit different ratio patterns than those with lower concentrations. 

Figure 3. Frequency distribution of FEM/FRM concentration ratios.

We explored FEM/FRM concentration ratios for FEM monitors across various states
(Figure 4). In each state, the ratio represents the mean value for all collocated monitors
assessed. For example, at a monitoring site in Georgia, where both types of monitors are
placed together, the FEM monitor shows PM2.5 concentrations that are 1.2 times higher
or more than those measured by the FRM monitor. It is essential to understand that
this map offers a broad perspective on FEM monitor performance when collocated with
FRM monitors. At monitoring sites, where FEM monitors like the Teledyne T640/640x
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or Met One BAM 1020/1022 are used separately, their performance may differ from the
assessments conducted in this study.
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Several states exhibit FEM/FRM ratios greater than 1, indicating a tendency for FEM
monitors to overestimate PM2.5 concentrations compared to FRM monitors. Notable exam-
ples include Illinois (1.44), Oklahoma (1.35), North Dakota (1.55), and Pennsylvania (1.21).
States with FEM/FRM ratios less than 1 suggest a trend of FEM monitors underestimating
PM2.5 concentrations compared to FRM monitors. Maine (0.83), Rhode Island (0.93), and
South Dakota (0.81) are among the states where underestimation is observed. The range of
ratios across states indicates significant variability in the agreement between FEM and FRM
measurements. Some states, such as New Hampshire (1.13), Texas (1.00), and Washington
(1.01), demonstrate ratios close to 1, suggesting relatively better agreement between the
two methods. The observed variations in ratios could be influenced by factors such as cali-
bration methods, monitor types, and regional differences in air quality and meteorological
characteristics. For instance, states with high pollutant concentrations may exhibit different
ratio patterns than those with lower concentrations.

3.2.2. Ratios by FEM Equipment Manufacturer

The distribution of FEM/FRM concentration ratios, categorized by equipment manu-
facturer, is depicted in Figure 5. The horizontal dotted line at 1.0 signifies perfect agreement
between FEM and FRM data. Within the figure, each box showcases a solid line indicating
the median, a plus symbol representing the mean, and whiskers depicting the spread of
the data. Table 1 contains statistical measures for FEM monitors both by manufacturer
type and working principle. The statistics include minimum, maximum, median, and
mean values for each variable, as well as percentiles (25th, 50th, 75th, and 90th) to provide
insights into the distribution of data. The minimum and maximum values indicate the
range of FEM/FRM concentration ratios observed for each instrument. The interquartile
range (IQR) (the difference between the 75th and 25th percentiles) provides information
about the spread of the middle 50% of the data.
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Table 1. Statistical summary of FEM/FRM ratios by equipment manufacturer and measurement method.

FEM Monitors by Manufacturer (Model) By Method

Teledyne
T640

Teledyne
T640x

Teledyne
T640, T640x

Met One BAM
1020, 1022

Thermo
Scientific

Light
Scatter

Beta
Attenuation

Min 0.91 0.95 0.91 0.72 0.84 0.75 0.72

Max 1.70 1.65 1.70 2.44 1.35 1.70 2.44

Median 1.21 1.19 1.20 0.98 1.08 1.20 1.00

Mean 1.20 1.21 1.21 1.01 1.08 1.20 1.03

Percentiles

25th 1.16 1.15 1.15 0.91 1.05 1.15 0.92

50th 1.21 1.19 1.20 0.98 1.08 1.20 1.00

75th 1.25 1.24 1.25 1.06 1.12 1.25 1.08

90th 1.29 1.35 1.32 1.19 1.17 1.32 1.17

Sample size (n) 78 62 140 100 25 143 125

The Teledyne T640 instrument demonstrates moderate variability, with the median
and mean values closely aligned, indicating a symmetric distribution. The percentiles reveal
a relatively narrow range of bias values. Conversely, the Teledyne T640x exhibits a higher
maximum value, suggesting potential outliers. Similar to the T640, its median and mean
are closely matched, suggesting symmetry, but the 90th percentile is higher, suggesting
possible higher bias values at the upper end. When combined, data from both Teledyne
models show similar patterns, albeit with a slightly wider IQR and a slightly higher 90th
percentile, indicating the potential for higher bias values. On the other hand, Met One BAM
monitors (Models 1020 and 1022) display a wide range of variability, particularly evident
from the high maximum value, indicating higher variability. The median is lower, and the
mean is slightly higher, suggesting potential skewness in the distribution. The 25th and
50th percentiles indicate a narrower range of bias values. Thermo Scientific monitors exhibit
moderate variability with a narrower range compared to Met One BAM. The median and
mean are closely aligned, indicating a symmetric distribution, and percentiles suggest a
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consistent spread of bias values. Among these monitors, Teledyne has the highest mean
value (FEM/FRM = 1.21), suggesting a higher average bias compared to the other monitors.
Therefore, based on the mean values, the Teledyne monitors might be considered the
least accurate. In summary, this analysis reveals distinct variability in the performance of
different air quality monitoring instruments and underscores the importance of considering
instrument characteristics and performance when interpreting air quality data.

