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Abstract: Phenolic compounds (PhCs) are aromatic compounds with benzene rings that have one
or more hydroxyl groups. They are found or formed in the atmosphere due to various factors such
as combustion processes, industrial emissions, oxidation of volatile organic compounds (VOCs),
and other photochemical reactions. Due to properties such as relatively high Henry’s law constants
and moderate/high water solubility, PhCs are vulnerable to reactions in atmospheric liquid phase
conditions with high relative humidity, fog or cloudy conditions. PhCs can lead to the formation
of secondary organic aerosols (SOAs), which can have negative effects on atmospheric conditions
and human health. Changes in the optical properties of PhCs impact solar radiation absorption and
scattering, potentially influencing climate. Additionally, PhCs may interact with other atmospheric
constituents, potentially affecting cloud or fog formation and properties, which in turn can impact
climate and precipitation patterns. Therefore, monitoring and controlling the emission of PhCs is
essential. This paper discusses the transformation processes of PhCs in the atmosphere, including
direct conversion of phenol, nitrate-induced and nitrite-induced reactions, hydroxylation reactions
and oxidation processes involving triplet excited state organics, also providing a detailed analysis of
the transformation processes. The findings lay a theoretical foundation for the future monitoring and
control of atmospheric pollutants.
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1. Introduction

Observational studies reveal that organic aerosols (OAs) constitute a substantial frac-
tion (20–90%) of global submicron particulate matter (PM1.0) concentrations [1]. Organic
species directly emitted from anthropogenic or natural sources are classified as primary
organic aerosols (POAs) [2]. In contrast, secondary organic aerosols (SOAs), derived
from the atmospheric transformation of volatile organic compounds (VOCs), represent a
significant portion of submicron atmospheric aerosols [3], and are a crucial component
of PM2.5 [4,5]. SOA formation primarily occurs through gas-phase oxidation reactions
and liquid-phase/gas-phase transfer processes involving VOCs [6]. SOAs have signif-
icant impacts on solar radiation, atmospheric photochemistry [7], visibility [8], climate
change [9,10], and human health [4]. The diverse sources, complex chemical composition,
and intricate formation mechanisms of SOAs pose significant challenges in atmospheric
aerosol research [9].

Phenolic compounds (PhCs) are prominent VOCs in the atmosphere, characterized
by specific absorption properties in the near-ultraviolet (UV) region [11–13]. Atmospheric
PhCs originate from diverse natural and anthropogenic sources, with biomass combustion
being the primary anthropogenic source, accounting for 60% of total emissions [14]. The
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concentrations of nitrated phenols from biomass burning range from 2.0 to 99.5 µg m−3 [15].
Other significant anthropogenic sources include coal combustion, wastewater emissions,
and exhaust fumes. Additionally, certain medicinal plants, which contain high concentra-
tions of phenolics, could contribute to atmospheric PhCs [2,16]. Phenols are also present
in various grains, dried orange peels, and other plants [3,17]. Field studies, laboratory ex-
periments, and modeling results indicate that liquid-phase reactions in cloud/fog droplets
or aerosol liquid water significantly increase SOA mass [14,15]. PhCs, due to their high
Henry’s law constants and moderate-to-high water solubility, are particularly susceptible
to such transformations. Consequently, the liquid-phase transformation of phenolic com-
pounds has attracted considerable attention. In the liquid phase, PhCs undergo reactions
with free radicals and other reactive components, leading to processes such as electrophilic
substitution, oxidation, and conjugate addition, which produce low-volatility and highly
oxidized SOAs [18,19]. Understanding the transformation mechanisms of PhCs in the liq-
uid phase is crucial for managing atmospheric haze pollution in China. However, current
models significantly underestimate SOA mass concentrations observed in the ambient
atmosphere. This underestimation is primarily due to limited knowledge of the precursors
and formation mechanisms of aqueous SOAs (aqSOAs) and an incomplete understanding
of liquid-phase response mechanisms under complex pollution conditions [20]. Therefore,
addressing air pollution and resolving discrepancies in the predicted environmental im-
pacts of SOAs require a precise understanding and control of the atmospheric processes
involved in liquid-phase SOA transformation.

