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Abstract: The link between the escalation of global warming and the increase in extreme precipitation
events necessitates a deeper understanding of future trends. This study focused on the dynamics
of extreme rainfall in Hubei Province throughout the 21st century, a region already sensitive to
climatic shifts and extreme weather occurrences. Using the high-resolution global climate model
RegCM4 driven by another high-resolution model, HadGEM2-ES, and based on the representative
concentration pathway (RCP8.5) emissions scenario, this research predicted the changes in rainfall
patterns in Hubei Province during the summer of the 21st century. The accuracy of the adjusted
model was confirmed through the use of five extreme rainfall indices (EPIs), namely maximum
5-day amount of precipitation (RX5day), number of heavy rain days (R10), the simple daily intensity
index (SDII), consecutive dry days (CDD), and consecutive wet days (CWD), that measured the
intensity and frequency of such events. In particular, excluding the index for continuous dry days
(CDD), there was an anticipated increase in extreme rainfall during the summer in the mid-21st
century. The number of heavy rain days (R10mm) increased significantly (p < 0.05) in the southeastern
parts, especially for Wuhan, Xiantao, Qianjiang, Jinzhou, and Ezhou. The EPI values were higher in
southeastern Hubei. Consequently, areas such as Wuhan, Xiantao, and Qianjiang in Hubei Province
are projected to face more frequent and severe extreme rainfall episodes as the century progresses.

Keywords: extreme climate indices; climate projections; precipitation; bias correction; RegCM4

1. Introduction

The environment and human life are now at risk due to climate change, which has
caused widespread alarm in recent times. Climate change has become a threat to people’s
lives and property and has been linked to increased disasters [1]. Extreme rainfall is
considered a double-edged sword, as it can lead to the stagnation of dams and rivers and,
on the other hand, causes numerous floods at global and regional levels. Given the impact
of extreme climate events on society, it is crucial to conduct in-depth investigations to
understand the long-term fluctuations and the factors that contribute to fluctuations in
exceptional precipitation levels in historical and future periods [2,3].

Reports from the Intergovernmental Panel on Climate Change (IPCC) have indicated
that severe impacts on ecosystems, people, settlements, and infrastructure have significantly
increased with the frequency and intensity of extreme weather and climate events [4]. The
rises in extreme rainfall rates and the occurrence of extreme precipitation are likely to
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increase in the future as the average global temperature continues to rise [5–9]. The
precipitation trend tends to exhibit varying patterns across China, with increases observed
in winter and summer in the majority of areas, while significant decreases are observed
in autumn in many regions of central and eastern China [10]. Zhai et al. [8] found that
precipitation extremes trends differed from one season to another in eastern China. The
summer precipitation trend is very similar to that of annual totals. Spring precipitation
has increased in southern northeast China and north China but decreased significantly
in the mid-reaches of the Yangtze River. Autumn precipitation has generally decreased
throughout eastern China. In winter, precipitation has significantly decreased over the
northern part of eastern China but increased in the south. Chen et al. [9] suggested
that annual rainfall in China will increase by the end of the 21st century compared with
current levels.

Recent research has indicated that recurrent droughts are caused by climate vari-
ability, leading to changes in the intensity and frequency of precipitation at regional and
local levels [11]. Models’ outputs can be used to investigate the changes in extreme pre-
cipitation in the future, such as simulations from the RegCM4 model. Previous studies
indicated that RegCM4 can accurately replicate China’s spatial distribution of extreme
climate events [12,13], and performs well in climate predictions, illustrating the interannual
variability in China’s river basins and demonstrating improved summer performance [14].

The extreme precipitation indices may exhibit distinct variations across various re-
gions [15]. Although many studies have investigated the spatial–temporal variations in
extreme precipitation over different regions [16,17], few studies have focused on extreme
precipitation and its impacts under future scenarios in Hubei Province, China [18,19].
Hubei Province is highly susceptible to changes in climate and has already experienced
severe weather incidents, with extreme precipitation events mainly occurring in spring
and summer [20]. Using extreme precipitation indices (EPIs), this study looked at how
the characteristics of extreme precipitation in Hubei Province will change over time in
the 21st century under the RCP8.5 scenario, due to its alignment with high greenhouse
gas emissions scenarios and its representation of the upper limit of the representative
concentration pathways (RCPs) [21].