3.2.3. Ratios by Method of Measurement

We evaluated the performance of FEM monitors based on their operational principles,
categorizing them into two main categories: (i) monitors utilizing light scatter technology,
such as Teledyne T640, T604x, and GRIMM EDM 180, and (ii) monitors employing beta
attenuation, including BAM 1020, 1022, Thermo Scientific 5014i, and 5030 SHARP. As
shown in Figure 6, beta attenuation monitors exhibited superior performance compared to
their light scatter-based monitors, with mean FEM/FRM ratios of 1.03 and 1.20, respectively.
Table 1 provides detailed statistical insights, comparing the two measurement methods
and offering a detailed examination of the distribution and central tendencies of the data.
Light scatter FEM monitors demonstrate a FEM/FRM range from 0.75 to 1.7, with both
median and mean values at 1.2. The notable range of values (0.75 to 1.7) underscores
considerable variability in the measurements. However, the close correspondence between
the median and mean (both 1.2) suggests a symmetric distribution, indicating minimal
skewness. In contrast, beta attenuation monitors exhibit a broader range from 0.72 to 2.44,
with both median and mean values at 1.0. The wider range of beta attenuation values
(0.72 to 2.44) indicates potential outliers or extreme measurements. Notably, the high
maximum value (2.44) may point to specific environmental conditions or measurement
anomalies influencing the data.

Atmosphere 2024, 15, x FOR PEER REVIEW 10 of 22 
 

between the median and mean (both 1.2) suggests a symmetric distribution, indicating 

minimal skewness. In contrast, beta attenuation monitors exhibit a broader range from 

0.72 to 2.44, with both median and mean values at 1.0. The wider range of beta attenuation 

values (0.72 to 2.44) indicates potential outliers or extreme measurements. Notably, the 

high maximum value (2.44) may point to specific environmental conditions or measure-

ment anomalies influencing the data. 

The percentiles offer a detailed understanding of the data distribution. For instance, 

the 25th percentile for light scatter FEMs is 1.15, indicating that 25% of observations are 

below this value. Similarly, the 90th percentile for beta attenuation FEMs is 1.17, suggest-

ing that 90% of observations are below this threshold. Considering both the mean ratios 

and the range of ratios, beta attenuation appears to be the superior measurement method 

in this context. 

 

Figure 6. FEM/FRM concentration ratios by method of measurement. 

3.2.4. Ratios by EPA Region 

We assessed the FEM/FRM ratio across 10 EPA regions (Figure 7). The summarized 

outcomes of this assessment are illustrated in Figure 8, with regions designated as R1, R2, 

R3, and so forth along the X-axis. A statistical summary of the data analysis is provided 

in Table 2. 

 

Figure 7. US EPA regional map (available at https://www.environmentalprotectionnetwork.org/ta-

epa-regions-map/, accessed on 17 September 2023). 

Figure 6. FEM/FRM concentration ratios by method of measurement.

The percentiles offer a detailed understanding of the data distribution. For instance,
the 25th percentile for light scatter FEMs is 1.15, indicating that 25% of observations are
below this value. Similarly, the 90th percentile for beta attenuation FEMs is 1.17, suggesting
that 90% of observations are below this threshold. Considering both the mean ratios and
the range of ratios, beta attenuation appears to be the superior measurement method in
this context.

3.2.4. Ratios by EPA Region

We assessed the FEM/FRM ratio across 10 EPA regions (Figure 7). The summarized
outcomes of this assessment are illustrated in Figure 8, with regions designated as R1, R2,
R3, and so forth along the X-axis. A statistical summary of the data analysis is provided in
Table 2.
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Table 2. Statistical summary of FEM/FRM ratios by EPA region.