This paper summarizes several typical liquid-phase transformations of PhCs uder
at mospherically relevant conditions. These include direct transformations of phenolic
molecules upon exposure to UV light, hydroxylation reactions involving hydroxyl radicals
(·OH), nitrification reactions involving nitrate (NO3

−) and nitrite (NO2
−), and the role of

organic matter’s triplet state in the degradation of PhCs. Several important and widely
studied phenols, such as phenol (PhOH), guaiacol (GUA), catechol (CAT), vanillin (VL),
4-nitrocatechol (4NC), and 5-nitroguaiacol (5NG), are selected to illustrate these processes.
The structures and abbreviations of the phenols mentioned in the text are summarized in
Table 1.

Table 1. Summary of physical properties of phenolic compounds [2,7,18,19].

Compound CAS
Molecular

Weight
(g/mol)

Molecular
Formula Structural Formula Melting

Point
Boiling
Point pKa Solubility

(g/L)

Vanillin (VL) 121-33-5 152.15 C8H8O3
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Table 1. Cont.

Compound CAS
Molecular

Weight
(g/mol)
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Formula Structural Formula Melting

Point
Boiling
Point pKa Solubility

(g/L)

4-Nitrocatechol
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4-Nitrocatechol 
(4NC) 3316-09-4 155.11 C6H5NO4 

 

173–
177 °C 289 °C 6.84 

(25 °C) soluble 

5-Nitroguaiacol 
(5NG) 

636-93-1 169.13 C7H7NO4 
 

103–
107 °C 

110–
112 °C 

8.31 
(25 °C) 

soluble 

2. Direct Conversion of Phenol 
Free radicals play a major role in distinguishing the two types of photolysis: direct 

and indirect photolysis [21]. It has been found that some phenolic compounds can un-
dergo auto-photolytic transformation without the addition of any oxidant. Not all phenols 
can be conversed directly; only phenols containing chromophore structures can be photo-
excited and transformed to the triply excited state [22]. The most important one is VL 
which contains an aldehyde group structure. The light-absorbing property of the alde-
hyde structure is mainly reflected in its carbonyl group, in which there is a strong absorp-
tion capacity for light at specific wavelengths from the carbonyl group’s carbonyl–oxygen 
double bond (C=O) [23]. In the infrared spectrum, the carbonyl absorption of aldehydes 
usually occurs around 1700 cmെ1. In addition, in the UV–Vis spectrum, aldehyde groups 
may also exhibit absorption properties, especially in the presence of conjugated systems, 
which extend into the visible region. The excitation wavelength of the absorption peak of 
aldehydes is generally around 264 nm. The maximum absorption wavelength of VL in the 
UV region is usually considered to be 310 nm [24]. However, GUA lacks the aldehyde 
group structure compared to VL, and as the other groups are identical, GUA hardly con-
verts itself. 

3. Reactive Species Involved 
3.1. Reactive Nitrogen Species(RNS) 
3.1.1. Types and Sources of Atmospheric RNS 

Atmospheric NOx can be converted into reactive nitrogen species (RNS), such as NO+, 
NO2+, NO and NO2− [25], in the aqueous phase of the atmosphere. The reaction of RNS 
with PhCs is called nitrification, which plays a critical role in the formation of light-ab-
sorbing organic matter, also known as brown carbon (BrC). Gaseous nitrite (HONO) is a 
significant RNS in the atmosphere and serves as a precursor to atmospheric hydroxyl rad-
icals (·OH). One pathway for the formation of HONO is through the slow, non-homoge-
neous dark reaction between nitrogen dioxide (NO2) and water (H2O). Additionally, 
HONO can be generated through the conversion of NO2 with PhCs to HONO under light 
conditions [26]. Under acidic conditions, NaNO2 can also be transformed into HONO. 
However, because of the considerable volatility of HONO, the actual conversion of reac-
tants is lower than the theoretical value when HONO is used as an nitrifier. Nitrite is an-
other prominent nitrogen-containing oxidant in the atmosphere, The concentration of 
NO2−/HNO2 in cloud water typically ranges from 0.01 to 1000 µM, with variations based 
on pollution levels [27]. Nitrification can occur through free radical and photochemical 
reactions, with the specific mechanisms and products varying, depending on environmen-
tal conditions [28]. NO2−/HNO2can be formed via two different chemical pathways: pho-
tosensitive and non-photosensitive. 
1. Photosensitive reactions have two response mechanisms: 