This study’s objectives were (1) to evaluate the efficiency of the model in simulating
precipitation over Hubei Province, (2) to analyze the spatial–temporal changes in the annual
extreme precipitation indices in Hubei Province through the reference period (1979–2005),
and (3) to analyze the spatial–temporal changes in the extreme precipitation indices in
summer within Hubei Province through the mid-21st century and late 21st century.

2. Study Area

Hubei Province is located at the center of the Yangtze River in central China. The
province is known for its plentiful natural resources, varied mountainous landscapes, and
diverse terrain. The climate of the region is characterized by a subtropical monsoon zone,
which experiences an average annual rainfall of 800–1600 mm. Most of this precipitation
occurs during the rainy season, which lasts from mid-June to mid-July [22]. The landform
of Hubei Province represents an incomplete watershed with three high sides, a middle
depression opening to the south, and a gap to the north [23]. The Dabie and Wudang
Mountains in north Hubei are also considered to be among the natural landscapes of the
province [24]. Figure 1 shows the location of Hubei Province.
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justed future projections in this study. A daily precipitation dataset with a spatial resolu-
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3. Data and Methods
3.1. Reanalysis of ERA5 Datasets

ERA5, the fifth-generation reanalysis data created by the European Center for Medium-
Range Weather Forecasts (ECMWF) [25], were used in this study as reference data. The
quality of the input data in ERA5 has been significantly enhanced compared with its
earlier versions [26]. It has also effectively captured the annual and seasonal patterns of
precipitation over several parts of China, with continuous updates to the present day. The
spanning period has been covered since 1979, and some versions have been extended to
1950 [27]. Because of its good performance in representing actual rainfall observations
in different climatic zones around the globe [28,29], we used ERA5 as reference data to
evaluate the historical extremes in precipitation for a simulation of a climate model and
adjusted future projections in this study. A daily precipitation dataset with a spatial
resolution of 0.25◦ × 0.25◦ latitude/longitude covering the period from 1979 to 2005 was
utilized to evaluate the model’s performance in simulating rainfall over Hubei Province in
China. The grid dataset is freely available at https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels (Accessed on 15 October 2023).

3.2. The Reginal Climate Model (RegCM)

To assess future changes in extreme precipitation in Hubei, we relied on RegCM4,
a model developed by the Abdus Salam International Centre for Theoretical Physics
(ICTP) during the specified timeframe of 1979–2005. Established at the National Center for
Atmospheric Research (NCAR), the regional climate model system is formally referred to
as RegCM. Furthermore, it has been modified to accurately represent the specific weather
patterns of Hubei Province, leading to the development of precise predictions regarding
climate change at a local level. The regional model RegCM4, designed for specific areas,
utilized the initial and lateral boundary conditions from HadGEM2-ES, the Earth system
model used by the Met Office Hadley Centre for CMIP5 20th century simulations.

As mentioned in the study of Giorgi et al. [30], RegCM4 is the latest version compared
with previous versions. Recently, a large research community has made significant enhance-
ments to its structure, and additional modern physical parameters have been developed.
It can be readily implemented in any geographical area worldwide, exhibiting varying
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levels of precision across a diverse array of research disciplines. The model was run using
a grid spacing of 0.25◦ × 0.25◦ (latitude by longitude) throughout CORDEX-EA (East Asia),
including continental China and centered at (35 ◦N, 115 ◦E). The study utilized the annual
mean precipitation calculated for the simulated RegCMs using both the corrected and
raw data from the historical period from 1979 to 2005 and a two-period bias correction for
future precipitation. According to the IPCC Fifth Assessment Report (AR5), the analysis
was performed for the mid-21st century (2046–2065) and the late 21st century (2078–2097)
(i.e., the far future). To verify the performance of the model and to obtain high accuracy, a
bias correction process was used for the simulated RegCMs using both the corrected and
raw data from the historical period for reference data and two-period bias correction for
future precipitation. the software used is ArcMap (version 10.4.1), which is a popular GIS
software that enables users to generate, modify, and assess geospatial data.

The bias correction technique was carried out, utilizing the quantile mapping tech-
nique, which is particularly efficient in correcting outliers, applying this method to both
observed and simulated data. This approach involves mapping the simulated data onto
the observed data based on the cumulative probability distribution, as described in detail
by Park et al. [31].