EPA
Region R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Sample Size (n) 26 16 31 44 51 17 10 27 40 14

Min 0.77 0.90 0.94 0.89 0.87 0.91 0.81 0.75 0.72 0.89

Max 1.39 1.31 1.70 1.27 2.44 1.43 1.51 1.55 1.65 1.55

Median 1.05 1.10 1.16 1.16 1.19 1.06 1.18 1.05 1.06 0.99

Mean 1.06 1.11 1.17 1.15 1.17 1.11 1.12 1.05 1.09 1.03

Percentiles

25th 0.91 1.05 1.09 1.10 1.08 0.99 0.91 0.93 0.95 0.93

50th 1.05 1.10 1.16 1.16 1.19 1.06 1.18 1.05 1.06 0.99

75th 1.19 1.20 1.23 1.22 1.25 1.24 1.24 1.14 1.20 1.06

90th 1.26 1.30 1.33 1.25 1.31 1.34 1.49 1.25 1.32 1.35

https://www.environmentalprotectionnetwork.org/ta-epa-regions-map/
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The FEM/FRM ratios exhibit substantial regional variability, ranging from 0.72 to
2.44. While median ratios are relatively consistent across regions (1.05 to 1.18), mean ratios
vary, indicating potential skewness or outliers. For example, R7 shows a higher median
(1.18) than the mean (1.12), suggesting a potential influence of extreme values. Region
R6 displays a higher mean (1.11) compared to the median (1.06), indicating potential
challenges in performance or the presence of outliers. Region R5 stands out with the
widest range of ratios (0.87 to 2.44), implying unknown factors impacting FEM/FRM
measurements. R7 exhibits a higher median (1.18) than nearby regions, indicating potential
outliers and a small sample size (n = 10) influencing the central tendency. Regions R8
and R10 demonstrate relatively consistent median and mean ratios, suggesting stability
in monitoring performance. Region R3 exhibits a wide range (0.94 to 1.70), suggesting
potential challenges in instrument performance or measurement conditions. Regions with
narrower IQRs, such as R8 and R10, suggest more consistent measurements, while wider
IQRs, as observed in R5 and R7, indicate greater variability. The 90th percentile provides
insight into potential outliers. Regions with higher values at the 90th percentile, such as R7
and R9, may be influenced by extreme FEM/FRM ratios.

The sample size (n), representing the number of monitoring stations in each EPA
region, is a key factor in interpreting the results and drawing conclusions from the data.
Regions with larger n are likely to provide more representative insights into FEM monitor
performance, as the data cover a broader geographic area or mix of pollution sources. In
contrast, conclusions drawn from regions with smaller n may be more specific to local
conditions. Outliers or extreme values in smaller n can have a more significant impact
on overall results. Robustness to outliers is higher in regions with larger n. Overall,
the results presented here (Figure 8; Table 2) highlight the diverse dynamics influencing
FEM/FRM ratios across EPA regions, providing a foundation for targeted interventions,
quality control measures, and improved understanding of regional air quality conditions.
Further investigation into the specific factors influencing each region will contribute to
more accurate and region-specific monitor performance assessments.

3.3. FEM/FRM Bias

Using the reported bias from paired PM2.5 concentrations at collocated sites, we as-
sessed the performance of FEM monitors. This evaluation considered various factors,
including equipment manufacturer (model), measurement method, EPA region, and loca-
tion type. Furthermore, we examined potential bias within the 2022 DVs for PM2.5. The
following sections outline the results obtained from these assessments.

3.3.1. Bias by Equipment Manufacturer

Figure 9 displays bias results categorized by equipment manufacturer and model type,
comparing biases against the ±10% range, a data quality criterion recommended by the EPA
for comparing PM2.5 concentrations from collocated FEM and FRM monitors (Technical
Note—PM2.5 Continuous Monitor Comparability Assessment, available at https://www.
epa.gov/outdoor-air-quality-data/assessment-pm25-fems-compared-collocated-frms) (ac-
cessed on 1 August 2023).