(1) In the presence of light, PhCs are excited to the singlet state (1P*), which is 
quickly transformed to the triplet state (3P*). Phenol in the triplet state conducts 
electron transfer with H2O to produce a radical anion with reducing character-
istics, which then combines with dissolved oxygen (DO) to produce superoxide 
anion (O2 −) [29]. 
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Free radicals play a major role in distinguishing the two types of photolysis: direct
and indirect photolysis [21]. It has been found that some phenolic compounds can undergo
auto-photolytic transformation without the addition of any oxidant. Not all phenols can be
conversed directly; only phenols containing chromophore structures can be photoexcited
and transformed to the triply excited state [22]. The most important one is VL which
contains an aldehyde group structure. The light-absorbing property of the aldehyde
structure is mainly reflected in its carbonyl group, in which there is a strong absorption
capacity for light at specific wavelengths from the carbonyl group’s carbonyl–oxygen
double bond (C=O) [23]. In the infrared spectrum, the carbonyl absorption of aldehydes
usually occurs around 1700 cm−1. In addition, in the UV–Vis spectrum, aldehyde groups
may also exhibit absorption properties, especially in the presence of conjugated systems,
which extend into the visible region. The excitation wavelength of the absorption peak of
aldehydes is generally around 264 nm. The maximum absorption wavelength of VL in the
UV region is usually considered to be 310 nm [24]. However, GUA lacks the aldehyde group
structure compared to VL, and as the other groups are identical, GUA hardly converts itself.

3. Reactive Species Involved
3.1. Reactive Nitrogen Species (RNS)
3.1.1. Types and Sources of Atmospheric RNS

Atmospheric NOx can be converted into reactive nitrogen species (RNS), such as
NO+, NO2

+, NO and NO2
− [25], in the aqueous phase of the atmosphere. The reac-

tion of RNS with PhCs is called nitrification, which plays a critical role in the formation
of light-absorbing organic matter, also known as brown carbon (BrC). Gaseous nitrite
(HONO) is a significant RNS in the atmosphere and serves as a precursor to atmospheric
hydroxyl radicals (·OH). One pathway for the formation of HONO is through the slow,
non-homogeneous dark reaction between nitrogen dioxide (NO2) and water (H2O). Ad-
ditionally, HONO can be generated through the conversion of NO2 with PhCs to HONO
under light conditions [26]. Under acidic conditions, NaNO2 can also be transformed into
HONO. However, because of the considerable volatility of HONO, the actual conversion of
reactants is lower than the theoretical value when HONO is used as an nitrifier. Nitrite is
another prominent nitrogen-containing oxidant in the atmosphere, The concentration of
NO2

−/HNO2 in cloud water typically ranges from 0.01 to 1000 µM, with variations based
on pollution levels [27]. Nitrification can occur through free radical and photochemical
reactions, with the specific mechanisms and products varying, depending on environmen-
tal conditions [28]. NO2

−/HNO2 can be formed via two different chemical pathways:
photosensitive and non-photosensitive.
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1. Photosensitive reactions have two response mechanisms:

(1) In the presence of light, PhCs are excited to the singlet state (1P*), which
is quickly transformed to the triplet state (3P*). Phenol in the triplet state
conducts electron transfer with H2O to produce a radical anion with reducing
characteristics, which then combines with dissolved oxygen (DO) to produce
superoxide anion (O2

·−) [29].