3.3. Climate Indices

EPIs were constructed using the Joint WMO Expert Group on Climate Change Detec-
tion and Indices (CCl/CLIVAR/JCOMM) (http://etccdi.pacificclimate.org/) (Accessed on
10 November 2023). This is a collection of indicators consisting mainly of data on rainfall
extremes, as they allow for the assessment of various aspects related to the variations in the
strength, occurrence rate, and length of severe occurrences and have been extensively used
in different research investigations [32].

We determined the specific values of the absolute indices based on a fixed threshold
for the recorded rainfall. We used five different EPIs in this study, including the maximum
5-day amount of precipitation (RX5day), the number of heavy rain days (R10), consecutive
wet days (CWD), consecutive dry days (CDD), and a simple daily intensity index (SDII),
to capture various aspects of the extreme precipitation events in Hubei Province. Table 1
provides a summary of each index. All meteorological indices evaluate either the severity
or frequency of precipitation; however, the CDD index measures the duration of dry spells.

Table 1. Definitions of five EPIs used in the study.

Indicator Units Index Name Definitions Units

Rx5day Maximum 5-day
precipitation

Annual maximum
consecutive 5-day

precipitation
mm

R10mm Number of heavy
precipitation days

Annual number of days
when the daily precipitation

is >l0 mm
days

CWD Consecutive wet days Average daily precipitation
on wet days, mm/day days

CDD Consecutive dry days Average daily precipitation
on dry days, mm/day days

SDII Simple daily intensity
index

Daily precipitation (≥1 mm)
in the year mm/day

3.4. Methods of Analysis

In this study, the correlation coefficient was used to evaluate the reliability of the
rainfall data. It was necessary to evaluate both the model’s outputs and the precipitation
data from the ERA5 reanalysis. For this purpose, CC was used to evaluate the degree of

http://etccdi.pacificclimate.org/
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linear correlation between the model’s outputs and reanalyzed data. When the CC is 1 or
close to 1, it indicates a strong correlation between the model outputs and ERA5 data.

CC =
∑n

n=1
(
Gi − G

)(
Si − S

)
∑n

n=1
(
Gi − G

)2
∑1

n=1
(
Si − S

)2 , (1)

Moreover, the root mean square error (RMSE) method was applied to assess the overall
accuracy and error level of the rainfall products from the model’s outputs compared with
the ERA5 reanalyzed data.

RMSE =

√
1
N∑N

n=1(Sn − Sn)
2 (2)

The Mann–Kendall (MK) test was used to analyze the significance of the trend in the
time series of EPIs for the three periods: the reference period (1979–2005), the mid-21st
century (2046–2065), and the late 21st century (2078–2097). The World Meteorological
Organization has suggested this approach for analyzing trends in specific time series [33].
The purpose of the analysis was to demonstrate the statistical significance of upward and
downward trends. The strength of this method depends on the amount, size, and variability
of the data being analyzed, as well as the magnitude of the data.

4. Results
4.1. Validation of the Model Simulation and ERA5

Initially, we assessed the model’s accuracy in predicting precipitation patterns in Hubei
Province by comparing the mean simulated annual precipitation with the corresponding
observed data from 1979 to 2005. We used several statistical tests (Table 2) to determine
how much the ERA5 reanalyzed rainfall product and the RegCM model output differed in
accuracy. We also adopted the Taylor diagram, widely acknowledged as one of the most
suitable techniques for the graphical representation of model-matched performance against
observations. This diagram displays the centered RMSE, correlation coefficient (CC), and
ratio of standard deviations. Figure 2 shows a Taylor diagram illustrating a comparison
between the daily mean rainfall for the reanalysis of ERA5 and the output of RegCM.

Table 2. Statistical summary of daily historical precipitation over Hubei in an evaluation of RegCM
against ERA5.

Mean Bias RMSD RMSE STD R

ERA5 3.85 0 0 0 1 1
RegCM 3.69 0.17 4.34 4.34 0.99 027

Table 2 and Figure 2, which demonstrate the use of CC to assess the reliability of
rainfall data for both the reanalyzed data and the model’s outputs, provided the relative
statistical metrics. The ERA5 product showed a better correlation (CC = 1.0) and an
increased standard deviation compared with the RegCM. We used the RMSE method to
evaluate the overall accuracy and magnitude of error of the rainfall products derived from
the model’s outputs against the ERA5 reanalyzed data. The model outputs exhibited a
higher level of error compared with the ERA5 product.
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4.2. Climatology of Rainfall over Hubei