The data in Table 3 represent the bias percentages between FEM and FRM monitors
across different types of FEM monitors. Notably, Teledyne T640 and T640x monitors exhibit
similar bias patterns, with mean biases of 29.4% and 28.6%, respectively. The combined use
of T640 and T640x shows a mean bias of 29.0%. In contrast, Met One BAM 1020 and 1022
monitors display a lower mean bias of 11.5%. Thermo Scientific monitors fall in between,
with a mean bias of 14.6%. The quartile values provide additional insights: Teledyne
monitors have higher 3rd and 1st quartile values compared to Met One BAM and Thermo
Scientific, indicating greater variability in the bias distribution. The number of stations
(i.e., n) for each monitor type also plays a crucial role in understanding the robustness of
the observed biases. Teledyne T640 and T640x, with 140 stations (combined), exhibit a

https://www.epa.gov/outdoor-air-quality-data/assessment-pm25-fems-compared-collocated-frms
https://www.epa.gov/outdoor-air-quality-data/assessment-pm25-fems-compared-collocated-frms
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higher presence in the dataset compared to Met One BAM and Thermo Scientific monitors,
which have 100 and 25 stations, respectively.
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Table 3. Statistical summary of FEM/FRM bias by equipment manufacturer and measurement method *.

Bias (%) in FEM Monitors by Manufacturer (Model) Bias by Method

Teledyne
T640

Teledyne
T640x

Teledyne
T640, T640x

Met One BAM
1020, 1022

Thermo
Scientific

Light
Scattering

Beta
Attenuation

Mean 29.4 28.6 29.0 11.5 14.6 28.3 12.1

Median 27.2 24.0 25.8 0.8 12.9 25.7 5.0

Upper whisker 42 44.3 44.3 33.5 27.4 44.3 39.2

3rd quartile 31.6 30.3 31.6 13.6 18.4 31.15 14.9

1st quartile 21.5 18.6 19.95 −8.15 8.9 19.7 −6.2

Lower whisker 6.8 9.8 6.8 −34 −4 6.8 −34

Sample
Size (n) 78 62 140 100 25 143 125

* Together, the FEM monitors employing the light-scatter and beta attenuation principles constitute a sample
size of n = 268. However, the FEM types, such as tapered element oscillating microbalances (TEOM), from the
remaining 8 sites did not align with these two categories and were consequently excluded from this table.

Teledyne monitors consistently display higher mean biases compared to Met One,
and Thermo Scientific monitors. This finding indicates a potential pattern where Teledyne
monitors consistently overestimate concentrations relative to FRM monitors. Met One and
Thermo Scientific monitors demonstrate lower mean biases, indicating a relatively closer
agreement with FRM monitors. This suggests that these monitor types may provide more
accurate measurements of PM2.5 concentrations.

3.3.2. Bias by Method of Measurement

This analysis provides insights into the bias characteristics of both light scatter and
beta attenuation monitors. The average bias for light scatter monitors is relatively high
at 28.3%, indicating a systematic deviation from the reference measurements (Figure 10;
Table 3). The median bias of 25.7% suggests that the central tendency is influenced by the
lower half of the data, indicating a skewed distribution with a tail towards higher biases.
The upper whisker extends up to 44.3%, indicating the maximum observed bias within 1.5
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times the interquartile range above the third quartile. The third quartile (75th percentile) is
31.15%, indicating that 75% of the data falls below this threshold. The first quartile (25th
percentile) is 19.7%, suggesting that 25% of the data falls below this threshold. The lower
whisker extends down to 6.8%, indicating the minimum observed bias within 1.5 times the
IQR below the first quartile.

Atmosphere 2024, 15, x FOR PEER REVIEW 14 of 22 
 

median bias of 5.0% is relatively lower than the mean, indicating a potential skewness 

towards lower biases. The upper whisker extends up to 39.2%, indicating the maximum 

observed bias within 1.5 times the IQR above the third quartile. The third quartile (75th 

percentile) is 14.9%, suggesting that 75% of the data falls below this threshold. The first 

quartile (25th percentile) is −6.2%, suggesting that 25% of the data falls below this thresh-

old. The lower whisker extends down to −34.0%, indicating the minimum observed bias 

within 1.5 times the interquartile range below the first quartile. 

 

Figure 10. FEM/FRM bias by the method of measurement. 

Together, these findings suggest that light scatter monitors exhibit a higher mean and 

median bias compared to beta attenuation monitors. Light scatter monitors have a nar-

rower IQR compared to beta attenuation monitors, indicating less spread in the central 

50% of the data. Beta attenuation monitors show a wider range in both upper and lower 

whiskers, indicating higher variability and potential outliers. The negative lower whisker 

for beta attenuation monitors suggests instances of underestimation by FEM monitors. 