P hν→ 1P∗ → 3P∗
H2O→

(
·OH + H+

)
+ P−·

O2→ P + O·−2 (1)

Subsequently, the formation of O2
·− which converts NO2 or NO to NO2

− [30],

HO·2
pKa=4.8↔ O·−2 +

{
NO2→ OONO−2 → NO−2 + O2

NO→ OONO− HOONO→ NO−2 + HOONO2
(2)

(2) Light-excited photosensitizers generate a reducing radical intermediate, which
interacts immediately with NO2 to yield HONO/NO2

−:

P + hν→ P∗
NO2→ P+· + HONO/NO−2 (3)

2. The two methods of producing nitrite ions under non-photosensitive condition are
as follows:

(1) Under aerobic conditions, some organic compounds containing ·OH form
alkyl peroxyl radicals (RO2·), superoxide radicals (O2

·−), or their conjugate
acids (HO2·), which react directly with nitrogen-containing oxides in the air to
produce secondary products such as NO2

− [31].

organic compounds + ·OH
O2→ O·−2 + products (4)

(2) Another process is the hydrolysis of airborne NO2 to produce NO2
− and NO3

−

directly [32,33].

2NO2 + H2O→ NO−2 + NO−3 + 2H+ (5)

Common nitrogen-containing oxidants in the atmosphere, such as HNO2 and nitrite,
can be converted to each other. In acidic aqueous solutions, HNO2 thermally decomposes
to produce free radicals NO· and NO2·. This decomposition process does not depend on
light. Additionally, NO+ can be formed, which is only able to attack strongly activated
aromatic rings.

NO2
+ is formed under dark conditions in the presence of DO. Under light, both nitrite

and HNO2 decompose into ·OH and NO·, and then react with ·OH to form NO2· [34,35].

3.1.2. Nitration Mechanism of PhCs

Figure 1A below represents the general steps of nitration of PhCs to generate nitro-
phenol. Different R groups represent various functional groups, including-H, -OH, -OCH3,
and -CH3. The structure “A” indicates the key phenyl intermediate in the mechanism,
and its stability is influenced by the type, number, and position of the initial functional
groups [36].

Figure 1B illustrates the oxidized process of phenol to produce the following com-
pounds: mononitrophenol (A1, A2), dinitrophenol (A8), mononitrodimer (A3, A4, A6),
dinitrodimer (A5, A7), and trinitrodimer (A9) [34,37].



Atmosphere 2024, 15, 1040 5 of 16Atmosphere 2024, 15, 1040 5 of 16 
 

 

 
Figure 1. General steps for the nitration of PhCs (A) and phenol (B) to produce nitrophenol [37]. 

3.1.3. Reaction Pathways and Products 
There are three main pathways for the chemical transformation of SOAs: functionalisa-

tion, fragmentation, and polymerisation. Functionalisation adds polar oxygen-containing 
functional groups to the molecule, decreasing volatility. Fragmentation breaks covalent bonds, 
increasing volatility. Polymerisation combines molecules to produce substances of greater mo-
lecular weight, and a less volatile molecule [38]. Figure 2 shows the main pathways of VL 
photonitration in aqueous solutions, the solution mixture containing a 10:1 molar ratio of 
NO2−/VL at pH 5 after 3 h of photoreaction. The structure in the box represents the main prod-
ucts, which are detected by HRMS coupled with UPLC [27]. First, NO2· extracts a hydrogen 
atom from the hydroxyl group of VL to form a phenoxy radical(B1); in this way, the aromatic-
ity of the phenol is destroyed and the second NO2· is added and forms an intermediate(B2) 
[39]. Then B2 undergoes hydrogen rearrangement with the participation of water molecules 
to produce 5-nitrovanillin (5NV) (B6) in this step, the water molecule serves as a bridge to 

Figure 1. General steps for the nitration of PhCs (A) and phenol (B) to produce nitrophenol [37].

3.1.3. Reaction Pathways and Products

There are three main pathways for the chemical transformation of SOAs: functionalisa-
tion, fragmentation, and polymerisation. Functionalisation adds polar oxygen-containing
functional groups to the molecule, decreasing volatility. Fragmentation breaks covalent
bonds, increasing volatility. Polymerisation combines molecules to produce substances
of greater molecular weight, and a less volatile molecule [38]. Figure 2 shows the main
pathways of VL photonitration in aqueous solutions, the solution mixture containing a
10:1 molar ratio of NO2

