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Abstract: Dust storms are one of the important natural hazards that affect the lives of inhabitants all
around the world, especially in North Africa and the Middle East. In this study, wind speed, wind
direction, and air temperature patterns are investigated in one of the dustiest cities in Sistan Basin,
Zahedan City, located in southeast Iran, over a 17-year period (2004–2020) using a WRF model and
ground observation data. The city is located near a dust source and is mostly affected by local dust
storms. The World Meteorology Organization (WMO) dust-related codes show that the city was
affected by local dust, with 52 percent of the total dust events occurring during the period (2004–2021).
The city’s weather station reported that 17.5% and 43% were the minimum and maximum dusty
days, respectively, during 2004–2021. The summer and July were considered the dustiest season and
month in the city. Since air temperature, wind speed, and wind direction are important factors in
dust rising and propagation, these meteorological factors were simulated using the Weather Research
and Forecasting (WRF) model for the Zahedan weather station. The WRF model’s output was found
to be highly correlated with the station data; however, the WRF simulation mostly overestimated
when compared with station data during the study period (2004–2020). The model had a reasonable
performance in wind class frequency distribution at the station, demonstrating that 42.6% of the
wind was between 0.5 and 2, which is in good agreement with the station data (42% in the range of
0.5–2). So, the WRF model effectively simulated the wind class frequency distribution and the wind
direction at Zahedan station, despite overestimating the wind speed as well as minimum, maximum,
and average air temperatures during the 17-year period.

Keywords: wind speed and wind direction; air temperature; dust events; WRF model; Zahedan

1. Introduction

Dust storms are severe environmental disasters, every year affecting millions of human
lives and properties all around the world [1,2]. The Middle East is the second dust source
in the world after North Africa, contributing 15–20% to dust load of the atmosphere in
the world [3,4]. Although most dust storms originate from desert areas, recently dried
lake beds turn out to be the second largest dust source, especially at local and regional
scales [5–8]. Iran is located in the Middle East and is greatly affected mostly by external
and internal dust sources [9–12]. Although Iranian territory is affected by different dust
sources, the main external dust source is the Mesopotamian Plain in Iraq and also deserts
of Iraq and Syria [13]. Among internal dust sources, the Al-Howizeh/Al-Azim marshes
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in the southwest of Iran and the Sistan Basin in southeast of Iran were identified as the
main sand and dust storm (SDS) source areas in the country [14–17]. Unfortunately, the
Al-Howizeh/Al-Azim dust sources are still expanding [13] and the region is suffering
from rapid land degradation [18,19]. Also, the Sistan Basin is affected due to wind erosion
and rapid soil degradation [20,21]. The Levar wind (which lasts for 120 days) has a direct
impact on dust rising and dust transportation in the Sistan Basin [22,23].

In the process of dust particle emission, surface conditions are crucial [24] among
the other meteorological factors, like wind speed and wind direction [8,25], relative hu-
midity [26], air temperature [27], and surface pressure [28,29]. Also, soil moisture [30],
vegetation cover [9,31], land use [32], slope [33], and topography [34] are some important
surface conditions that contribute significantly to dust particle emission [5]. Furthermore,
climatic factors, such as increasing air and surface temperatures, decreasing precipitation,
and long droughts, directly favor directly an increase in dust event frequency in the Middle
East [9].

Among the meteorological factors, wind speed and wind direction have an important
and direct role in the rising of dust from a dust source as well as in the transport and
propagation in (and from) the affected area [6,7,35–38]. Severe wind causes dust particles
to rise from the dust hotspot, while wind direction determines the area affected by the
dust storm [8]. Many experiments have been carried out with wind tunnels to investigate
wind speed threshold to cause dust particles to rise, depending on different types of soil
texture [36–40]. Furthermore, some models, such as The Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT) model, allow the computation of backward or forward air
parcel trajectories to determine either potential sources of dust particles or their probable
paths of propagation [5,6,39–43]. Thus, wind speed and wind direction are important
parameters that can be used for investigating the formation and propagation of dust
storms [44–47].

