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Abstract: Avalanche susceptibility assessment is a core aspect of regional avalanche early warning
and risk analysis and is of great significance for disaster prevention and mitigation on proposed
highways. Using sky–ground integration investigation, 83 avalanche points within the G219 Wen
Quan to Horgos transportation corridor were identified, and the avalanche hazard susceptibility of
the transportation corridor was partitioned using the certainty factor (CF) model and the coupled
coefficient of the certainty factor–Geodetector (CF-GD) model. The CF model analysis presented
nine elements of natural conditions which influence avalanche development; then, by applying the
Geodetector for each of the factors, a weighting coefficient was given depending on its importance for
avalanche occurrence. The results demonstrate the following: (1) According to the receiver operating
characteristic (ROC) curve used to verify the accuracy, the area under the ROC curve (AUC) value
for the CF-GD coupled model is 0.889, which is better than the value of 0.836 of the CF model’s
evaluation accuracy, and the coupled model improves the accuracy by about 6.34% compared with
the single model, indicating that the coupled model is more accurate. The results provide avalanche
prevention and control recommendations for the G219 Wen Quan to Horgos transportation corridor.
(2) The slope orientation, slope gradient, and mean winter temperature gradient are the main factors
for avalanche development in the study area. (3) The results were validated based on the AUC values.
The AUCs of the CF-GD coupled model and the CF model were 0.889 and 0.836, respectively. The
accuracy of the coupled model was improved by about 6.34% compared to the single model, and the
coupled CF-GD model was more accurate. The results provide avalanche control recommendations
for the G219 Wen Quan to Horgos transportation corridor.

Keywords: G219 traffic corridor; snow avalanche; snow avalanche susceptibility; CF; CF-GD

1. Introduction

The cryosphere is one of the five major portions of the climate system. The ongoing
retreat of the global cryosphere has been affecting human societies and has caused a series
of snow- and ice-related disasters (SIRDs). SIRDs mainly occur in high mountainous areas
with middle–low latitude and permafrost regions with high latitude, and are accompanied
with the increasing frequency of glacier, snow, and glacier lake outburst flood-related
disasters and an expanding range of freeze–thaw disasters. These disasters have caused
tremendous damage and impact [1–4].
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Among these, avalanches are one of the most intensely active geologic hazards in
the cryosphere and are characterized by suddenness, potentiality, rapid movement, de-
structiveness, and difficulty in prediction [5–7]. Avalanches often block transportation
corridors, which threaten the safety of people’s lives and property and affect the economic
development of people living in mountainous areas [8–10]. In March 2008, an avalanche
induced by strong winds destroyed construction camps and buried construction tunnels
in the Guozigou region of the Ili Kazakh Autonomous Prefecture in Xinjiang, resulting in
the deaths of 16 people, injuries to 8 individuals, and the loss of the natural gas supply. In
December 2010, an avalanche triggered by heavy snowfall impacted passing vehicles and
cut off roads in the G218 Tianshan section, killing two people and trapping thousands of
vehicles in the mountainous area. In April 2019, an avalanche buried a mountain road in
Urumqi’s Nanshan Scenic area, injuring and trapping 10 people [11].

To study the hazards and characteristics of avalanches, scholars have carried out
modeling studies on avalanches [12–15]; however, the conditions for training these models
are harsh and cannot be satisfied for different regions. Faced with the threat of avalanche
hazards, a regional avalanche susceptibility assessment can help identify avalanche haz-
ards early [6,16]. Avalanche susceptibility assessments are an important part of regional
avalanche warning and risk analysis. The results can provide support for avalanche moni-
toring and early warning, and in engineering, can provide a basis for avalanche prevention
and control, which can reduce the risk and losses associated with avalanches.