The study region was analyzed to investigate the temporal distribution of rainfall. The
precipitation of Hubei Province shows annual cycles of variability in daily precipitation
(see Figure 3). The daily precipitation in Hubei Province for both ERA5 and RegCM was
analyzed before and after bias correction during the flood season, which lasts from May to
August. In contrast, the winter months of January, November, and December are the driest
times of the year, with average daily precipitation below 3 mm. The outcomes of the study
suggested that RegCM was capable of accurately capturing the daily amount of rainfall
for all regions, and tended to overestimate it during wet months and underestimate the
rainfall during dry months.
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4.3. Changes in Annual Mean Precipitation

The following section presents a comparison among the ERA5 reanalyzed data, the
RegCM4 simulation data, and the bias-corrected simulated precipitation. It is important
to note that there was spatial variation in both the ERA5 and bias-corrected simulated
precipitation, indicating that RegCM4 responded effectively to the process of bias correction.
With regards to the reanalyzed data, the average precipitation was primarily concentrated
in the northwestern region. The intensity of precipitation increased in these areas and
decreased towards the center and south. However, the annual mean of bias-corrected
simulated precipitation also exhibited an increase in the northwestern parts and a decrease
towards the center and some northern regions. ERA5 products accurately captured the
spatial amount of rainfall, as shown in Figure 4a and as demonstrated in a report by
Jiao et al. [34]. Figure 4 shows that most areas affected by extreme precipitation events
were located in western and northern part, with the average annual rainfall reaching
1500 mm/year. The frequency of heavy rain decreased towards Shiyan and Suizhou, with
values below 400 mm/year of rainfall. This variation in rainfall is attributed to the presence
of hills and mountainous terrain that prevail in the western and eastern parts. In contrast,
the central part of the province is dominated by low-level mountains and hills, with little
difference in elevation, leading to minimal variation in the mean annual rainfall according
to the topographic units.
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The center and some of the northern parts of Hubei Province recorded less rainfall,
with an annual average up to 1000 mm. These areas correspond to the driest areas of
the province. Consequently, we expect a relative reduction in the frequency of extreme
precipitation events in these areas.

Figure 4b shows the average historical annual rainfall from the model’s simulations.
We found that there was not much difference from that in Figure 4a, indicating that the
model has good potential for spatially representing rainfall over the region. Figure 4c
illustrates the variations in the annual mean precipitation after bias correction. The spatial
variation in average rainfall after the process of bias correction is depicted in this figure.
The amount of annual rainfall was also concentrated in the western and northern parts,
and decreased in the central and southern regions.

The outputs of RegCM4 coincided with ERA5 (see Figure 5), which means the correc-
tion method was effective in the past; for this reason, its application was adopted in future
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projections. The results showed obvious variations in the spatial patterns of the average
annual precipitation for both the ERA5 products and the RegCM model’s outputs before
and after bias correction, which indicated that the RegCM4 responded to the process of
bias correction, so it was necessary to perform the process of bias correction to obtain more
accurate and reliable results.
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Figure 5. Time series of annual mean precipitation for the ERA5 product and RegCM4 before and
after bias correction.

4.4. Spatial Changes in EPIs

Figure 6 shows the spatial changes in the five observed average annual EPIs over
Hubei Province from 1979 to 2005. As depicted in the figure, the distributions of Rx5day
and SDII ranged across 20–104 mm and 2.6–11.2 mm, respectively. The annual distribution
of R10mm, CWD, and CDD ranged across 20–128 mm, 5–22.8 days, and 1.2–8.8 days,
respectively. According to the observed extreme wet indicators (all indicators except for
CDD), the highest values were found in the western and northern parts, while the lowest
values were in the eastern and central parts. The distributions of Rx5day and SDII were
similar to those of the average annual rainfall, which increased in Yichang, Shiyan, and
Xiangyang, and were lower in the eastern to central part of Hubei.

The Rx5day values increased in the western and northern region, mainly in Yichang
and Xiangyang (also known as Xiangfan) (see Figure 6a). The maximum value of R10mm
was found in Yichang and Shennongjia, suggesting these areas experienced frequent and
intense rainfall events during this period (see Figure 6b).