The disparity in performance between beta attenuation and light scatter-based mon-

itors can be predominantly attributed to differences in detection methods, operating pro-

cedures, aerosol composition, and environmental factors. Beta attenuation monitors are 

primarily influenced by the mass of particulate matter, regardless of density, chemical 

composition, or optical properties [17,30]. However, factors such as evaporation loss and 

the impact of aerosol water content due to humidity control systems can affect beta atten-

uation readings [5]. [17,30] Previous studies found that the readings of beta attenuation 

monitors are significantly influenced by ambient relative humidity (RH) levels [16,31] be-

cause of water absorption by inorganic aerosols [31–33]. The operation protocol typically 

involves heating the inlet line to reduce RH to below 35%. However, in conditions of very 

high ambient RH (>60%), the heating may not sufficiently evaporate water in aerosols, 

leading to an overestimation of PM concentration [16,34,35]. 

BAM monitors utilize a pre-separator as a size-selective inlet, such as a cyclone, im-

pactor, or both. Two major types of PM2.5 separators approved by the USEPA, the Well-

type Impactor Ninety-Six (WINS) Impactor and the Very Sharp Cut Cyclone (VSCC), have 

been identified [36]. Both the Sharp Cut Cyclone (SCC) and VSCC are known to exhibit 

relatively smaller bias compared to WINS [36,37]. In our dataset, Met One BAMs (Models 

1020 and 1022) and Thermo Scientific (Models 5014i and 5030) were paired with either 

VSCC or SCC. 

In contrast, light scatter-based instruments operate under the assumption that all par-

ticulates share identical optical properties [38–40]. However, this assumption poses chal-

lenges when dealing with particulate matter that exhibits diverse optical properties, 

Figure 10. FEM/FRM bias by the method of measurement.

The mean bias for beta attenuation monitors is 12.1%, which is lower than that of light
scatter monitors, suggesting a comparatively smaller systematic deviation. The median
bias of 5.0% is relatively lower than the mean, indicating a potential skewness towards
lower biases. The upper whisker extends up to 39.2%, indicating the maximum observed
bias within 1.5 times the IQR above the third quartile. The third quartile (75th percentile) is
14.9%, suggesting that 75% of the data falls below this threshold. The first quartile (25th
percentile) is −6.2%, suggesting that 25% of the data falls below this threshold. The lower
whisker extends down to −34.0%, indicating the minimum observed bias within 1.5 times
the interquartile range below the first quartile.

Together, these findings suggest that light scatter monitors exhibit a higher mean
and median bias compared to beta attenuation monitors. Light scatter monitors have a
narrower IQR compared to beta attenuation monitors, indicating less spread in the central
50% of the data. Beta attenuation monitors show a wider range in both upper and lower
whiskers, indicating higher variability and potential outliers. The negative lower whisker
for beta attenuation monitors suggests instances of underestimation by FEM monitors.

The disparity in performance between beta attenuation and light scatter-based moni-
tors can be predominantly attributed to differences in detection methods, operating pro-
cedures, aerosol composition, and environmental factors. Beta attenuation monitors are
primarily influenced by the mass of particulate matter, regardless of density, chemical com-
position, or optical properties [17,30]. However, factors such as evaporation loss and the
impact of aerosol water content due to humidity control systems can affect beta attenuation
readings [5]. [17,30] Previous studies found that the readings of beta attenuation monitors
are significantly influenced by ambient relative humidity (RH) levels [16,31] because of
water absorption by inorganic aerosols [31–33]. The operation protocol typically involves
heating the inlet line to reduce RH to below 35%. However, in conditions of very high
ambient RH (>60%), the heating may not sufficiently evaporate water in aerosols, leading
to an overestimation of PM concentration [16,34,35].

BAM monitors utilize a pre-separator as a size-selective inlet, such as a cyclone,
impactor, or both. Two major types of PM2.5 separators approved by the USEPA, the
Well-type Impactor Ninety-Six (WINS) Impactor and the Very Sharp Cut Cyclone (VSCC),
have been identified [36]. Both the Sharp Cut Cyclone (SCC) and VSCC are known to
exhibit relatively smaller bias compared to WINS [36,37]. In our dataset, Met One BAMs
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(Models 1020 and 1022) and Thermo Scientific (Models 5014i and 5030) were paired with
either VSCC or SCC.

In contrast, light scatter-based instruments operate under the assumption that all
particulates share identical optical properties [38–40]. However, this assumption poses
challenges when dealing with particulate matter that exhibits diverse optical properties,
thereby impacting the monitors’ performance. Aerosol water content, for instance, can sig-
nificantly alter the size and distribution of particles in the air [41]. The absorption of water
or hygroscopic growth can cause particles to swell or aggregate, consequently changing
their optical properties [42]. Since light scatter-based monitors rely on the interaction of
light with aerosol particles to measure concentrations, any variations in particle size or
distribution due to water content can result in inaccuracies in the measurements. Thus,
despite the assumption of constant optical properties for particulate matter in ambient air,
variability in results can arise, deviating from true values.

