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Abstract: Various stakeholders seek effective methods to communicate the potential impacts of
tropical cyclone (TC) rainfall and subsequent flood hazards. While current methods, such as Intensity–
Duration–Frequency curves, offer insights, they do not fully capture TC rainfall complexity and
variability. This research introduces an innovative workflow utilizing GPM-IMERG satellite precipita-
tion estimates to cluster TC rainfall spatial–temporal patterns, thereby illustrating their potential for
flood hazard assessment by simulating associated flood responses. The methodology is tested using
rainfall time series from a single TC as it traversed a 500 km diameter buffer zone around Dominica.
Spatial partitional clustering with K-means identified the spatial clusters of rainfall time series with
similar temporal patterns. The optimal value of K = 4 was most suitable for grouping the rainfall
time series of the tested TC. Representative precipitation signals (RPSs) from the quantile analysis
generalized the cluster temporal patterns. RPSs served as the rainfall input for the openLISEM, an
event-based hydrological model simulating related flood characteristics. The tested TC exhibited
three spatially distinct levels of rainfall magnitude, i.e., extreme, intermediate, and least intense, each
resulting in different flood responses. Therefore, TC rainfall varies in space and time, affecting local
flood hazards; flood assessments should incorporate variability to improve response and recovery.

Keywords: tropical cyclone rainfall; time series clustering; flood hazard assessment; satellite
precipitation estimates; small island states

1. Introduction

Natural disasters in the Caribbean region, particularly adversities caused by trop-
ical cyclones (TC), date back many years. The global record of natural disasters places
15 Caribbean islands in the top 25 countries most vulnerable to tropical cyclone disasters [1].
The damage costs of these small island states may be minimal on a global scale; however,
citizens are often highly afflicted because the losses suffered by some of these countries
exceed their economies [2,3]. Recent occurrences of TCs during the annual North Atlantic
hurricane season, which includes the Caribbean region, provide increasing evidence of var-
ied TC rainfall activity within individual storms and between storms [4–6]. This variability
makes TCs capable of causing complex patterns of heavy rainfall, such that inland/riverine
and flash floods are experienced at different levels of severity on the islands. In addition,
the TC rainfall structure is inherently non-homogenous, characterized by a cloud system
comprising rainfall bands spiralling outward from the TC centre [7] and is highly influenced
by the TC’s environment [8,9]. Therefore, improving long-term disaster preparedness and
response strategies to account for the spatial–temporal variability of TC rainfall is essential
for mitigating potential impacts.
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Currently, flood hazard analysis does not take TC rainfall variability into account. The
basis for disaster risk reduction (DRR) relies on estimating hazard intensities with chosen
return periods. A return period analysis gives the annual exceedance probability of a hazard
with a given magnitude/intensity [10]. In flooding, hazard intensity is commonly expressed
as the maximum flood height in the affected area [11]. Various DRR approaches, such as
engineering solutions for disaster mitigation, insurance payout, and spatial planning, all
utilize simulated hazard intensities based on return periods. On the Caribbean islands,
all floods are flash floods from relatively small rivers; these rivers are not gauged, and
it is common to directly use the rainfall probability [12]. In the case of the Caribbean,
most islands have a few stations with long records of daily data, often at locations such
as airports or botanical gardens [13,14]. Apart from the scarcity of stations that may not
represent the spatial variability of rainfall correctly, uncertainties in gauge measurements
are attributed to the large wind speeds in tropical cyclones [15].

However, flood models need higher temporal resolutions (hourly or less than 24 h
totals) to simulate all hydrological processes correctly. Thus, a statistical analysis of event
shapes is necessary to create the so-called “design rainfall events” to accommodate this
requirement. Several methods exist [16–18], varying from a statistical analysis of individual
rainfall events of a given magnitude leading to a rainfall event that has the shape of a
probability density function. Another example is an approximation, where using Intensity–
Duration–Frequency (IDF) curves is followed by a method such as the Alternating Block
Method (ABM) [19]. An IDF curve gives the probability of intensities for various return
periods; the ABM rearranges these intensities over the period required (such as 24 h) in
a slightly skewed shape, with the highest intensity in the center and the lower intensities
arranged before and after.

Lumbroso et al. [20] managed to create IDF curves for some Caribbean islands for
return periods of up to 1 in 50 years. However, they reported challenges related to the data
quality due to incomplete and short records, and they had to combine records of various
islands to generate IDF curves. While design storms provide a known probability for total
rainfall depth, they often differ significantly in the temporal variation of intensities from
the dynamic nature and real-world structure of TC rainfall events. Such symmetric single-
peaked curves resulting from ABM may produce different flood dynamics that deviate
from the realities observed during a tropical cyclone. TC rainfall exhibits concentrated
heavy rain near the TC center while also spreading over large spatial extents due to outer
rainbands, often without one clear peak, and is highly dynamic in space and time as
the TC system translates rapidly [9,21]. An alternative source of rainfall data that is also
used in early warning for tropical cyclones in the Caribbean is satellite-derived rainfall.
For instance, the Global Precipitation Misson–Integrated Multi-satellitE Retrievals (GPM
IMERG) offers data going back to 2000, with 30 min temporal resolution and 0.1-degree
spatial resolution [22]. The ground-based rainfall derived from the radar satellite signal has
its own uncertainties [23], but it still captures the spatial variability inside the precipitation
system, including a tropical cyclone.

This research aims to make a first step for an alternative approach to creating design
events by analyzing the spatial–temporal patterns of a TC and obtaining a reproducible
method to derive statistically defined rainfall event shapes. Including the spatial–temporal
variability of rainfall patterns will hopefully lead to a more effective flood hazard assess-
ment methodology, essential for disaster preparedness and mitigation. This boils down to
three questions: (1) Can a TC be characterized with one design rainfall event as is currently
assumed? (2) Does a TC-derived design event (or events) resemble the commonly used
design events (using IDF curves) and the rain station-measured event? (3) What does this
imply for flood hazard analysis?