CWD decreased in the eastern and central parts, and increased in the western and
northern parts and some southern areas (see Figure 6c). In contrast, CDD increased in the
southern–central parts and decreased in the western part (see Figure 6c). CWD increased
distinctly in western Hubei, while CDD decreased in western Hubei compared with other
regions. This may be due to differences in the terrain. Generally, SDII corresponded to
changes in total annual precipitation in China. Increases in SDII were observed in most
parts of the region (see Figure 6e). The spatial distribution of these indices was very similar,
indicating that the ERA5 reanalyzed data are effective in capturing spatial patterns. The
ERA5 reanalyzed data indicated that almost all EPIs, except for CDD, showed higher values
in the western and southern regions, while the most severe drought events occurred in
the southern and central parts of Hubei between 1979 and 2005. Consequently, extreme
precipitation events in the western and northern regions were the most hazardous, while
drought events occurred in the southern and central parts of the province between 1979
and 2005.
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Figure 6. Spatial distribution of five annual mean EPIs in Hubei Province for 1979–2005: (a) Rx5day,
(b) R10 mm, (c) CWD, (d) SDD, and (e) SDII.

4.5. Temporal Changes in EPIs

Figure 7 and Table 3 depicts the temporal precipitation patterns of the EPIs from 1979
to 2005 in Hubei Province. Rx5day showed a positive trend during this period, indicating a
non-significant increase in the 1980s in both Yichang and Xiangfan, with a value of 57 mm
(see Table 2). Among the strength indicators, the frequency index R10mm increased non-
significantly in the 1990s in both Yichang and Shennongjia, showing a positive trend of
30 days, which suggests that heavy precipitation was more intense and frequent during this
period. As for the consecutive dry index (CDD), it was found to increase non-significantly,
showing a positive trend of 41 days in Xiaogan, Jinmen, and Jinzhou, with a rise observed
in the early 1980s. As shown in Table 3 there were no notable patterns in any of the five
EPIs. However, there was a gradual decrease since the mid-1980s, followed by an increase
in the 1990s, indicating an overall rise in the trend of drought in these areas.

Table 3. Mann–Kendall test for five extreme precipitation indices.

EPI S Z p Trend

Rx5day 75 1.5427 0.12291

R10mm 30 0.60636 0.54427

Based on the
available data,
no statistically

significant trend
was observed

CWD −35 0.70879 0.47845
CDD 41 0.88052 0.37858
SDII 19 0.37524 0.70748
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The CWD showed a negative tendency of 35 days, indicating a decrease in heavy
rainfall on wet days. Therefore, this index has decreased in the eastern and northern
parts. The daily intensity (SDII) increased non-significantly by 19 mm/day in Yichang,
Shennongjia, Xiangfan, and some of the southeastern parts.

4.6. Seasonal Analysis of Extreme Precipitation Indices in Summer for the Mid-21st Century
(2046–2065)

This study discussed the EPIs’ characteristics in Hubei Province during the sum-
mer. The concentration of precipitation, including extreme events, during this time, is a
noteworthy aspect.

4.6.1. Spatial Patterns

As shown in Figure 8, spatial changes occurred in the five EPIs in the mid-21st century
(2046–2065) compared with the reference period. Rx5day increased in the central and
northern part of Hubei, mainly in Wuhan, Qianjiang, Jingzhou, and Suizhou, with values
larger than 65 mm, and it decreased in Yichang and Xianyang, with values below −30 mm
(see Figure 8a). This indicated that this region will witness a rise in the intensity of rainfall
through summer. A significant increase in R10mm was seen in the south of Hubei with
values larger than 60, especially in Wuhan, Qianjiang, Jingzhou, and Suizhou, indicating
that these areas are more at risk of extreme precipitation during summer. It decreased in
Enshi and Yichang in west Hubei, with values below −15 days, indicating less rainfall
in these areas (see Figure 8b). CWD also increased in Xiantao, Qianjiang, and Jingzhou,
with a value exceeding 40 days (see Figure 8c). Summer CDD decreased in middle and
southern Hubei, with values up to −15 days, and increased in most parts of Hubei, with
values larger than 45 days, implying that the middle region will witness less drought
during summer (see Figure 8d). The change in the SDII also increased in Shyian, Qianjiang,
Jingzhou, and Suizhou in central and eastern Hubei, with values up to 45 mm/days, and
decreased in Yichang and Xianyang. This indicated that these regions will experience a
rise in the intensity of rainfall throughout summer (see Figure 8e). Generally, all the EPIs
increased, except CDD during the summer in the 21st century. Therefore, the southern and
central regions such as Wuhan, Qianjiang, Jingzhou, and Suizhou will be highly exposed to
the risk of floods and extreme events.
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Figure 8. Differences in the spatial patterns of the extreme precipitation and climatic indices during
the summer between the mid-21st century (2046–2065) and the period of 1986–2005.