−/VL at pH 5 after 3 h of photoreaction. The structure in the box
represents the main products, which are detected by HRMS coupled with UPLC [27]. First,
NO2· extracts a hydrogen atom from the hydroxyl group of VL to form a phenoxy radical
(B1); in this way, the aromaticity of the phenol is destroyed and the second NO2· is added
and forms an intermediate(B2) [39]. Then B2 undergoes hydrogen rearrangement with
the participation of water molecules to produce 5-nitrovanillin (5NV) (B6) in this step, the
water molecule serves as a bridge to transport hydrogen atoms. B1 reacts with NO· to
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form B3 and B4, B3 experiences hydrogen rearrangement again to form 5-nitrosovanillin
(B5) [40]. But this product is very unstable, and once formed, it is prone to undergo further
oxidation by NO2· to form B6. B6, as one of the most abundant products, can continue
to be converted to other products. Hydrogen is extracted from the hydroxyl group and
the NO2· is added to the position where the aldehyde group is located, producing an
intermediate (B11) [41]. The rearomatization of B11 gives 4,6- dinitroguaiacol (B12) through
a H2O-assisted rearrangement of a hydrogen atom in the aldehyde group to the quinonic
oxygen of B11 and a CO elimination [42]. The NO2· extracts hydrogen from the aldehyde
group of the intermediate, and the subsequent addition of oxygen results in the formation
of peroxyl radicals (B7) [43]. After that, there are two possible reactions: one is to interact
with HO2· to form 5NV acid (B9) [44], another is reducted by NO· to alkoxy radicals [45],
subsequent undergoing decarboxylation to give the aryl species (B8). This transition state
can combine with phenoxy radicals to form dimers (B10), and can also generate B12 under
the action of NO2·. A NO2· is added to the aldehyde position of B13, and a hydrogen
rearrangement and CO elimination in the presence of H2O generates 4NG (B14) [46].
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3.2. Hydroxyl Radicals (·OH)
3.2.1. The Generation Pathway of ·OH in the Atmosphere

Research indicates that the concentration of ·OH in clouds and fog typically ranges
around 10−13 M, with the cloud condensation–evaporation period lasting between 0.5
and 3 h. As a result, it is commonly believed that the initial 40–60 min of a simulation
experiment are closely linked to environmental cloud conditions [47].
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As the most significant active oxidative species in the atmosphere, the hydroxyl radical
(·OH) has a variety of sources. Fe3+ and H2O2 are the primary sources of ·OH in aerosol
liquid water, with the presence of H2O2 also playing a role in the generation of ·OH [48].
The reaction of Fe (II) with unsaturated hydroxyl hydroperoxide (ISOPOOH) can also
lead to the production of hydroxyl radicals ·OH [49]. Additionally, oxalic acid and Fe (II)
can combine to form an iron oxalate complex, which has the ability to generate hydroxyl
radicals (·OH) when exposed to light [50]. Lastly, the photolysis of nitrite and nitrate serves
as another significant source of ·OH in the environment, with the simultaneous production
of NO2 [22].

3.2.2. PhCs Oxidation Mechanism Involving ·OH

Taking nitrocatechol as an example, proposed structures for the functionalized prod-
ucts are shown in Figure 3. The ring-opened products cannot be differentiated from the
ring-closed structures of the same molecular formula. The presence of ·OH leads to a
conjugated molecule with two carboxylic acid functional groups where the carbon−carbon
bond is broken [51].
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According to the general steps of hydroxylation, the hydroxylation mechanism is
speculated to occur when benzene rings contain only hydroxyl groups, only nitro groups,
or both; the detailed process is shown in Figure 4 [52].
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3.2.3. The Oxidation Pathways of Syringate by HO·
In general, there are three pathways for HO· reacting with organic compounds: elec-