The developed approach applies a time series clustering analysis to the area impacted
by a TC as it passes through the region of the Lesser Antilles. This essentially involves simi-
larity measurement and grouping using clustering algorithms, presenting an opportunity
for spatial–temporal rainfall pattern recognition, which is critical for reliable flood hazard
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assessment [24–26]. Subsequently, a method is presented to derive cluster-based design
events. These are compared to design events derived from ABM in shape and total. This
study does not address the return period and is only based on a single event as a proof of
concept. The next steps will involve adapting the method to multiple TCs and linking the
design rainfall events to a return period.

2. Materials and Methods

The proposed three-stage workflow analyzing TCs to derive design rainfall events is
presented in Figure 1. Satellite precipitation estimates over the tropical cyclone provide
rainfall time series for each pixel in the study area for the selected time window. A suitable
clustering algorithm clusters the rainfall time series based on their temporal behaviour.
For each output cluster, a temporal alignment and quantile analysis enable the selection of
‘representative precipitation signals’ (RPSs) that generalize the cluster’s rainfall temporal
characteristics. The RPS is then the rainfall input for a flood model to examine the TC-
related flood response characteristics. If similarities in flood response are observed for the
RPSs, the number of optimal clusters could be reduced in the iteration of the procedure.
If significant differences exist in the quantified flood characteristics, these rainfall signals
are considered the best cluster RPSs, which are named TC-associate rainfall scenarios.
The corresponding flooding characteristics are labelled the TC-associate flood scenarios
to be used for improved and reliable TC-related flood hazard assessment. To maintain
consistency with respect to risk management, the same labelling system is used, where
three categories like extreme, intermediate, and least intense correspond to high, moderate,
and low levels, respectively. A detailed explanation of the procedure is in Sections 2.1–2.5.

The developed workflow is tested with Tropical Storm Erika of 2015 (from here on,
TS Erika), a low-category tropical cyclone that caused torrential rainfall on Dominica
when crossing through the Lesser Antilles over a period from 26th to 27th August [6].
TS Erika presents a unique case study, considering its unexpected and intense rainfall.
National Hurricane Center’s rainfall-related advisories focused on the Leeward Islands, the
Virgin Islands, Puerto Rico, the Dominican Republic, the Turk and Caicos Islands and the
Southeast Bahamas, as Dominica was not anticipated to receive such severe rainfall. The
local population in Dominica prepared for standard tropical storm conditions only to be
surprised in the early morning by the intense rain that caused severe flooding. The majority
of TS Erika’s rain fell on Dominica on the 27th, reaching accumulations ranging from 300 to
700 mm recorded on ground gauges spread through the island [4,27]. The highest rain was
experienced in the southern and central parts of the island; however, areas in the northern
region received relatively lower rainfall totals, as reported by [28]. The intense rainfall
accumulation mostly occurred within short durations of four to nine hours, thus rapidly
triggering flash floods on Dominica’s steep terrain [29]. The EM-DAT database reported
USD 596 million in economic losses and 30 direct deaths in Dominica due to TS Erika [30].

2.1. Data Description

Half-hourly satellite precipitation estimates from NASA’s GPM-IMERG Final Run
Level-3 (V06) product [22] were utilized to examine TS Erika’s spatial–temporal rainfall
patterns. The 0.1◦ × 0.1◦ grid dataset is satellite–gauge calibrated and is recognized by
studies, e.g., [31–33], to give a higher performance in estimating rainfall extremes than
other existing satellite precipitation products. The V06 reproduces the diurnal rainfall cycle
and represents mesoscale convective systems with high performance [34,35]. The dataset
is now widely used to monitor and provide insight into tropical cyclone rainfall patterns
throughout the TC’s lifespan [36–38]. Scientists have used the GPM-IMERG V06 product
to combine early precipitation measurements from TRMM (2000–2015) with the latest
GPM measurements to improve and grow the length of the data record [39] needed for
applications such as flood hazard assessment. TS Erika’s best track information obtained
from the Atlantic hurricane database (HURDRAT2) of the National Hurricane Center [40]
was used to determine the time window (storm duration) to download the GPM-IMERG
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V06 images capturing all rainfall information needed for the analysis. The downloaded
GPM-IMERG data were considered as geo-referenced time series [41], storing the recorded
history of a time-evolving value (i.e., precipitation estimates) at consistent time intervals
(i.e., 30 min time steps) over known locations (i.e., regular pixel grids).
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2.2. Spatial Partitional Clustering Using K-Means

In the first stage, the spatial partitional clustering approach explained by [42] was
applied to group pixel time series into location clusters with similar rainfall temporal
distributions. The K-means algorithm was used because previous research [43–45] reports
the broad applicability of the algorithm for rainfall time series clustering. The optimal
number of clusters (K) was determined using the Elbow method [46,47]. The Elbow method
applies the total within-cluster sum of squares [48] as the agglomeration coefficient [49]
plotted against the varying K values on the elbow graph. If the elbow graph is smooth and
does not have a defined inflection point (elbow), the starting point of a plateau or flattening
of the elbow graph indicates the distinctiveness of the output clusters [49,50]. In principle,
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a good clustering should have high internal cluster compactness and external separability
between the groups.