4.6.2. Temporal Patterns

In summer, as shown in Figure 9 and Table 4, Rx5day increased non-significantly at
a rate of 28 mm in Wuhan, Ezhou, and Shyian, and decreased in western Hubei. R10mm
increased significantly in Wuhan, Xiantao, Qianjiang, Tianmen, and Jingzhou at a rate
of 64 days (p < 0.05) but decreased in Enshi, Yichang, and Xianyang (see Table 4). This
indicated that these regions face a higher risk of extreme precipitation in the summer.
Conversely, CDD showed a negative trend of 54 days, indicating less severe drought over
the central parts and more heavy precipitation days in this area. CWD increased mainly in
the northern and southern parts at a rate of 43 days, and decreased in Enshi and Yichang.
That means those areas would be less to extreme events. In general, most of the EPIs
examined (except CDD) rose during the summer of the mid-21st century. SDII increased
mainly in the southern northern of Hubei at a rate of 12 days and decreased in the western
parts. Precipitation increased in the southern and central parts, and decreased in the
western parts. Therefore, the southern and central regions will face a higher risk of extreme
events by the middle of the 21st century.

Table 4. The M-K test for summer over the mid-21st century.

EPI High Low S Z p Trend

Rx5day 65 −30 28 0.876 0.38103 Non-significant increasing
R10mm 15 −5 64 2.044 0.040955 Significant increasing
CWD 40 −25 43 1.7195 0.16175 Non-significant increasing
CDD 45 −15 −54 1.7195 0.085515 Non-significant decreasing
SDII 45 −15 12 0.35689 0.77029 Non-significant increasing
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4.7. Spatial–Temporal Changes of EPIs in Summer for the Late 21st Century (2078–2097)
4.7.1. Spatial Changes

The spatial changes in five EPIs in the late 21st century (2078–2097) compared with the
reference period are shown in Figure 10. the consecutive dry days CDD showed a reversed
distribution, for wet extreme indices (all indices except CDD) increased in northern and
southern Hubei.
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Increases in Rx5day were found in the southern and northern parts for values of up to
55 mm, and a decrease in the western parts of Hubei around −15 mm (see Figure 10a). This
may indicate increased Rx5day in those areas during the summer season. R10mm increased
in the southern parts with values of up to 55 but decreased towards Enshi, Shennongjia,
Shiyan, and Xiangyang (see Figure 10b). This suggests that these areas may be less at
risk of heavy rainfall during the summer. Figure 10c displays an increase in CWD in the
southern parts of Hubei, with values up to 45 days, indicating that these areas could be
wetter. The CDD shows increases in most parts of Hubei of up to 55 days, except the middle
parts, and it decreased in Wuhan, Xiagan, and Xianto, which indicated that these areas
will be exposed to heavy rains and that more attention should be paid to these areas (see
Figure 10d). According to Figure 10e, a decrease in SDII can be observed in the western
parts, with values up to 45 mm/day, while Xiantao, Qianjiang, and Jingzhou will experience
an increase in SDII.

4.7.2. Temporal Changes

The temporal changes for the five EPIs over Hubei for the summer of the late 21st
century are shown in Figure 11 and Table 5. Rx5day had a negative tendency of −2 mm
in Yichang and Xiangyang. This may indicate a decrease in the intensity of rainfall on
wet days in those areas during the summer in the late 21st century. Accordingly, R10mm
also showed a negative tendency of −49 days, indicating a non-significant decrease in the
north and west of Hubei. CWD had a positive non-significant increasing trend of 24 days
in Xiantao, Tianmen, and Jinzhou, and decreased in the western and northern parts. The
southern part will experience an increase in CWD during the summer, suggesting that
these regions will be wetter. An increase in CDD is expected in most region of Hubei at
a rate of 54 days, except the middle areas. This indicates that EPIs will increase in these
areas. SDII also showed a negative tendency of −38 days in the west and north parts,
and decreased in Yichang and Enshi. This means that these regions will suffer less from
extreme precipitation.
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Most EPIs over Hubei Province should decrease in the summer during the late 21st
century, except for CDD and CWD, which are projected to increase. The projected seasonal
analysis of precipitation differed between the summer of the late 21st century and the
summer of the mid-21st century. Specifically, the EPIs, except for CDD, should increase in
the summer of the mid-21st century and decrease in the summer of the late 21st century.
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Table 5. The M-K test for summer over the late 21st century.