The southeastern region of Iran, encompassing the Lut desert valley and the dry
lake of Jaz Morian, is characterized by the presence of a prevalent low-level northerly
jet [48–50]. This jet is the result of various factors operating at different scales and can lead
to the generation and transport of dust while passing through these arid regions [48]. The
formation of this low-level jet is influenced by complex processes; as it moves through
the Lut desert valley and the dry lake of Jaz Morian, it can resuspend and transport dust,
thus limiting visibility and degrading electromagnetic and optical propagation, especially
when reaching the Gulf of Oman [49,50]. Furthermore, a severe local wind, called the Levar
wind or 120-day wind, is frequently blown to this area, so in the appropriate situation, dust
particles rise and propagate in this area [23,25]. The wind intensifies while passing through
the tunnels in the Hindukush mountains. Also, vast parts of southeast Iran receive less
than 40 mm of annual rainfall, which is another important factor for soil vulnerability to
dust rising. Thus, the arid climate of this region plays a central role in dust rising [16,25].

In the Sistan Basin, the dried-up areas of Lake Hamon recently became a significant
dust source, becoming the most active dust source inside Iran [16]. Additionally, the
studied region is situated in close proximity to two major Iranian deserts: Dasht-e-Lut
and Dasht-e-Kavir (Great Salt Desert). Furthermore, this area is affected by one of the
strongest winds in Iran, called the Levar wind [35]. These factors resulted in dust storms
becoming a dominant phenomenon in the region [16,25]. Furthermore, severe soil erosion
is one of the important consequences of dust rising, and dust storms can also lead to
extensive environmental consequences for the local residents [16,51]. The presence of
abundant dust sources, the proximity to large deserts, and the prevalence of high winds in
the area all contributed to the prominence of dust storms as a major issue in this region and
the surrounding area [16,24,25]. Visual observations from meteorological stations across
Turkmenistan, Iran, Afghanistan, and Pakistan have revealed that the highest frequency
of dust storms is observed in the Sistan Basin and the surrounding deserts of southern
Afghanistan [52,53]. Additionally, a long-term study in the Sistan Basin found a statistically
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significant increasing trend in PM10 concentrations, which is driven by a rise in the speed
of the local Levar wind, particularly after 2017 [54].

In this study, the number of WMO dust-related codes (06, 07, 08, 09, 30–35, and 98)
was investigated through the data of the Zahedan weather station measured in 2000–2021.
Also, the annual, seasonal, and monthly numbers of dust events were investigated for
the determination of high and low dust frequency in 2000–2021. In the next step, the
WRF model was run for 17 years (2004–2020) for simulation of 10 m wind speed and wind
direction as well as minimum, average, and maximum air temperatures at the station during
the same period. Furthermore, the simulated meteorological parameters were compared
with station data at the Zahedan station. While previous studies have emphasized the
significance of the Levar wind in driving dust mobilization in the Sistan Basin [55–57], the
current work aims to assess the capability of the WRF model in simulating wind speed,
wind direction, and air temperature at the Zahedan station. This investigation aims to
elucidate the role of wind and air temperature in one of the critical dust source regions in
southeastern Iran, as well as to evaluate the performance of WRF model simulations over
areas prone to dust events.

2. Study Area

Zahedan City (29.32◦ N, 60.52◦ E, 1384 m asl) in southeast Iran is near the Iranian
borders with Afghanistan and Pakistan (Figure 1). The city is located in the south of the
Sistan Basin, so it is mostly affected by dust storms mainly originating from the basin,
especially in the summer season [58]. The Levar (or 120-day) wind dominates in this area,
so the wind has crucial role in rising dust in the Sistan Basin [25,58]. The local wind is
mostly dominant for four months (mid-May to mid-September) but lasts for more than
120 days [16,25]. The city is the center of the Sistan and the Blochestan Province, with a
population of more than 800 thousand people [59]. The climate of the city is semi-arid to
arid and the high and low air temperatures of the city are observed in summer (around
33 ◦C) and winter (between 10 and 13 ◦C), respectively.
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Figure 1. Topography of the Sistan Basin (southeast Iran) with the synoptic weather stations of
Zahedan City (marked with black triangle).