Remote sensing (RS) and geographic information system (GIS) technologies are being
used together to assess geohazards [17], and the application of ‘2S’ technology in analyzing
hydrological and geological hazards [18,19]. Methods for evaluating the susceptibility to
geologic hazards are constantly being updated, theoretical systems are more complete,
and evaluation methods have changed from qualitative analysis to objective quantitative
analysis [20]. Qualitative analysis is too subjective and is susceptible to human interference.
Quantitative avalanche susceptibility assessment methods mainly include machine learning
methods [21] such as multivariate discriminant analysis [22], decision trees [23], and
support vector machines [24]. Machine learning methods are more frequently used and
more complex in terms of their iterative operations. It has been found that mathematical
and statistical methods such as the certainty factor (CF) [11], the informativeness model [25],
and Geodetector [26] can yield quantitative conclusions, and they have been widely used
because they are easy for researchers to calculate and analyze. Li Yimin et al. [27] used a
deterministic coefficient model to establish a mudslide disaster susceptibility evaluation
system for Lushui City, and the accuracy of their susceptibility evaluation results reached
81.99%. Dou Jie et al. [28] used a deterministic coefficient model to assess landslide
susceptibility in the Nakagoshi area of the Niigata Prefecture, central Japan, and their results
showed that the area under the remote operator characteristic (ROC) curve (AUC) value of
this model reached 0.82, indicating that it is highly accurate. Sujatha et al. [29] assessed the
landslide susceptibility of the Kodaikkanal Tevankarai Ar watershed, India, based on the
coefficient of determination model and categorized the landslide susceptibility map into
five classes. They found that 93.32% of the study area was in the low susceptibility category
and 6.34% was located in the high and very high susceptibility zones. Jia W et al. [30] used
a Geodetector model, combined with spatial interpolation and index extraction techniques,
to reveal the driving factors of geohazards and reported that the strength of the association
between seven influencing factors and geohazards in the study area varied significantly.
Liao et al. [31] used a probe to identify the main drivers of avalanches in Ganzhou City,
China, and they showed that the main drivers of avalanche erosion were rainfall erosion,
elevation, and land use. Du Yuchen et al. [32] carried out a susceptibility evaluation of the
mudslide susceptibility in the Anning River Basin using a coupled model of deterministic
coefficients and Geodetectors, and the results of their evaluation exhibited a high degree
of accuracy.

A single evaluation model or method has some limitations [33]. The deterministic
coefficient model can quickly analyze the weight of each factor, but there is a sensitiv-
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ity of each factor to the evaluation of susceptibility. In contrast, the probe detects the
relationship between the influencing factors and the geographic phenomena without any
linear assumptions, and gives a weighting coefficient for each factor that depends on its
importance for avalanche occurrence, which can bypass the influence of subjective factors
on the evaluation results. By coupling probes, the shortcomings of a single CF model can
be compensated.

According to data from meteorological stations, the snow accumulation period in the
G219 Wen Quan to Khorgos transportation corridor is more than 5 months long, and avalanche
disasters pose a serious threat to the transportation corridor. There are few researchers working
in this area at present. The coupled certainty factor–Geodetector (CF-GD) model is highly
accurate but lacks applicability in avalanche hazard susceptibility assessment.

Motivated by this research gap, in this study, avalanches along the transportation
corridor from G219Wen Quan to Horgos in Xinjiang were taken as the research object,
and a coupled CF-GD model was established to calculate and optimize the hierarchical
affiliation and factor sensitivity of avalanche susceptibility evaluation factors by adopting
a joint sky–ground investigation and an observational data-driven model to improve the
accuracy of avalanche disaster susceptibility evaluations. Using the coupled model, the
evaluation of avalanche disaster susceptibility in the study area was carried out, and the
evaluation accuracy was verified and analyzed using the field investigation data to provide
a reference for the study of avalanche disaster prevention and control in the study area and
development of early warning decision-making schemes.

The main contributions of this study are threefold. First, the coefficient of the cer-
tainty factor and Geodetector models were applied to the assessment of avalanche haz-
ards, and the prediction accuracies of the coupled model and the single model were com-
pared. Second, the conditions favorable to avalanche development in the traffic corridor
were analyzed. Finally, the snow avalanche susceptibility of the transportation corridors
was mapped.