2.3. Temporal Alignment and Quantile Analysis

In the second stage, the pixel rainfall time series of the output clusters were translated
into representative precipitation signals (RPSs) for input in the flood event model to predict
flood response characteristics. The output clusters might be spatially distinct in the study
area, introducing a challenge of varying rainfall starting periods for pixel time series in
the same group since the TC was in motion, as shown in Figure 2a. To remedy the time
alignment problem, the beginning of the TC’s precipitation was determined by introducing
a starting threshold to remove silent periods and the antecedent rain, as illustrated in
Figure 2b. A given threshold value was suitable for indicating the commencement of the
TC’s rain if it preserved the cluster’s temporal rainfall behaviour elements, i.e., the number
of peaks, duration, intensity, and total volume. The less intense clusters were likely small
precipitation events disparate from the tropical cyclone [51], assumed non-flood-prone
and therefore excluded from further analysis. Now that the rainfall time series were at a
standard onset rainfall intensity, quantile measurements of position were applied to select
the representative precipitation signals, as shown in Figure 2c. As the research interest was
in rainfall extremes that may trigger extreme flooding, three quantile positions, i.e., 0.5,
0.75, and 0.9, labelled Q0.5, Q0.75, and Q0.9, respectively, were analyzed. The rainfall totals,
intensity and duration of the quantile signals were compared to the original cluster time
series to ensure that the RPSs were associated with realistic rainfall characteristics.
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2.4. Flood Modelling

The third stage was to translate the selected cluster RPSs into flood characteristics
to assess their applicability for reliable flood hazard assessment, as shown in Figure 1.
The research interest was predicting the flooding, not the entire hydrological process. For
each RPS, analysis was performed for flood characteristics commonly considered essential
indicators for evaluating the impact of a flood hazard, i.e., flood extent, depth, volume,
runoff ratio, infiltration, and duration [52]. Quantified similarities and differences in the
resultant flood characteristics formed a basis for establishing the TC-associate rainfall and
flood dataset. Several hydrological models have been developed, and researchers have
assessed their effectiveness for flood modelling and forecasting [53–55]. This research
utilized openLISEM model (www.lisemmodel.com, accessed on 31 March 2022) developed
by the faculty ITC of the University of Twente (the Netherlands) to simulate the flood
characteristics. OpenLISEM model is an integrated event-based hydrological model for
simulating spatial–temporal processes, e.g., flooding, runoff, and sediments, on a catchment
scale. The model uses representative precipitation signals (RPSs) as the rainfall input for the
hydrology/flow simulation. OpenLISEM then simulates rainfall interception by vegetation
and buildings and infiltration into a two-layer soil using the Green and Ampt model.
Overland flow is simulated using a full Saint Venant solution for shallow floods with
a finite volume semi-explicit solution [56,57]. OpenLISEM has been used successfully
for flood hazard prediction in different parts of the world, for example, Uganda [58,59],
Grenada [12], Dominica [60], and Spain [61], among others. The model’s data requirements
are described in [62] and [56]. The analysis applies model calibration parameters that have
been used in existing studies over the island [63,64]. For the input database, several spatial
raster data layers were assembled (20 m resolution), derived from basic maps detailed
in [63], including the Digital Elevation Model (DEM), soil texture, land use/land cover,
infrastructure, and rainfall.

2.5. Case Study

The testing of the newly developed workflow focused on the Commonwealth of
Dominica (capital city: Roseau), an island state in the Eastern Caribbean that occupies
about 750 square kilometres. Dominica is characterized by a steep and rugged landscape,
with the highest peak at 1447 m in Morne Diablotins [65]. The capital Rouseau receives
2000 mm annual rainfall on average. Due to its terrain, the island experiences substantial
variations in rainfall due to orographic effects [66]. Dominica is vulnerable to meteorological
disasters such as torrential rainfall and powerful winds brought by tropical cyclones that
form in the North Atlantic Ocean during the June to November hurricane season.

The region of interest is beyond the international boundary of Dominica, with the
assumption that TC rainfall activity close to the island impacted the island’s weather. The
region of interest is a 500 km diameter buffer with a center on the island, as shown in
Figure 3, assuming that TC rainfall activity for farther locations was likely not useful for
flood hazard assessment over the island. Establishing a buffer around the island or the
tropical cyclone eye is a common practice, ensuring the inclusion of the entire impact area
of the TC system [67,68]. The GPM-IMERG data were downloaded for the period when the
TC rainfall area was over the region of interest. The period 26 August 2015 00:00UTC to
28 August 2015 23:30UTC is the time window that captured all rainfall information required
for the analysis, corresponding to the approximate time TS Erika’s convective region was
over the region of interest, based on the HURDAT data.

Grand Bay catchment in the south of the island of Dominica (see bottom inset,
Figure 3) was selected for testing this workflow because it was severely affected by flooding
due to tropical cyclone rainfall as in previous research [60,64,69]. Dominica’s thin vol-
canic soils [70] received close to 200 mm of rainfall a fortnight before TS Erika [27]; the
grounds were saturated long before TS Erika’s rain, implying any additional pour likely
became runoff. In this study, the initial soil moisture content was set at 85% of porosity
(θi = 0.05–0.385) to allow for some infiltration. Considering Dominica’s hilly terrain and the

www.lisemmodel.com
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discussion with researchers with vast experience in this study area (e.g., Victor G. Jetten),
a threshold value of 0.05 m depth was set as the artificial water level to separate floods
from runoff.
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3. Results

This section presents the results for the developed rainfall and flood scenarios for TS
Erika based on flood modelling over Grand Bay, a small southern catchment in Dominica
island state. The rainfall and flood scenarios were selected after performing two iterations
of the proposed workflow in Figure 1. The labelling convention for the output clusters and
their RPSs is, for instance, T1-Q0.5 for RPS Q0.5 of cluster T1.