The Zahedan weather synoptic station is a manual weather station in Iran that meets
WMO standards. However, the measurement of horizontal visibility is taken visually and
approximately, which can introduce errors. Additionally, sensor calibration and environ-
mental factors can affect the accuracy of temperature measurements. Sensor accuracy, local
turbulence, local terrain, and nearby obstacles can influence wind data.

Simulations from numerical weather forecasting models can also be associated with
uncertainties due to the following reasons. (i) Model physics: Limitations in the representa-
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tion of physical processes can introduce uncertainties in the model outputs. (ii) Boundary
and initial conditions: Errors in the input data can propagate through the model and can
affect the simulated temperature and wind field. (iii) Topographic and land use repre-
sentation: Accurate representation of complex terrain and land use characteristics can
be challenging.

These inherent uncertainties must be considered when comparing point-scale observa-
tional data and model-generated grid-scale data. It is crucial to understand the limitations
and uncertainties associated with both the measured data and the WRF model results to
draw reliable conclusions. Some differences between the observational quantities and the
model simulation should be expected and accepted.

3. Dataset and Methodology

The data used in this study were obtained from the meteorological synoptic station
in Zahedan and the output of the Weather Research and Forecasting (WRF) model. The
observational data were recorded at 3 h intervals and included air temperature, wind field,
horizontal visibility, current weather, and the type of phenomenon, including codes related
to sandstorms. The WRF model output included wind field and air temperature data at 1 h
time steps and a horizontal resolution of approximately 5 km.

The study period was analyzed using weather station reports from Zahedan, which
provided information on dust-related codes, air temperature, wind speed, and wind
direction. Additionally, ECMWF ERA-Interim reanalysis data with a spatial resolution
of 0.75◦ × 0.75◦, a temporal resolution of 6 h, and up to 60 vertical levels were used as
initial and boundary conditions for the WRF model [60–64]. Numerical weather forecasting
models like WRF can be used to fill data gaps in areas without measurement stations,
such as deserts and regions with complex topography. However, both the measured data
and the WRF model results have associated uncertainties that should be considered when
analyzing the potential sources of error and their implications for the study’s observations.

3.1. Meteorology Dust-Related Data

The annual, seasonal, and monthly frequencies of dust events are analyzed using the
data obtained at Zahedan station during the period (2000–2021). In this study, the WMO
dust-related codes 06, 07, 30 to 35, and 98 are used for the study duration in Zahedan
station. The codes were reported 8 times a day i.e., every 3 h. In this study, a dusty day is a
day with at least one dust-related code detected among all 8 reports during the whole day.

Dust-related code 06 indicates widespread dust that is not due to the wind at or near
the station, i.e., the code is related to non-local dust. The criteria for this code include
low wind speed. Code 07 is related to dust or sand raised by wind at or near the station,
reducing the horizontal visibility. The criteria for this code include a wind speed of 7 m/s
or more, and there is no limit to the horizontal visibility reduced due to the presence
of dust or sand, so it indicates local dust events (codes 5, 6, 9), while dust codes 30–35
and 98 happened very rarely over Zahedan station. Codes 30–35 indicate a dust storm
or sandstorm within sight at the time of observation or during the preceding hour. The
criteria for these codes include a wind speed of 30 knots (approximately 15 m/s) or more,
and the horizontal visibility is reduced to less than 1 km due to the presence of a dust or
sandstorm. These codes indicate the intensity of the dust events, with the lower codes
(30–32) representing weaker events and the higher codes (33–35) representing more intense
dust storms [65]. Code 98 indicates the presence of a thunderstorm and a dust or sandstorm.