3.3.3. Bias by EPA Region

The FEM/FRM bias across all EPA regions (R1-R10) is shown in Figure 11, revealing
mean bias values ranging from 8.4% (R10) to 52.0% (R7) and median bias values varying
from 1.5% (R10) to 25.4% (R7). The upper whisker values indicate the maximum bias
observed in each region, ranging from 33.5% (R10) to 64.4% (R8). The lower whisker values
show the minimum bias observed, with ranges from −34.0% (R9) to −3.2% (R4). There is
substantial variability in bias percentages across different EPA regions (Table 4). Regions
with consistently high or low bias values may suggest systematic differences between FEM
and FRM monitors in those areas.
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The sample size (n, total number of monitoring sites) varies across the EPA regions,
ranging from 10 (R7) to 51 (R5). Regions with fewer data points (e.g., R7, R10) may have
more uncertain estimates of bias, and the observed patterns could be influenced by the
limited sample size. Regions with a higher number of data points (e.g., R5, R4) are likely
to have more reliable and stable estimates of bias. Larger sample sizes generally provide
more robust statistical measures, reducing the impact of individual data points on the
overall estimate. Regions with smaller sample sizes may experience greater variability in
statistical measures such as mean, median, and quartiles. Extreme values in regions with a
small sample size can have a larger impact on the calculated statistics. When interpreting
the results for regions with a small number of data points, it is essential to recognize the
potential for higher variability and uncertainty in the estimates.
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Table 4. Statistical summary of FEM/FRM bias (%) by EPA region.

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Mean 17.8 17.1 25.2 17.7 26.6 24.2 52.0 18.0 12.6 8.4

Median 19.4 20.7 23.8 19.7 25.0 5.0 25.4 13.2 12.5 1.5

Upper whisker 53.0 36.7 53.4 31.6 54.1 56.0 43.3 64.4 59.8 33.5

3rd quartile 26.7 25.9 31.6 25.2 31.6 29.6 29.5 30.2 22.9 11.7

1st quartile 0.7 9.5 14.8 12.3 14.7 −0.2 −10.0 −0.6 −3.7 −10.0

Lower whisker −24.0 −10.0 −3.6 −3.2 −9.8 −10.0 −23.0 −30.0 −34.0 −20.0

Sample
Size (n) 26 16 31 44 51 17 10 27 40 14

Further investigation of the data reveals the potential cause for the observed variability
in bias across EPA regions. Figure 12 illustrates the overall method dominance for each
EPA region. Note that individual states within each region may exhibit different method
dominance patterns, as the regional summary encompasses several states. The results
indicate notable variability in median bias percentages across regions, ranging from 5%
to 25%. Regions dominated by light scatter monitors exhibited higher biases (R1, R3, R4,
R5, and R7), while those dominated by beta attenuation monitors showed lower biases
(R8, R9, and R10). Regions R2 and R6 (median biases of 21% and 5%, respectively) are
not dominated by either monitor type. Regions with higher median bias percentages may
indicate potential challenges or differences in measurement methods. It could be related to
the characteristics of the monitoring sites, calibration methods, or other factors specific to
light scatter monitors.
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3.3.4. Bias by Location Type

Figure 13 illustrates the bias across different location types and measurement methods.
The mean bias for light scatter FEM monitors is highest in rural locations (41.3%), followed
by suburban (26.8%) and urban (25.5%) locations. The median bias is highest in rural loca-
tions (30.7%), followed by urban (25%) and suburban (24.1%) locations. The IQR for light
scatter monitors across locations are nearly identical (Table 5). Collectively, these findings
suggest that there are notable differences in light scatter bias across urban, suburban, and
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rural settings. It is worth mentioning that urban and suburban areas yield a higher number
of data points (65 and 57, respectively) compared to rural locations (21), enhancing the
robustness of observed biases in these settings.
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monitors; #BA = the number of beta attenuation monitors; n = 268, eight sites with TEOM monitors
were excluded).

Table 5. Statistical summary of FEM/FRM bias (%) location and equipment type.