trophilic addition, hydrogen atom abstraction and electron transfer. In the presence of
·OH, which we can see in Figure 5, the methoxy group in syringic acid (SA) provides
the active site for hydrogen atom extraction, and subsequently, another ·OH is added
to ·OCH2 to form a hemiacetal (C1) [53]. In addition, the ·OH undergoes electrophilic
addition to SA to form carbon-centered radicals, and the ·OH is added to the position
where the carboxyl or methoxy group is located, which are C2and C9, separately. Then C2
undergoes demethylation to form the radical C3; this is due to the fact that the addition of
hydroxyl groups to the methoxy group increases the electrophilicity of the aryl ring [54].
C3 transfers the electron to form the C4, C5 and C6(5-Hydroxyvanillic acid). The C6 also
forms carbon-centered radicals after hydroxyl attacks, following the addition of oxygen
molecules to generate peroxy radicals C8 and C7 [55]. In addition, the carboxyl group in
C9 will fall off, due to the occupancy of the hydroxyl group. In the process, intermediate
1,4-dihydroxy-2,6-dimethoxybenzene (C10) is generated, and then C10 undergoes two
hydroxyl radical oxidations and two demethylations, to form the C11 [48].
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3.3. Triplet State Organic Matter (3C*)
3.3.1. Generation of Triplet Compounds

In the atmosphere, the triplet state of organic compounds (3C*) serves as a common
oxidant for oxidizing PhCs [56], which is generated from the excitation of chromophoric
dissolved organic matters (the donors or photosensitizers) under solar irradiation. Subse-
quently, it can undergo quenching reactions with other species (the acceptors or quenchers)
via electron or energy transfer [34].
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The ground state of a common chromophore (C) absorbs light to form a single excited
state (1C*), which can return to the ground state or undergo an inter-system crossing (ISC)
to the triplet state (3C*). The reaction mechanism is shown in Figure 6. The triplet pool
contains protonated (HT) and neutral (T) molecules. The 3C* has three pathways: reaction
with O2, relaxation of a single molecule to the ground state, and reactions with phenol,
which result in phenol losing reactivity. This can result in loss of reactivity of phenol
(kAROH+3C*) or non-destructive physical quenching (kQ) [57].
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Under simulated sunlight, VL underwent direct oxidation or oxidation processes in
the presence of ammonium nitrate. Initially, VL absorbs light and transitions to its excited
singlet state (1VL*), which is then followed by ISC transitioning to its excited triplet state
(3VL*) [58]. Furthermore, the decay-rate constant of the photosensitizer VL under air-
saturated conditions was determined to be four times higher than that under N2-saturated
conditions. The increased reaction rate constant observed under air-saturated conditions
can be attributed to the combined effect of 1O2 and 3C* generated in the presence of O2.
Additionally, the decay-rate constant of VL under air-saturated conditions was found to be
four times higher than that under N2-saturated conditions [2].

3.3.2. Reaction Mechanism of PhCs and 3C*

Electrons are transferred from phenol to the excited triplet state of the carbonyl
compound [22], producing protonated phenoxy (PhOH·+) and deprotonated carbonyl
(R1R2-C·-O-). Within the framework of various kinetic theories, the intermolecular electron
transfer reaction is commonly explained through the following mechanisms: (a) formation
of precursor complexes, (b) electron transfer, leading to the formation of charge transfer (CT)
complexes, and (c) the separation of oxidized donors and reduced acceptors, as illustrated
in Equation (6) [59].

PhOH + 3(R1R2 −C = O)∗� [PhOH . . . 3(R1R2 −C = O)∗]

[PhOH·+ . . . R1R2 −C· −O−]→ PhOH·+R1R2 −C−O− (6)

The second transfer mechanism is hydrogen atom transfer, which is less likely to occur.

PhOH + 3(R1R2 −C = O)∗ → PhO·+ R1R2 −C−OH (7)
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3.3.3. Specific Reaction Processes and Products of Phenol with 3C*

PhCs and 3C* produce different types of products through multiple pathways. Next,
we discuss the detailed reaction mechanism and products using phenol as an example,
as shown in Figure 7. Phenol and the 3C* form HOOH in the presence of oxygen, which
is one of the important sources of ·OH in the atmosphere. The free radicals obtained by
photolysis bind to phenol and subsequently form a hydroxylation product (D1) with the
addition of oxygen and the elimination of HO2·. In the meantime, the ·OH-phenol adduct
can undergo unimolecular elimination of H2O to form a phenoxy radical (D2), or 3C*
via electron transfer coupled with proton transfer from the phenoxyl radical cation. D2
and semiquinone radicals (D3) can be transformed into each other. Both D2 and D3 then
combine with another radical to form dimer and higher oligomers (D4 and D5). Phenol
reacts with 3C* combined with an organic acid to form an ester (D6) [60]. In exploring six
highly substituted phenols reacted with ·OH and 3C*, the higher absorbance of the reaction
of phenol with the 3C* indicates that more polymer is produced [57]. Moreover, lower O/C
was detected in the product of the reaction of the 3C* with phenol compared to the product
of the reaction of the hydroxyl radical with phenol [38].
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4. Factors Affecting the Liquid-Phase Conversion of PhCs in the Atmosphere