It is important to note that the criteria for these codes consider the combination of wind
speed, horizontal visibility, and the presence and intensity of the dust or sand being raised.
These factors collectively determine the appropriate code to be assigned for a particular
dust event.
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3.2. Air Temperature, Wind Speed, and Wind Direction Data

The meteorological parameters (air temperature, wind speed, and wind direction)
were measured at Zahedan station during the period (2005–2021). The data were reported
every 3 h (8 times) during a day. In this study, the meteorological data and WRF simulation
outputs are used for comparison purposes.

3.3. WRF Model

The WRF model is a regional model for numerical weather predictions and meteoro-
logical research [66–71]. In this study, the WRF model (version 3.9) was utilized to simulate
wind speed, wind direction, and air temperature across Iran during the period (2004–2020).
The resulting simulated data will be used to prepare a comprehensive wind atlas of Iran, as
reported in a separate study [35].

To optimize the model’s performance for the complex terrain of Iran, the WRF model
was implemented with two-way nested domains. The first, larger domain covered the
Middle East region at a horizontal resolution of 15 km, while the second, higher-resolution
domain focused on Iran at 5 km (Figure 2). This nesting approach allowed the model
to better resolve the intricate topographic features of the study area. Additionally, the
model was configured with 39 vertical levels, extending from the surface up to the 100 hPa
pressure level. The first six vertical levels were positioned at approximately 12, 35, 65, 100,
140, and 200 m above the ground, ensuring a detailed representation of the atmospheric
boundary layer.
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The physical parameterization schemes used in the WRF model included:

- Microphysics: Lin et al. scheme [72];
- Longwave Radiation: RRTM scheme [73];
- Shortwave Radiation: Dudhia scheme [74];
- Land Surface: Noah Land Surface Model [75];
- Planetary Boundary Layer: ACM2 [76].

Initially, the WRF model underwent simulations using five distinct planetary boundary
layer (PBL) schemes, namely YSU, MYJ, MYNN2.5, QNSE, and ACM2. Subsequently, after
a thorough evaluation, the ACM2 boundary layer scheme emerged as the most effective
scheme among the options considered. The outputs from the higher-resolution (5 km) do-
main were compared with observational data from synoptic stations, upper-air soundings,
and meteorological towers. The results of this comparative analysis demonstrated that the
ACM2 boundary layer scheme provided the most accurate representation of the wind and
temperature patterns in the study region, leading to its selection for the final simulations.

4. Results and Discussion
4.1. Investigation of Ground-Based Dust Reports

Figure 3 shows the percentages of the WMO codes related to dust including 06, 07,
08, 09, 30–35, and 98, at Zahedan meteorological station during the period (2004–2021).
Codes 08, 09, 30–35, and 98 were rarely reported at the station and they contribute only
4% of all reported dust codes, while 52% of all reported dust codes were related to code 07
(local dust), and 44% were related to dust code 06 (non-local dust). Despite the fact that
the city of Zahedan is located close to dust sources, it is also affected by non-local dust,
with a lower percentage of dust transported from long ranges. The Levar wind is mostly
dominant in the stations located in the Sistan Basin, so a high percentage of local dust is
not far from expected [6]. The situation is totally different in west and southwest Iran and
the area mostly affected by dust storms originating from the Mesopotamian Plain and the
deserts in Iraq and Syria [71,77–82].
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Figure 4a shows the annual number of dust events in the period from 2004 to 2021.
The minimum number of dusty days was reported in 2020 (64 days), while the maximum
(157 days) was observed in 2008. This means that the station is affected by dust storms
for, at minimum, 17.5% of a year, and a maximum of 43% of a year. The pattern of highest
dust duration is totally different compared to west, SW, and NW Iran [5–9]. In west and
southwest Iran, the highest dust frequencies happened from 2008 to 2013, in agreement
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with a long drought in the Iraqi Plains [9,66–69], and the same high dust frequency was
reported in Kuwait, Saudi Arabia, and a large part of the Arabian Peninsula [79–82].