EPI High Low S Z p Trend

Rx5day 70 −55 −2 0.032444 0.97412
There is no
statistically
significant
trend

Rx10mm 15 −5 −49 1.5581 0.1192
CWD 20 −10 24 0.74622 0.45554
CDD 25 −15 54 1.7195 0.085515
SDII 20 −10 −38 1.2004 0.22997

5. Discussions and Conclusions

Utilizing ERA5 reanalyzed data from ECMWF and the outcomes of high-resolution
climate change projections for Hubei via RegCM4, this study investigated future extreme
precipitation in Hubei Province. Based on RegCM4’s output, five EPIs (RX5day, R10mm,
CWD, SDII, and CDD) were selected to analyze the spatial–temporal fluctuations of extreme
precipitation during the summer season in Hubei. The period from 1979 to 2005 was used
as a reference point for future changes, with the model’s efficacy assessed by comparing its
outcomes with ERA5 data.

Generally, shifts in precipitation extremes can significantly affect overall yearly precip-
itation. A significant increase in R10mm was detected during the summer of the mid-21st
century, particularly in the southern and northern parts of Hubei, indicating a higher risk
of extreme events in regions such as Wuhan, Xiantao, Qianjiang, Jinzhuo, and Ezhou. These
results are consistent with research conducted by Wang and Li [18]. It has been reported
that the amount of heavy rainfall has increased compared with previous times, potentially
worsening the strain on drainage systems in Wuhan City [35]. In the summer of the late
21st century, RX5day, R10mm, and SDII showed a slight decline towards the western parts
of Hubei, indicating a decrease in extreme precipitation in these areas. In contrast, CDD
increased in most parts of Hubei, suggesting a rise in drought rates during the summer of
the late 21st century. There are factors other than rainfall that contribute to climate change
and the presence of extreme precipitation indicators in the summer of the 21st century,
such as prevailing winds and mountains. Menezes et al. [36] analyzed numerous years
of surface wind data from the Quick Scatterometer (QuikSCAT) satellite to elucidate the
spatial and temporal variability of westerly wind jets in the mountain gap of the northern
Red Sea. He found that these jets were relatively cold and dry air from the Arabian Desert.

Based on these results, the general trend of variation in frequency indices in Hubei
Province during the summer of the mid-21st century is increasing, indicating that precipita-
tion and intensity will rise. Extreme precipitation events will occur more frequently in the
southern and northern regions of Hubei, potentially leading to increased flood disasters in
the southeastern part of the province. The primary goal of this research was to investigate
the regional patterns of future changes as well as the temporal progression of extreme
indices between 2046–2065 and 2078–2097, using the RCP8.5 scenario. The findings showed
that the model can accurately replicate the spatial and temporal patterns of extreme climate
events in Hubei Province. The major conclusions include the following.

1. The R10mm will increase significantly (p < 0.05) during the summer of the mid-21st
century in the south northern parts, especially for Wuhan, Xiantao, Qianjiang, Jinzhuo,
and Ezhou. The majority of EPIs, except CDD, are expected to rise. This indicates the
need for more focus on disaster prevention during summer.

2. Rx5day, R10mm, and SDII will all gradually decrease in the summer of the late 21st
century toward the western parts. However, they may climb throughout other parts
of Hubei, indicating an increase in the rates of drought during the summer of the
21st century.

3. More focus needs to be placed on the rainstorms that are expected in Wuhan, Xiantao,
Qianjiang, and Tianmen, particularly during the summer of the mid-21st century,
where there may be a significant increase in the R10mm. This could lead to more
floods and financial losses during the periods of intense rainfall.
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In conclusion, this study enhances our understanding of severe precipitation incidents
in Hubei Province during the 21st century in the context of the RCP8.5 scenario. However,
analyzing the uncertainty involved in the simulation and the projection of extreme rainfall
events is essential for further research, given the complexity of rainfall patterns. Although
the good efficiency of the bias correction method is beneficial for the simulation of the
observed precipitation, especially in the temporal scale, there is potential room for improve-
ment spatially. Therefore, for future work, the study recommends more investigation on
bias correction techniques, as well as using datasets of high-resolution observations.
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