The choice of the optimal value K was based on the observation of the elbow in the
plot of the total within-cluster sum of squares (TWSS), a clustering goodness measure,
against a range of possible K values (from 1 to 15). The output elbow graph in Figure 4
shows two sharp corners at K = 2 and K = 3, then gradually declining until K = 5, making
it hard to pinpoint the sharp elbow. We explored clustering using K = 2 (too few clusters,
underfitting), giving a low quality of 61.2%, while K ≥ 6 (too many clusters, overfitting)
output overlapping clusters. Thus, we selected the three values K = 3, 4 and 5 for an
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acceptable range to evaluate clustering quality and interpretation, as shown in Figure 4.
The clustering goodness measures were 83.9% for K = 5, 80.1% for K = 4, and 75.1% for
K = 3.
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3.1. Results of the Spatial Partitional Clustering

The statistics of the spatial partitional clustering are in Table A1. With K = 5, the
rainfall statistics, for instance, show that the cluster average total rainfall decreased in the
order of T1, T3, T5, T4, and T2. Pixels with the highest precipitation are in two spatially
distinct regions of cluster T1, mainly concentrated south of the storm track and over the
ocean, as shown in Figure 3. This spatial dissimilarity was also observed in other clusters,
such as T2, comprising pixels far (north and south) from TS Erika’s track. At this point,
pixels over Dominica are in clusters T3, T4, and T5, as shown in the top inset in Figure 3.
The Grand Bay catchment is located in cluster T3. T2 was the largest cluster, including
41.8% of the rain pixels, with very low rainfall intensity and volume.

In the first iteration with optimal clusters K = 4, the pixel time series redistributed
to form four spatial clusters as shown in Figure A1. The cluster extremes (in terms of
the total rainfall and intensity) decreased in the order of T1, T3, T4, and T2, as shown in
Table A1. T1 is the most extreme and T2 is the least intense cluster. There is a similar range
for maximum rainfall intensity for clusters T1 and T2 in both cases of using K = 5 and
K = 4; however, there were slight changes in total rainfall for both clusters. The pixels that
comprised T5 when using K = 5 were possibly redistributed into other clusters, hence the
slight changes in the cluster statistics when using the optimal value K = 4. At this point,
pixels over Dominica are in clusters T3 and T4.

The second iteration of the workflow with the optimal value K = 3 outputs three spatial
clusters with quantified rainfall extremes reducing in the order T1, T3, and T2, which is
also presented in Table A1. Compared to using K = 5 and K = 4, pixels merged further
to form the three clusters (see Figure A1), hence the larger cluster size, especially for T2
and T3. The range of the maximum rainfall intensity did not change for the most extreme
cluster, T1. Compared to results from using K = 5, there were observable changes in the
total rainfall associated with the output clusters. Further merging of the pixels influenced
the average total rainfall of the individual clusters and the significant difference in the
cluster boundaries, especially for T3.

In all three experiments, the cluster statistics for T2 showed shallow ranges of the
calculated rainfall characteristics, and the cluster was at the outer edges of the area of
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interest. As explained in Section 2.3, rainfall over T2 pixels was assumed not associated
with TS Erika; hence, pixels of this cluster were excluded from further analysis.

3.2. Cluster Representative Precipitation Signals

After disregarding T2, the temporal alignment and quantile analysis for the remaining
clusters derived representative precipitation signals (RPSs) for running openLISEM flood
model over the Grand Bay catchment. When the beginning of the storm’s precipitation was
varied for four intensity values, i.e., 2, 5, 10, and 20 mm/h, the intensity of 10 mm/h was
the most appropriate to align the time series for the onset of TS Erika’s rainfall. For the
first experiment applying K = 5, derived RPSs for clusters T1, T3, T4, and T5 at quantile
positions, i.e., Q0.5, Q0.75, and Q0.9 are plotted in Figure 5. The corresponding rainfall
characteristics are in Table 1. The signals derived at Q0.9 were unrealistic; their quantified
total rainfall was way higher than the totals for the original time series. Therefore, only
Q0.5 and Q0.75 were the selected RPSs for the individual clusters resulting from K = 5.
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and Q0.75 were selected for each cluster as the representative precipitation signals (RPSs). Clusters T1,
T3, T4, and T5 are in graphs (a), (b), (c), and (d), respectively.

In Figure 5, RPSs for clusters T1, T3, and T4 had similar shapes; however, the signals
differed significantly in duration, cumulative rainfall, and maximum intensity, as shown
in Table 1. The T5 RPSs comprised multiple peaks with relatively low rainfall intensity.
Notably, the flood response showed a higher result for Q0.75, as detailed in Section 3.3.
Consequently, for the K = 4 and K = 3 clusters, the analysis exclusively derived RPSs at
Q0.75 for subsequent flood model simulations. When using K = 5, eight RPSs are applied
to run the flood model. By applying only Q0.75, the analysis yields three RPSs for K = 4
and two RPSs for K = 3. The derived RPSs for clusters resulting from the second iteration
applying K = 3 were associated with lower values for the rainfall characteristics than when
using K = 5 and K = 4.
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Table 1. Rainfall statistics for RPSs Q0.5, Q0.75, and Q0.9 for the spatial clusters. Only Q0.5 and Q0.75

were used to run the flood model in the first experiment, applying K = 5. For iterations applying
K = 4 and K = 3, only RPS Q0.75 is derived to run the flood model. Tr is total rainfall, Imax is maximum
intensity, and Dr is duration.