Figure 4b shows the number of dusty days in different months at Zahedan in 2004–2021.
The highest value of monthly dust frequency was reported in July (301 days) followed by
August (225 days). As expected, the highest dust frequency was reported in coincidence
with the Levar wind duration from mid-May to mid-September. Also, the lowest dust
frequency is found in November (53 days in the whole study duration).

Figure 4c shows the number of dusty days in different seasons at Zahedan in 2004–2021.
The highest value of seasonal dust frequency was reported in the summer (660 days)
followed by spring (509 days). As expected, the highest dust frequency was related to
warm seasons. In contrast, the lowest dust frequency was related to autumn (211 days)
during the period (2004–2021). The same pattern was observed in southwest Iran, where
the highest dust frequencies were reported in the summer and then in the spring [9,76–80].
So, the highest dust frequencies happened in the warm part of the year at Zahedan station,
in agreement with northwest [5,81–84] and southwest Iran [9,85–88].

To investigate the continuity of dust occurrences on each dusty day, the number of
three-hour occurrences on dusty days were calculated (Figure 4d). The analysis revealed
that between 2004 and 2008, the persistence of dust was notably higher than the period
average. In contrast, from 2009 to 2021, the dust persistence on dusty days decreased below
the period average, reaching its lowest values in 2010 and 2011. The occurrence of dust in
an area is influenced by two primary factors: the characteristics of the earth’s surface, such
as soil type, moisture levels, and vegetation, and atmospheric conditions, including wind
speed [16]. It is plausible that during the initial period (2004–2008), the region experienced
prolonged droughts, coupled with consistent high-speed winds, contributing to increased
dust presence. Conversely, in the later period (2009–2021), being a desert region, the
potential for dust production remained high. The observed decline in dust persistence
during this period is likely attributed to shifts in large-scale atmospheric patterns, which
play a crucial role in dust generation.
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4.2. WRF Model Simulations
4.2.1. WRF Model Simulations of Air Temperature

Figure 5 shows the annual mean, minimum, and maximum of the WRF model sim-
ulations and the measured data of air temperature at Zahedan station from 2004 to 2020.
Figure 5a shows that the WRF model underestimated the mean annual air temperature
during the study period. The highest discrepancies are related to 2004 with 3.9 m/s, and
the lowest is related to 2008 with 2.6 m/s. However, the correlation coefficient between
the WRF model outputs and the station data is high, at 0.82. The figure indicates that
the fluctuation patterns of both observed and simulated results are in good agreement
with each other. Figure 5b shows that the WRF model underestimated minimum annual
air temperature in 2004–2020. The highest discrepancy is related to 2012 with 4.5 ◦C and
the lowest is related to 2004 with 0.2 ◦C. The model mostly underestimated minimum
temperature in the study period and overestimated it in some years (see values in 2008,
2011, 2014, and 2017). Despite this, the correlation coefficient between WRF outputs and the
station data was reasonable (0.59). Figure 5c indicates that the WRF model underestimated
maximum annual air temperatures in 2004–2020. The highest discrepancy is related to 2004
with 4.3 ◦C, and the lowest is related to 2010 with 1.4 ◦C. Also, the correlation coefficient
between WRF outputs and the station data was 0.59, with a similar fluctuation pattern.
The synoptic data from Zahedan station during the study period of 2004–2020 have less
than 0.2% incomplete or missing data, which does not significantly affect the monthly and
annual data. The large differences between the model and observed data in certain years
cannot be solely attributed to the incompleteness of the data. These differences can be
attributed to variations in the prevailing weather conditions in different years, such as
droughts, atmospheric front activities, or other meteorological factors [78].

Atmosphere 2024, 15, x FOR PEER REVIEW 9 of 18 
 

 

datasets are typically around 2 °C to 3 °C in most years, suggesting the presence of sys-
tematic errors in the model simulations, which can be reduced by applying post-pro-
cessing techniques. 