Urban Suburban Rural

Light Scatter Beta Attenuation Light Scatter Beta Attenuation Light Scatter Beta Attenuation

Mean 25.5 5.6 26.8 14.7 41.3 22.9

Median 25 3.4 24.1 8.9 30.7 −3.6

Upper whisker 44.3 28.9 38.9 33.5 36.7 39.2

3rd quartile 30.5 11.9 29.5 18.4 36.7 13.2

1st quartile 18.9 −6.3 19.5 −1 26.5 −12

Lower whisker 6.8 −30 9.2 −20 18.2 −20

Sample Size (n) 65 53 57 54 21 18

The mean bias for beta attenuation in urban areas is 5.6%, with a median bias of 3.4%.
The IQR is from −6.3% to 11.9%. In suburban areas, the mean bias for beta attenuation is
higher at 14.7%, with a median bias of 8.9%. The IQR is from −1% to 18.4%. Rural areas
exhibit the highest mean bias for beta attenuation at 22.9%, but the median bias is negative
at −3.6%. The IQR is from −12% to 13.2%. Although biases for beta attenuation monitor
exhibit variability across location types, we note the discrepancy in sample sizes collected
from each location. For instance, the smaller sample size in rural areas (n = 18) might
impact the precision of the bias estimates or the ability to detect significant differences in
bias compared to urban and suburban locations.

Table 5 provides a statistical summary of the distribution, central tendency, and
variability of the data for each location and variable. These comparisons highlight the
differences in performance between light scatter and beta attenuation measurements across
different location types. For both light scatter and beta attenuation monitors, the bias is
highest for monitors located in rural areas and the lowest in urban areas. However, the
estimated bias for all locations (except for urban areas with beta attenuation monitors) is
outside the ±10% range, as shown in Figure 13.
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3.3.5. Potential Bias in PM2.5 Annual Design Values (DVs)

Design values are essential in designating and categorizing nonattainment areas,
serving as a crucial metric for assessing progress in meeting the NAAQSs. Specifically, the
PM2.5 DVs serve as a critical indicator to assess air quality over a defined annual period and
are typically calculated as a three-year average concentration. We assessed potential bias in
PM2.5 DVs specifically at monitoring sites designating FEM as the primary monitors for
compliance with NAAQSs. Primary monitors play a critical role in NAAQS determination,
particularly for pollutants where DVs are computed at the site level rather than at the
individual monitor level. Our investigation identified 68 counties utilizing collocated FEM
monitors as primary monitors, leading us to infer that the data from these monitors have
been integral in the calculation of DVs for the years 2020–2022. The results of our evaluation
indicate a potential mean (positive) bias in the calculated DVs within this subset of counties,
with the range estimated to be between 13 and 21%, as illustrated in Figure 14. This finding
aligns with the findings reported by the Association of Air Pollution Control Agencies
(AAPCA) and others on this issue. According to AAPCA, there are instances where FEM
monitors demonstrate discrepancies leading to DVs notably higher than those derived
from collocated FRM monitors. In certain instances, the utilization of FEM as the primary
monitor can overestimate annual DVs by 2.3 to 2.9 µg/m3 [43], which could potentially
impact the current or future attainment status of an area.
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3.3.6. Implications of FRM/FEM Bias and Future Directions

The potential implications of data bias between FEM and FRM monitors are substantial
and require careful consideration. A systematic understanding of these implications is vital
for informed decision-making and determination of area designations. The bias between
FEM and FRM monitors may impact the accuracy of data used to calculate annual DVs and
assess compliance with NAAQSs. The recent tightening of annual NAAQSs for PM2.5 from
12 µg/m3 to 9 µg/m3 [11] is likely to effectively reduce the compliance threshold, particu-
larly in scenarios where air quality dispersion modeling is utilized to validate adherence to
the NAAQSs. According to current practice, permit applicants must demonstrate, through
a comprehensive air quality modeling analysis, that the PM2.5 concentrations simulated by
their operations align with NAAQSs when added to the background concentration. The
background concentration accounts for all sources not explicitly simulated in a regulatory
dispersion model such as AERMOD, typically quantified as the DV from a representative
(usually nearest) FRM or FEM ambient monitor. The difference between the annual stan-
dard level and the background concentration is denoted as the “headroom”. To illustrate,
considering the revised PM2.5 NAAQSs established at 9.0 µg/m3, and a county’s DV set at
7.5 µg/m3, the county would have a headroom of 1.5 µg/m3 (calculated as 9.0–7.5 µg/m3).
Now, if the county’s DV is based on measurement conducted by a positively biased FEM
monitor, the current DV (7.5 µg/m3) is likely to be an overestimate. Therefore, if the bias in
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FEM monitors is not addressed, less headroom will be available within which new projects
can be permitted.