K = 5
T1 T3 T4 T5

RPS Tr
(mm)

Imax
(mm/h)

Dr
(h)

Tr
(mm)

Imax
(mm/h)

Dr
(h)

Tr
(mm)

Imax
(mm/h)

Dr
(h)

Tr
(mm)

Imax
(mm/h)

Dr
(h)

Q0.5 518.9 73.1 17.5 307.1 50.2 15.5 107.6 20.2 14.5 159.7 24.6 18.0
Q0.75 729.9 94.9 25.0 440.0 63.8 17.5 209.9 38.9 20.5 427.3 61.6 22.5
Q0.9 1029.1 112.4 31.5 587.0 75.8 23.5 345.3 55.2 23.5 834.9 94.5 25.0

K = 4
T1 T3 T4
Tr

(mm)
Imax

(mm/h)
Dr
(h)

Tr
(mm)

Imax
(mm/h)

Dr
(h)

Tr
(mm)

Imax
(mm/h)

Dr
(h)

Q0.75 727.3 91.4 25.0 446.2 65.0 18.0 230.4 42.2 18.0
K = 3

T1 T3
Tr

(mm)
Imax

(mm/h)
Dr
(h)

Tr
(mm)

Imax
(mm/h)

Dr
(h)

Q0.75 676.6 84.9 24.5 381.3 59.0 17.5

3.3. Results for the Flooding Simulations
3.3.1. RPSs from K = 5

For the RPSs resulting from the first experiment when applying K = 5, the quantities of
the flood simulations for eight separate runs of the openLISEM model are given in Table A2
for the clusters T1, T3, T4, and T5. Eight quantities (two for each cluster) are recorded
for each flood characteristic, e.g., the flood extents due to RPSs T1-Q0.5 and T1-Q0.75 are
3.98 km2 and 4.84 km2, respectively. The eight RPSs caused flood extents ranging from 1.02
to 4.84 km2. On average, T1 and T3 signals caused larger flooded extents with water at
greater depths ranging from 2.79 to 4.21 m (see Table A1), which is attributed to the high
rainfall intensity of these RPSs. RPSs that caused large flood volumes (i.e., in the range of
1.10 to 2.28 million m3) consequently generated a high runoff ratio (above 0.7). Infiltration
was generally low for all RPSs, resulting in long flood durations ranging from 15.71 to
27.24 h.

The quantified flood characteristics of the individual RPSs were further examined for
differences and similarities. There were across-cluster similarities; for instance, T3-Q0.5 and
T5-Q0.75 caused the same flood extent. Also, the flood depth and volume of these RPSs
could be regarded as similar responses, considering the minor differences in the quantities.
RPSs T1-Q0.5 and T3-Q0.75 also exhibited similarities in their flood quantities; for example,
the flood depth only differed by 0.18 m, which could be considered minimal in flood
hazard assessment. Only infiltration and flood duration showed significant differences
across all RPSs and clusters. Q0.75 generated the highest quantities of the calculated flood
characteristics for all clusters compared to Q0.5. There was a strong linear correlation
between the flood (extent, duration, volume, runoff ratio, and infiltration) and rainfall
(cumulative total and maximum intensity) characteristics with correlation coefficients in
the range of 0.85 < r < 0.98. However, the maximum rainfall intensity was a dominant
driver of the flood responses, considering that precipitation curves for clusters T1 had the
highest rainfall intensity and flood characteristics. In contrast, the lowest rainfall intensity
and flood quantities were associated with T4.

The observed similarities in the quantified flood characteristics for the RPSs belonging
to supposedly different clusters signified the likelihood of redundancy during the clustering
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phase of the rainfall time series. The value K = 5 was an arbitrary choice since the elbow
graph did not give a defined inflection point, as shown in Figure 4. However, choosing
K = 5 helped define a starting K value for the first experiment. To examine the effect of this
choice, two iterations of the procedure in Figure 1 were performed by reducing the optimal
clusters to K = 4 and K = 3 before conducting the spatial partitional clustering again. Only
the Q0.75 was derived for both iterations, considering the RPS had enormous quantities for
the investigated flood characteristics across all the clusters when using K = 5.

3.3.2. RPSs from K = 4 and K = 3

The simulated flood responses for RPSs resulting from applying K = 4 and K = 3 are
presented in Table 2. With K = 4, quantified differences in flood characteristics of the three
Q0.75 RPSs show that T1caused more 1.09 km2 of the flooded extent than T3. Also, the
flood duration for T3 was shorter than that for T4 by 10.17 h. When compared to results
from using K = 5, there were substantial differences in the flood characteristics of the RPSs
for clusters from K = 4. Three levels of variation in the order T1, T3, and T4 for both
the rainfall and flood characteristics were observed. For example, the maximum rainfall
intensity (mm/h) is 91.4, 65, and 42.2 for T1, T3, and T4, respectively. The three RPSs are
also associated with flood depths with significant differences in Figure 6. For the two RPSs
using K = 3, the simulated flood response output quantities are slightly lower than those
for RPSs using K = 4 (see Table 2). For instance, the flood extent of the most extreme cluster
T1 when using K = 4 is 4.80 km2, and when using K = 3, the flood extent is 4.62 km2.

Table 2. Calculated flood characteristics for RPSs Q0.75 resulting from using K = 4 and K = 3.

K = 4
Flood extent

(km2)
Flood depth

(m)
Flood volume
(million m3) Runoff ratio Infiltration

(mm)
Flood duration

(h)
T1 4.80 4.22 2.22 0.85 98.13 23.73
T3 3.70 3.65 1.42 0.77 88.95 19.16

Diff 1.09 0.57 0.79 0.08 9.18 4.57
T1 4.80 4.22 2.22 0.85 98.13 23.73
T4 2.47 1.84 0.84 0.62 74.08 29.33

Diff 2.32 2.39 1.38 0.23 24.06 −5.61
T3 3.70 3.65 1.42 0.77 88.95 19.16
T4 2.47 1.84 0.84 0.62 74.08 29.33

Diff 1.23 1.82 0.59 0.15 14.87 −10.17
K = 3

Flood extent
(km2)

Flood depth
(m)