Another potential source of error is the difference between the method of recording 
the minimum and maximum temperatures in manual synoptic stations and the data ex-
tracted from hourly model simulations. If the maximum and minimum temperatures oc-
curred within a one-hour interval, this temporal mismatch may not be accurately captured 
in the model data, but it is reflected in the observational data. 

Furthermore, the studied area is a desert and very dry region, where rapid and ex-
treme temperature changes within a short period of time are a prominent feature. Such a 
characteristic can also contribute to the observed differences between the model and ob-
served data. The way the maximum and minimum temperature values are recorded in the 
manual synoptic stations and the hourly model simulations may not always align, leading 
to these discrepancies. 

The almost uniform difference between the average and maximum temperatures 
simulated with observational data can indicate that some of these errors are systematic, 
which can be minimized by applying post-processing methods. 

(a)

 

(b) 

 

(c) 

 

Figure 5. (a) Annual mean, (b) minimum, and (c) maximum air temperature during 2004–2020 at 
Zahedan station by WRF simulation (red line) and by measured data (black line). 

4.2.2. WRF Model Simulations of Wind Speed and Wind Direction 
Figure 6 shows the variation in annual mean 10 m wind speed (Figure 6a) and mean 

intraday variation in 10 m wind speed (Figure 6b) at Zahedan station in 2004–2020, 

Figure 5. (a) Annual mean, (b) minimum, and (c) maximum air temperature during 2004–2020 at
Zahedan station by WRF simulation (red line) and by measured data (black line).



Atmosphere 2024, 15, 993 9 of 18

When comparing the differences between the simulated and observed temperatures,
it is evident that the changes in the observational data and the simulated data show
good agreement for maximum and average temperatures. The differences between the
two datasets are typically around 2 ◦C to 3 ◦C in most years, suggesting the presence
of systematic errors in the model simulations, which can be reduced by applying post-
processing techniques.

Another potential source of error is the difference between the method of recording the
minimum and maximum temperatures in manual synoptic stations and the data extracted
from hourly model simulations. If the maximum and minimum temperatures occurred
within a one-hour interval, this temporal mismatch may not be accurately captured in the
model data, but it is reflected in the observational data.

Furthermore, the studied area is a desert and very dry region, where rapid and
extreme temperature changes within a short period of time are a prominent feature. Such
a characteristic can also contribute to the observed differences between the model and
observed data. The way the maximum and minimum temperature values are recorded
in the manual synoptic stations and the hourly model simulations may not always align,
leading to these discrepancies.

The almost uniform difference between the average and maximum temperatures
simulated with observational data can indicate that some of these errors are systematic,
which can be minimized by applying post-processing methods.

4.2.2. WRF Model Simulations of Wind Speed and Wind Direction

Figure 6 shows the variation in annual mean 10 m wind speed (Figure 6a) and mean
intraday variation in 10 m wind speed (Figure 6b) at Zahedan station in 2004–2020, obtained
from the WRF model simulations and the measured data. Figure 6a shows that the model
overestimated the annual value of the wind speed at the station during the whole study
period. Since the correlation coefficient between the station data and the model outputs is
moderate (0.45), it is obvious that the model did not simulate well the 10 m wind speed at
Zahedan station. Figure 6b shows the mean diurnal variation in simulated and measured
wind speed at Zahedan station. Like the previous simulation, the model overestimated
10 m wind speed; the highest difference is at 18 UTC (+2.02 m/s), and the lowest difference
is at 12 UTC (+1.33 m/s). Although the correlation coefficient between the station wind
data and simulation is very high (0.99), the result showed that the WRF model effectively
simulated the 10 m wind speed changes in different hours of a day.

A comparison of observed wind speed changes with simulated data shows that the
differences between them were almost the same during the day. However, the most
significant errors occurred at the end of the day and early in the morning (Figure 6b). This
suggests that the dry climate of the region, which experiences extreme cooling and heating
during these time periods, is one of the main factors contributing to these differences.