The formation of the BrC aqueous phase is a complex process. PhCs prefer to form sta-
ble intermediates, and their structures will influence the formation of phenyl intermediates.
Environmental factors such as reactant concentration, pH value, temperature, and light can
also have a significant impact on the conversion mechanism and resulting products.

4.1. Effect of pH on the Transformation of PhCs

pH plays a crucial role in influencing the conversion of PhCs. The decay-rate con-
stant of VL decreases approximately 1.5-fold when the pH is lowered from 4 to 2.5. The
normalised abundance of products, especially polymeric and functionalised products,
increases as the pH decreases. This is likely due to the increased formation of ·OH and
NO2· groups in lower-pH conditions [2].

The rate constants for both GUA and CAT during photolysis were observed to be
higher at pH 3.5 in comparison to pH 6, indicating that these compounds are more suscep-
tible to direct photolysis under acidic conditions. Interestingly, the rate constants of 5NG
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showed no significant difference between pH 6 and pH 3.5, while the 4NC were higher at
pH 6 than at pH 3.5. This difference can be attributed to the susceptibility of p-nitrophenols
like 4-nitrocatechol to releasing nitro groups, such as photolytic NO2 and HNO2, with low
spatial resistance when exposed to light in aqueous solutions. Furthermore, the yield of
NO2 and HNO2 increases with pH levels [61].

Non-p-nitrophenols, like 5NG, are less affected by this process, due to the significant
spatial hindrance of the -NO2 group. Photolytically released NO2 and HNO2 can readily
form free radicals, such as ·OH, NO2·and NO·, which can quickly react with the remaining
phenol in the solution, thus speeding up the reaction rate [62,63].

4.2. Effect of Reactant Concentration on the Conversion of PhCs

The pH was set at 4 to investigate the rate and product formation under different
concentration ratios of VL and ammonium nitrate (AN). The reactant concentrations were
standardized as follows: VL (0.01 mM), VL/AN (0.01 mM VL + 0.01 mM AN), and VL/AN
(0.01 mM VL + 1 mM AN). Polymerization becomes the primary pathway at high [VL], and
the phenoxy radicals increase, interacting with carbon-centered cyclohexadienyl radicals
to facilitate radical–radical polymerization and enhance oligomer production, while at
lower [VL] levels, products with m/z 300 show the opposite trend. This suggests that
functionalized products are the predominant outcomes at low [VL] [51].

At the VL/AN ratio of 1:1, VL may compete with NO2
− for ·OH produced from the

photolysis of nitrate or nitrite, which indirectly reduces the concentration of NO2· [2]. A
study on the liquid-phase formation of 3-methylcatechol (3MC) under simulated sunlight
revealed that the absorption near 350 nm increased over time when the ratio of nitrite ions
to 3MC concentration was 1:1. Additionally, as the concentration of phenol increased, the
absorption also increased, particularly above 400 nm [64].

4.3. Effect of Transition Metal Ions on the Transformation of PhCs

The interaction between common transition metal ions (TMs) in the atmosphere, like
Fe3+, Al3+ and Cu2+, with soluble organic matter leads to the formation of organism–metal
complexes and reactive species (ROS) like ·OH. Zn2+ is less likely to form complexes
with organic matter easily compared to Cu2+, due to the lack of d-d electron transition.
Cu2+ complexes are more significant, followed by Fe2+ and then Mn2+, which exhibits the
weakest synergistic effect. This difference in complex formation may be attributed to the
higher ease with which Cu2+ binds to the benzene ring through π-π electron transfer in
comparison to Fe2+ and Mn2+ [65].