Flood volume
(million m3) Runoff ratio Infiltration

(mm)
Flood duration

(h)
T1 4.62 4.18 2.05 0.84 97.69 22.76
T3 3.48 3.35 1.28 0.74 84.40 20.83

Diff 1.14 0.83 0.77 0.10 13.29 1.93

3.4. Selection of Final Rainfall Scenarios for TS Erika

The decision on final rainfall and flood scenarios for TS Erika was based on the detailed
examination of the outputs from the iteration of the workflow in Sections 3.1–3.3. After
further reducing the optimal clusters, the two RPSs from K = 3 resulted in an overgener-
alization of the rainfall statistics. For instance, the cluster size of the most intense cluster
(T1) became larger than that for K = 4, as shown in Table A1. The effect of the generaliza-
tion is also depicted in the lower rainfall intensity and totals associated with RPSs from
K = 3 in Table 1. The RPSs from K = 4 reveal three existing levels of rainfall variation that
were otherwise merged and oversimplified by K = 3. The value K = 4 gave a more realistic
partition of the pixel rainfall time series since it dissolved the redundant cluster T5, as
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shown in Section 3.1 and Figure A1, without significantly altering the rainfall statistics and
boundaries of the clusters.
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The RPSs for both iterations K = 4 and K = 3 resulted in significantly different quantified
flood characteristics, unlike the K = 5 signals, which gave a redundancy. However, the RPSs
for K = 4 had a higher flood impact than K = 3; therefore, the Q0.75 signals from K = 4 were
a reliable representation of TS Erika’s rainfall scenarios. The three levels of variation were
labelled as extreme (T1), intermediate (T3), and least intense (T4), as shown in Figure 7.
The associated flooding characteristics in Table 2 were TS Erika’s flood scenarios.

3.5. Comparison

For comparison, the analysis used the average hourly rainfall in Dominica due to TS
Erika from Table 1 of the report by [28] and IDF curves generated by [20].

The analysis uses the average because every station provides a different measurement
depending on its location on the island and which part of the cyclone passed over the
station. Also, the average is usually the best available measurement applied in hazard
analysis. For instance, Ogden [27] utilized island-wide radar-based average rainfall to run
the GSSHA model on 16 watersheds in Dominica to simulate peak discharges during TS
Erika. However, these averages do not capture the natural variability of the TC rainfall.
In the case of TS Erika, the measured average rainfall in Figure 8a was similar (in rainfall
totals) to the intermediate rainfall scenario Figure 7b from the clustering analysis. However,
TS Erika showed three distinct rainfall scenarios, each potentially resulting into different
flood responses upon reaching the island.

The IDF curves generated by [20] were used to create a design storm by applying
the Alternating Block Method [19] based on 30 min time steps like the GPM-IMERG. In
Figure 8b,c, the IDF-based design events have much lower rainfall totals, quite different
from the cluster-based design events. Also, the rainfall intensity, duration, and shape of the
IDF-based design events are very different from those of station-based and cluster-based
storms. These differences influence the modelled flooding processes.
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Figure 8. Plots of (a) the average hourly rainfall on Dominica due to TS Erika and the line plot of
the cumulative rain from Table 1 of the report by [28]. Plots (b,c) compare the output cluster-based
design events with the design storms derived from IDF curves available for the region in Figure 3
from [20] by applying the ABM. The line plots (b,c) are the corresponding cumulative rainfall, black
for the output cluster-based design events and orange for the design storms.
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4. Discussion: Final Rainfall Scenarios for TS Erika

The current study establishes a three-stage approach that uniquely combines three
methods, spatial partitional clustering, quantile analysis, and flood modelling, to generalize
the rainfall (sourced from satellite imagery) of a tropical cyclone toward improved flood
hazard assessment.

The variables applied in stage 1 of the workflow, as shown in Figure 1, to run the
clustering algorithm, such as quartiles (e.g., Q0.5, Q0.75, Q0.9), total rainfall, and mean
and standard deviation of rainfall rate, are recognized in the literature [71,72] among the
features used for rainfall event characterization. K-means gave a high performance for the
rainfall time series clustering with a high partitioning quality detecting the different rainfall
spatial–temporal patterns within the tropical cyclone. The K-means already produced a
good clustering when delineating spatial regions for seasonal precipitation [73]. Another
study [74] reports the clustering quality of K-means when applied to detect the presence of
cumulative rainfall spatial patterns in the rainfall of typhoons that impacted a catchment
on a tropical island.

The choice of the optimal number of clusters was essential to the research because
the rainfall characteristics were classified based on the K value. Using a too-high value
enhances redundancy in flood scenarios, and a very low K value might overmerge and
generalize the data. For instance, there was redundancy when using K = 5 and excessive
data merging when using K = 3. The reduction in the K value shows that the spatial–
temporal distribution of TC rainfall characteristics does not have definite cluster boundaries,
as some pixels moved from one cluster to another. The absence of stable cluster boundaries
of the rainfall characteristics is attributed to the change in the environment that the storm
encountered while in motion, influencing how rainfall was distributed around the eye from
time to time.

The storm was in motion, and some regions experienced comparable rainfall magni-
tudes even when these places were far from each other, as revealed by the spatial partitional
clustering. Setting a threshold to separate TC and non-TC components proved important
for the quantile analysis (in stage 2) as the rainfall time series would be aligned based on
the moment when the TC-associate rainfall began. Previous research [75–77] suggests a
5 mm/h threshold to delineate regions of TC-associated rainfall for areas such as the
Eastern United States, the Western Gulf of Mexico, and the Caribbean Sea. However,
Dominica generally experiences much more rainfall than these regions, even outside the
hurricane season.