The rapid and extreme temperature changes that occur in the desert and dry climate
of the studied region, particularly towards the end of the day and the beginning of the
night, appear to be a key driver of the discrepancies between the observed and simulated
wind speed data. The model may not be accurately capturing the complex interactions
between the temperature variations and wind patterns during these transitional periods,
leading to the larger errors observed.

Addressing this issue may require further refinements to the model’s representation of
the region’s unique microclimate and the associated wind dynamics, especially in the late
afternoon and early morning hours when the temperature gradients are most pronounced.
Applying targeted post-processing techniques or incorporating additional meteorological
parameters into the model could help improve the simulation of wind speeds during these
critical time periods.
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Figure 7 shows the distributions of 10 m wind class frequency and the wind direction,
as observed from the simulated and the observed data at Zahedan station in 2004–2020.
The wind class frequency of the WRF model outputs (Figure 7a) is in good agreement
with the station wind data (Figure 7b). The WRF model simulated the highest frequency
of 10 m wind speed (56.3%), between 0.5 and 2.1 m/s, and the station data also show a
maximum wind speed (56.2%) in the same range. The output of the WRF model effectively
simulated the 10 m wind data in different ranges and distributions, but the percentage
of 10 m wind data is different. Also, there is a huge discrepancy for the calm situation;
the WRF model simulated the calm situation at 1% of total events, but the station data
show the calm situation at 15.8% of the total in 2004–2020. The WRF model (Figure 7c)
shows that the dominant wind direction was northwesterly and southwesterly, while the
wind rose of the station observational data (Figure 7d) shows that wind direction was most
probably north and northeasterly. The WRF model simulation revealed a northeast wind
direction; thus, the simulated wind direction is distributed in a wider range of angles than
the measured one.

The model excels in accurately simulating strong southwesterly and northerly winds
exceeding 6 m/s. However, it encounters difficulties in representing weaker wind di-
rections, especially westerlies, indicating a stronger proficiency in simulating systemic
winds associated with dynamic low-pressure atmospheric systems rather than local wind
patterns. The model’s performance in simulating winds with speeds between 0.5 and 2 m/s
is noteworthy.
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Figure 7. Wind rose by (a) WRF model simulation and (b) station observational data at Zahedan
station in 2004–2020. Wind class frequency distribution by (c) WRF model simulation and (d) observed
data at Zahedan station in 2004–2020.

Figure 8 presents the frequency distribution of horizontal visibility classes impacted
by dust across various wind speeds and directions for all analyzed codes, specifically
showcasing wind roses for code 06 (WW06) and code 07 (WW07). In Figure 8a, instead of
displaying wind speed, the wind rose for the entire period from 2004 to 2021 is utilized to
depict the values of reduced horizontal visibility due to dust, referred to as the dust rose.
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Figure 8. (a) Dust rose representation for codes 06, 07, and 30–35. (b) Frequency distribution of
horizontal visibility classes for codes 06, 07, and 30–35. (c) Wind rose and (d) wind class frequency
distribution for code 06. (e) Wind rose and (f) wind class frequency distribution for code 07. Based
on observed data at Zahedan station from 2000 to 2021.
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Within the total observations spanning from 2004 to 2021, amounting to 5748 cases,
sand and dust storms were identified. Among these instances, 7.4% had incomplete data,
1.6% occurred during calm winds, 31.5% were linked to dust transported by northerly
winds, 19.4% by northeast winds, 21.2% by southwesterly winds, 6.6% by westerly winds,
and 10.3% by other wind directions (Figure 8a). Regarding horizontal visibility as an
indicator of dust intensity, visibility less than 2 km signifies very strong to intense dust
events, 2 km to 4 km indicates a moderate intensity, and above 4 km suggests weak
intensity. The frequency distribution of reduced horizontal visibility due to dust reveals
approximately 11.5% of very intense to intense dust events, and 55.3% of moderate-intensity
and 24.5% of weak-intensity occurrences (Figure 8b).

Notably, there are three primary directional paths for dust entry into Zahedan city. To
mitigate the population’s exposure to resulting pollution, prioritizing dust management
centers in these directions is recommended.