In April 2023, the EPA approved a modification for the Teledyne Model T640/T640x
PM mass monitors, allowing them to operate with or without Network Data Alignment
using updated firmware from Teledyne (see supplemental information in [44]). This adjust-
ment addressed concerns about bias in the T640 and T640x monitors compared to reference
methods. The EPA retroactively applied the Network Data Alignment equations to all
hourly unaligned T640 and T640x PM2.5 concentrations in the EPA’s Air Quality System
(AQS), starting from 2017 when these monitors were first deployed across the U.S. [44,45].
The effectiveness of the firmware update in addressing the bias in the T640/T640x monitors
still needs to be fully evaluated.

The data incomparability or bias between FEM and FRM monitors have implications
beyond regulatory compliance. Understanding and quantifying these biases can inform
air quality model performance assessments by providing insights into the accuracy and
reliability of model predictions. Additionally, in health research, acknowledging and
accounting for these biases enables epidemiological studies to accurately assess the rela-
tionship between particulate pollution exposure and health outcomes. Addressing bias
issues in public communications about air quality using tools such as the Air Quality Index
(AQI), fosters transparency by providing the public with accurate and reliable information
about air quality.

4. Study Boundaries

The evaluation of collocated FEM monitor performance in this study relied on yearly
averaged concentrations, given the primary focus of the study was to investigate for
and quantify FEM/FRM ratios and any systematic, long-term bias. We acknowledge
that annual averages may obscure seasonal variations, such as ambient temperature and
relative humidity, as well as short-term fluctuations, like those on a 24 hour basis. Analyzing
monitor performance over diverse time scales and seasons could provide additional insights
into FEM monitor performance. However, they were outside the scope of this study.

We also considered the implications of including all concentration data, including
low-concentration ranges (e.g., <3 µg/m3), in calculating FEM/FRM bias. However,
since most paired observations (~86%) in our evaluation dataset exceeded this thresh-
old (i.e., ≥3 µg/m3), the impact of low-concentration data on the overall bias is expected
to be minimal. Similarly, very high concentrations associated with exceptional events, such
as wildfire smoke or prescribed fires, may cause increased positive bias in FEM monitors
compared to FRM monitors over shorter time scales [46]. However, the impact of these
short-term variations on the annual average is also expected to be minimal.

As discussed above, this study predominantly focuses on reporting FEM/FRM ratios
and biases as quantitative differences between measurements without explicitly considering
other factors like instrument precision or sensitivity to aerosol type. FEM and FRM monitors
typically undergo rigorous calibration and maintenance procedures to ensure accuracy and
regulatory compliance [47]. These procedures generally involve multi-point calibration
using NIST-traceable standards and routine performance checks, as outlined by the EPA
(see Appendix D of [47]). For precise information on the calibration and maintenance
practices of the specific equipment used in this study, such details can be obtained from the
relevant monitoring agency.

5. Conclusions

This study offers insights into the performance of regulatory continuous PM2.5 mon-
itors across diverse regions in the U.S. By analyzing paired concentration data from
276 monitoring stations, we assessed the performance of FEM monitors in comparison to
collocated FRM monitors. The biases observed in FEM monitors, as explored in this study,
vary depending on the specific FEM manufacturer, measurement method, and sampling
site location. Notably, light scatter-based FEM monitors, primarily Teledyne 640/640x mod-
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els, emerge as the dominant measurement method across all locations, including urban,
suburban, and rural settings. Overall, FEM monitors tend to exhibit high biases (mean bias
of 22%) compared to FRM monitors. The potential bias in PM2.5 DVs could range from
13 to 21% at monitoring sites where FEMs are designated as the primary monitors. These
findings collectively underscore the importance of addressing method comparability issues
to ensure accurate and reliable air quality assessments as the EPA promulgates a revised
PM2.5 NAAQS and develops implementation strategies.

Although meteorological factors like ambient temperature and relative humidity could
potentially impact instrument performance, we did not disaggregate our data by season.
Our goal was not to correlate PM2.5 measurements with their contributing variables but
rather to understand overall bias and potentially provide a framework for comparing
measurements. We acknowledge that disaggregating data by season could be a valuable
topic for future research, offering further insights into the influence of seasonal variations
on instrument accuracy and bias. By focusing on regional and locational differences, we
have laid the foundation for more nuanced studies that can explore the intricate dynamics
between environmental factors and monitor performance.
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