Fe3+ can form organic trilinear state-Fe3+ complexes with aromatic chromophores
that possess visible-light trapping ability and appropriate excited-state energy levels. This
can be followed by processes such as energy transfer, electron transfer, or non-radiative
transitions to the ground state, leading to the generation of reactive oxygen species like
1O2 and ·OH. Additionally, Fe3+ has the capability to directly form complexes with organic
matter [66].

The primary sources of atmospheric iron include windblown mineral dust particles,
mineral dust, and soil [67]. Additionally, iron can come from potentially available sources
such as hydrotalcite colloids, nanoparticles, and aqueous materials [68]. Iron (II) may
also be produced through the photolysis of iron–oxygen (hydroxide) compounds in a
non-homogeneous photo-Fenton reaction [22].

Considering factors such as ionic abundance and the stability of the complexes formed,
the iron oxalate system is the most common [50,69,70]. It also serves as a major source of
atmospheric H2O2, O2

·−, HO2, and ·OH [71,72]. The pH and inorganic anions also play a
significant role in influencing the formation of Fe (III) species and BrC [73]. As the Fenton
reaction consumes hydrogen ions, the rate of ·OH generation slows down, making higher
pH levels detrimental to ·OH generation [71]. CAT and GUA react with trivalent iron
under dark conditions, where dissolved O2 acts as an oxidizing agent and Fe (III) acts as a
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catalyst. Numerous experiments have demonstrated maximum photoreactivity for organic
degradation of iron at pH 3 [74].

The measured secondary rate constants (k) of PhCs mentioned in the text with ·OH,
NO2· and 3C* in the aqueous phase are summarized in Table 2, and this will help our
understanding of the different reactions. We find that the k are different for different
compounds under different reaction paths, as well as the reaction conditions, such as
temperature and pH. In addition, the k for the same compound reacting with ·OH under
similar reaction conditions will be higher than with NO2· or 3C*, but there is no such
pattern for CAT.

Table 2. The measured reaction rate constants of PhCs mentioned in the text.

Compound PhOH VL GUA CAT SA

·OH
Experimental conditions 293 K

pH = 5
298 K

pH = 5
293 K

pH = 5
293 K

pH = 5.5
313 K

pH = 5.5
k

(M−1 s−1) 1.5 ± 0.5 × 1010 4 × 108 1.6 ± 0.5 × 1010 6.9 ± 2.4 × 107 1.66 × 1010

Reference [75] [25] [75] [75] [48]

NO2·
Experimental conditions 298 K

pH = 5 - 298 K
pH = 4.5

313 K
pH = 5 -

k
(M−1 s−1) 2.7 ± 0.04 × 108 - 4.01 ± 0.04 × 109 1.9 × 109 -

Reference [22] - [35] [28] -

3C*
Experimental conditions 293 K

pH = 5 - 293 K
pH = 5

293 K
pH = 5

293 K
pH = 2

k
(M−1 s−1) 1.3 ± 0.9 × 108 - 2.5 ± 0.6 × 109 5.8 ± 2.0 × 108 1.1 ± 0.3 × 1010

Reference [29] - [75] [75] [56]

·OH, NO2·and 3C* in the aqueous phase.

5. Summary

This review primarily discusses key transformation processes of volatile organic
phenols in the liquid phase. The first process is the direct conversion of phenol: some
phenolic compounds, such phenol and halogenated hydrocarbons, can break down in the
presence of light to create free radicals, which are then utilized in the subsequent conversion.
The second process is the nitration reaction, with common nitration reagents such as HONO,
NO2

−, and NO·, which can interconvert under specific conditions. The third process
involves the oxidation of ·OH, which has a wide range of sources. The forth important
reaction is the formation of triplet states in organic matter through light excitation.

The transformation of phenol in atmospheric liquid-phase water is influenced by
factors including light intensity, temperature, atmospheric composition, reaction condi-
tions, and the structural characteristics of PhCs. The mechanism of phenol’s liquid-phase
transformation is complex.

Since VOCs are some of the most significant volatile organic compounds in the atmo-
sphere, studying and controlling their transformation processes will be crucial for both the
future of the environment and humankind. VOC properties have the potential to pollute
the environment and have an adverse effect on ecosystems.
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