In Dominica, rain rates of ≤5 mm/h could potentially be associated with other weather
events, not TCs. The study applied a 10 mm/h threshold, which was realistic for defining
the start of TS Erika’s rainfall for all three experiments. This threshold brought back TS
Erika’s rainfall temporal behaviours, i.e., a steep increase, then the rain dying down after
a period of heavy pour [4,28]. The threshold was essential to remove the antecedent rain,
unrelated to the tropical cyclone, and to give insight into initializing the flood model (in
stage 3), especially the initial soil moisture content. The antecedent rainfall (whether TC-
related or not) makes the catchment wetter and decreases the storage capacity, eventually
inducing runoff water.

The selection of the cluster RPSs was based on aggregated statistics computed across
all the time series at each timestep rather than individual pixel rainfall realizations. This
approach aimed to identify an acceptable range of time series that best represented the
collective temporal patterns of the entire cluster. As recommended by [72], the analysis
applied the quartile positions at Q0.5, Q0.75, and Q0.9 in the first experiment when using
K = 5. Analysis of the aggregated rainfall statistics showed unrealistic quantities at Q0.9
that were not comparable with the original rainfall time series statistics, and thus, only Q0.5
and Q0.75 best represented the cluster temporal patterns.

In stage 3, the simulated flood characteristics for the selected Q0.5 and Q0.75 RPSs when
using K = 5 revealed two key observations: (1) intra-cluster similarities in the quantified
flood characteristics for the RPSs and (2) Q0.75 causing larger quantities of the flood charac-
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teristics than Q0.5. These observations motivated the decision to introduce an iteration of
the workflow for a reduced value of K. The research interest was in TC extreme rainfall
and flood characteristics towards a flood hazard assessment; hence, only the RPS Q0.75
was derived and applied to run the flood model, which is in line with a study by [25] also
suggesting that a threshold at the upper quantile (75%) was more representative of cluster
flood-generating precipitation. Two iterations of the procedure provided more outputs and
options as a basis for a logical decision of the final rainfall scenarios and the associated
flood characteristics.

We realize that the third step of the method, flood modelling, depends on the local
circumstances of an island and the flood model used. This could be seen as an advantage:
the design events selected are closely related to the hazard and its location. However, it may
also be a disadvantage as the capacity for flood modelling must be present, and the results
may depend on the catchment modelled and highly local circumstances. Moreover, there
are other hydrological hazards, such as landslides and debris flows, that have different and
more complex models. The step is presented as a possibility; further research can show if
this is a necessary step.

An advantage of this method is that it follows the TC as it passes in the region and is
not tied to a gauge location. One could argue that this better characterizes the TC. However,
the T1 cluster total rainfall is very high. For this particular storm, the extreme rainfall of
cluster T1 relates to the hotspots over the ocean, none of which reaches Dominica. Both
T1 hotspots were south of the TC track, and reports [4,28] also show that TS Erika’s heavy
rain was located south of the storm. Future investigations should explore whether such
extremes are consistently directed towards the ocean and if the islands regularly encounter
rainfall of similar magnitude. The intermediate (T3) and least intense (T4) are within the
ranges of the cumulative totals observed in Dominica. For instance, data by [28] recorded
24 h rainfall totals for nine ground stations ranging from 217.9 mm to 493.6 mm across the
island. The maximum rainfall rate of 122.6 mm/h was observed at Grand Fond. The station
at Grand Bay recorded 481 mm of cumulative rain with a maximum intensity of 94.6 mm/h.
Before TS Erika, the station at Melville Airport reports Tropical Cyclone Ivan in 2004 as the
highest on the island, with 422 mm in 24 h, between 1976 and 2013 (unpublished data). The
selected final RPSs summarize the cluster temporal patterns, but there can be variations
within the clusters (see Table A1).

This research does not invalidate gauge-based IDF curves if there are location-specific
curves present. However, in Figure 7, the study highlights that in the flood hazard as-
sessment of tropical cyclones, there is an inherent spatial–temporal variability in rainfall
that IDF curves may not fully represent. Only when there are sufficiently detailed rainfall
measurements in an area, such as a series of tipping bucket stations, could spatial variability
be captured. Additionally, the current analysis does not address return periods nor remodel
the flood impact in Dominica during TS Erika. Instead, we use TS Erika as an example to
develop a more holistic approach to characterize TC rainfall spatial–temporal patterns and
improve flood hazard assessments.

The duration, shape, and intensity of the final RPSs differ from the representations
given by the design storms from existing IDF curves, as shown in Figure 8. Design storm
curves are associated with a single peak and a duration that is adapted to reach a total
storm depth based on a given return period. From Figure 8, it is clear that the shape, peak
intensity, timing of the peak, and duration are very different from the real rainfall and
from the cluster-derived events. We did not simulate the flood for the IDF-based design
storm because of the difference in magnitude from the cluster-based events. The IDF-based
storm is related to a given recurrence interval with related magnitudes. If we succeed in
evolving our method to more tropical cyclones so that we can assign a return period, a
better comparison may be possible.

A return period analysis is normally related to one location, giving a magnitude and
its exceedance probability for that location. A different station on the island would have
a different frequency magnitude analysis. The highest values, however, could be part of
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the same TC with the same probability of rainfall as the same system. It would be better to
know the return period of a given TC and accept that there is a range of rainfall magnitudes
within it, with different events that characterize it.

The strength of the developed method is that it only focuses on tropical cyclone
rainfall, so a given location can prepare for a TC, for instance, when IDF curves are not
available. However, there are issues to solve. We recognize fully that satellite data (the
GPM-IMERG) is not ground truth. We are aware that the GPM-IMERG half-hourly may not
be the best product; the data description highlights problems with the quality of the 30 min
intensities [39]. The dataset is calibrated based on monthly gauge totals; the constellation of
satellites registers three hourly data and interpolates to 30 min images [22]. This leads to de-
viations from ground-measured rainfall. There is no ground data strong enough to calibrate
the satellite data on Dominica at the moment. A significant strength of the GPM-IMERG
is the significant potential to give measurement information when there are no rainfall
gauges. Finally, ground stations under storm and cyclone circumstances are subjected to
windspeeds of 120–240 km/h, so ‘ground truth’ in this context is also subjective.