Figure 8c,d display the wind rose patterns and frequency distribution of each wind
speed class associated with code 06. Around 36% of occurrences were linked to north
winds, 27% to northeast winds, approximately 6% to northwest winds, and over 15% to
calm wind conditions (Figure 8c).

Hence, one of the primary dust corridors from the north to the south into Zahedan is
identified, suggesting the potential for mitigation by implementing control measures and
managing dust centers in the vicinity of the desiccated Hamon Lake. Over 80% of these
occurrences during the study period, wind speeds remained below 3 m/s, while winds
equal to or exceeding 4 m/s were observed in less than 2% of the events (Figure 8d).

Analysis of the wind field associated with code 07 reveals that 22.8% of events were
tied to north winds, 17.1% to northeast winds, 37.9% to southwest winds, and 10.4% to
west winds (Figure 8e). Approximately 70% of cases were associated with wind speeds
below 5 m/s, while 12.2% were associated with wind speeds equal to or greater than 6 m/s
(Figure 8f).

5. Conclusions

In this study, the long-term (2000–2021) variation in dust event frequency at Zahedan
station in the Sistan Basin of southeastern Iran, which is one of the important dust sources
in Iran, was investigated. The dusty days were identified from dust-related codes 06, 07, 30
to 35, and 98 at Zahedan meteorological station in the Sistan Basin. The analysis showed
that the annual number of dusty days was highest in 2008, with 157 days, and lowest in
2020, with 64 days. The highest seasonal dust event frequency was observed in the summer
season, while the highest monthly dust event frequency occurred in July, in coincidence
with the season of the Levar wind. The analysis of dust occurrences from 2004 to 2021
indicates a significant increase in dust persistence between 2004 and 2008, followed by a
decrease from 2009 to 2021. This decline in dust persistence during the latter period is
likely linked to shifts in atmospheric patterns, highlighting the dynamic nature of dust
generation processes over the analyzed timeframe.

The analysis identified 5748 cases of sand and dust storms between 2004 and 2021,
with significant contributions from northerly, northeast, and southwesterly wind directions.
Notably, 31.5% of events were associated with northerly winds, 19.4% with northeast winds,
and 21.2% with southwesterly winds. Prioritizing the management of dust sources aligned
with these predominant wind directions can effectively reduce air pollution caused by
dust storms.

The WRF simulations of air temperature revealed a systematic overestimation of the
mean, maximum, and minimum air temperature compared to the station data, although
the correlation coefficient values were high, especially for mean annual air temperature
values reaching 0.8. Furthermore, the mean annual wind speed shows overestimation
of WRF model wind data. The correlation coefficient between the model and the station
data depicted a high correlation coefficient of 0.99 for mean intraday variations in air
temperature and was low, at 0.45, for the case of mean annual air temperature variation.
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The WRF model simulated well the highest 10 m wind class frequency distributions (42.6%
of the total amount) distributed between 0.5 and 2 m/s, which is very close to the highest
10 m wind reported from the station (42.0% of total distributed between 0.5 and 2 m/s);
however, the model simulated wind direction poorly. The WRF wind rose reconstructed
wind direction in a wider range of values from southwesterly to northeasterly; however,
the wind direction was predominately northerly from the station data.

The persistent discrepancies between simulated and observed quantities, particularly
in temperature, reveal systematic errors within the model simulations that can be rectified
through post-processing techniques. Notably, the inconsistencies in temperature and wind
speed comparisons with observational data are more pronounced during late evening and
early morning hours. These discrepancies may stem from extreme temperature fluctuations
in desert areas during these periods, aspects that the model may inadequately address,
leading to less accurate simulations at these specific times.

Since the wind speed and air temperature are two major meteorological factors for
the simulations of dust emission from sources, as well as for dust transportation and
propagation in the affected area, the discrepancies in the simulated and observed data
of the parameters are crucial for under- or overestimation of model assessment of dust
emission from hotspot areas.
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