5. Conclusions

This research shows an innovative three-stage methodology to improve how ade-
quate estimates of TC-specific rainfall can be summarized and accurately fed into flood
simulations. The developed method reveals that spatial variability exists for the same TC
rainfall event and should be accounted for to achieve a reliable flood hazard assessment.
TC rainfall is complex, so for the on-ground flood hazard, it matters which part of the
cyclone passes over an area. Because rainfall patterns vary within a single TC, there is not
one rainfall curve that should represent a tropical cyclone. This realization makes hazard
analysis more complex as it now involves a choice in a (limited) set of curves, with the
possibility to ‘define a worst-case scenario’ based on the highest rainfall cluster.

The shape, intensity variation, and duration of these cluster-derived events are much
closer to actual rainfall than the IDF-derived events, thus providing an adequate repre-
sentation of TC-associated rainfall for simulating potential hazards. The research findings
highlight the importance of detailed characterization of TC rainfall; for instance, with the
simulated flood maps, various hazard scenarios are created to better prepare for potential
locally differing impacts from the same TC. Identifying areas with the most significant
impacts from the TC rainfall ensures the fastest emergency response and helps responders
determine the safest routes to reach vulnerable populations. This integration of spatial
and temporal rainfall patterns into flood hazard assessments is a crucial step forward in
improving the resilience of communities to TC-induced flooding.

The IDF-derived event, in this case, is based on a scarce dataset, while the satellite
images simply cover the entire TC impact area. Thus, in the absence of long-term rain
gauge measurements, it is shown that the developed method can be used as it exploits
the potential of satellite precipitation estimates (e.g., higher temporal resolution and wide
coverage) in capturing TC rainfall measurements. Unlike the IDF curves based on long-
term temporal data on one location, the method developed here has the advantage that
the RPSs of the analyzed TC are established based on all available satellite rainfall data in
the study area during the period of the storm. Therefore, this method does not depend on
short and potentially incomplete datasets from ground measurements or IDF curves that
are borrowed from other regions (e.g., neighbouring islands). In an area of scarce data, our
method could be a solution.

The current research represents a first attempt where we examine a single tropical
cyclone. In future studies, the approach will expand to include multiple tropical cyclones
and islands, although this is beyond the scope of this paper. Risk reduction requires a
probability assessment of the rainfall, for which we do not have a method yet. The approach
should be moved forward because it is simple, uses high-resolution satellite data and would
improve risk assessment when the probability is addressed. The research methodology
is not confined to Dominica; rather, the island is a proof of concept. Thus, the developed
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method can be tested and applied in other tropical cyclone-prone regions in other oceanic
basins, considering that TC systems all form the same way, though the designations and
direction of rotation differ by geographical location.

However, the method is currently experimented on one tropical cyclone; we need
to extend to more TCs to include all the different categories before it is usable. Each TC
exhibits a different rainfall pattern in time and space, which can be a challenge for this
approach. Linking the representative precipitation signals to flood hazard assessments may
require further generalizing, such as re-clustering the rainfall scenarios across multiple TCs.
To address this, we recommend involving local stakeholders in disaster risk reduction, like
the Dominica Meteorological Service. Local experience can help ensure rainfall scenarios
are accurately tailored to their island, leading to better decision-making, preparation,
and mitigation.
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Appendix A

Table A1. Summary statistics for the output spatial clusters.

K = 5
Cluster T1 T2 T3 T4 T5

Cluster size 132 798 433 399 149
% 6.9 41.8 22.7 20.9 7.8

Maximum
intensity (mm/h)

min 55 0.4 36.4 18.2 32
max 120 50.2 120 111 120

Total rainfall (mm)
min 451.5 1.4 201.1 47.8 121
max 767.9 112.4 571.5 275.9 603.2

mean 583.9 29.4 344.2 167.5 331.4
K = 4

Cluster T1 T2 T3 T4
Cluster size 146 818 513 434

% 7.6 42.8 26.8 22.7
Maximum

intensity (mm/h)
min 55 0.4 42 18.8
max 120 50.2 120 111

Total rainfall (mm)
min 433.7 1.4 202.2 47.8
max 767.9 132.1 571.5 275.9

mean 574.3 31.1 347.6 180.1
K = 3

Cluster T1 T2 T3
Cluster size 212 937 762

% 11.1 49.0 39.9
Maximum

intensity (mm/h)
min 55 0.4 26
max 120 68.6 120

Total rainfall (mm)
min 352.5 1.4 83.6
max 767.9 171.9 489.2

mean 530.8 42.7 279.8
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Table A2. Calculated flood characteristics for RPSs Q0.5 and Q0.75 resulting from using K = 5.

RPS T1 T3 T4 T5
Flood extent (km2)

Q0.5 3.98 3.12 1.02 1.40
Q0.75 4.84 3.76 2.19 3.12

Flood depth (m)
Q0.5 3.88 2.79 1.26 1.32
Q0.75 4.21 3.70 1.69 2.85

Flood volume (million m3)
Q0.5 1.67 1.10 0.42 0.56
Q0.75 2.28 1.50 0.77 1.12

Runoff ratio
Q0.5 0.80 0.71 0.33 0.43
Q0.75 0.85 0.77 0.59 0.74

Infiltration (mm)
Q0.5 92.14 75.31 60.83 77.82
Q0.75 97.42 86.61 73.03 98.50

Flood duration (h)
Q0.5 18.43 15.71 16.68 23.64
Q0.75 27.24 18.85 22.25 18.60
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