2. Study Area and Data Sources
2.1. Study Area

The G219Wen Quan to Khorgos transportation corridor (hereafter referred to as the
transportation corridor) is oriented in the southeast direction in the Beizhentai Mountains,
a branch of Western Tien Shan, and is bordered by Sayram Lake in the east and the Boroko
Nu Mountains (Figure 1a). The study area is the geomorphological demarcation line
between the Bortala Valley and the pre-hills and plains of the Khorgos Mountains. The
topography is high in the center and low on both ends and is characterized by severe
surface cuts, steep mountains, large changes in the topographic relief, and geomorphology
that is characterized by low to medium mountains and river valleys [34]. The elevation
is 1.4–3.5 km and the slope gradient is between 30 and 60◦ (Figure 1b). The vertical
geographic distribution structure of the mountain system is obvious, and the data from
the meteorological stations in the study area show that the snow depth can reach up to
1.6 m, so the meteorological and topographic conditions create favorable conditions for
avalanche development.

2.2. Data Processing
2.2.1. Avalanche Inventory

Since 2023, measured data on avalanche hazard characteristics such as the topography,
geomorphology, snow characteristics, and meteorological conditions in the study area have
been obtained using unmanned aerial vehicle (UAV) remote sensing, on-site surveys, and
fixed-point observations at meteorological stations. Through sky–ground integration and
synergistic investigation, it was found that there are multiple avalanche hazard points in
the study area, and the avalanches within the corridors are mostly gully avalanches, as
well as a small portion of slope avalanches (Figure 2b,c). A total of 83 avalanche points
were identified in the transportation corridor.
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Figure 2. Visit to transportation corridor to investigate avalanche distribution in 2024: (a) sky–ground
integrated collaborative investigation; (b) grooved avalanche; (c) slope-based avalanches.

2.2.2. Geographic Information Data

The elevation, terrain relief, surface cuts, ground roughness, slope, and slope direction
initial state factors were extracted using ArcGIS-10.8 software and a digital elevation
model (DEM) with a resolution of 12.5 m downloaded from the Geospatial Data Cloud, we
accessed it on 5 October 2023. (https://www.gscloud.cn/) [35].

2.2.3. Meteorological Data

Based on meteorological data from five meteorological stations along the corridor, the
average monthly winter temperature gradient, average winter snow depth, and average
winter wind speed in the study area were obtained using the spatial interpolation tool of
the ArcGIS-10.8 software [36–38].

Currently, for the disaster susceptibility evaluation unit, division methods include
raster, geomorphological, geographical, administrative, and slope division [39,40]. The
raster unit can be quickly divided into regional units. However, conducive to the com-
puter’s analysis and superposition of the operation, in this study, we adopted the grid unit
for the division and conducted re-sampling to 30 m × 30 m evaluation units, with a total of
47,604 rasters. Data sources are shown in Table 1.

https://www.gscloud.cn/
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Table 1. Data collection.

Datasets Timeframe Data Sources Note

Disaster point data 2023–2024 Field surveys in conjunction with drones

DEM 2023 Geospatial data cloud download (we accessed it on
5 October 2020. https://www.gscloud.cn/) Resolution: 12.5 m

Meteorological data 2023–2024 Meteorological station

3. Methodology

The deterministic coefficient model can quickly analyze the weight of each factor, but
there is a sensitivity of each factor to the evaluation of susceptibility, whereas the geo-probe
detects the relationship between the influencing factors and the geographic phenomena
without any linear assumptions, and gives a weighting coefficient for each factor that
depends on its importance for avalanche occurrence, which can bypass the influence of
subjective factors on the evaluation results. By coupling probes, the shortcomings of a
single CF model can be compensated for.

3.1. Certainty Factor

The CF method is a probability function [32] that has been commonly used in proba-
bilistic analysis to analyze the credibility factors of factors that influence the occurrence of
an event. The CF index is computed as follows:

CF =

{ PPa−pps
PPs(1−ppa)

(PPa < pps)
PPa−pps

PPa(1−pps)
(PPa ≥ pps)

, (1)

where PPa is the probability of avalanche hazards occurring in evaluation factor classifica-
tion a, and PPs is the a priori probability of avalanche hazards occurring in the entire study
area. In practical applications, PPa can be the ratio of the number of avalanche hazards in
evaluation factor classification a to the area occupied by evaluation factor classification a.
PPs is the ratio of the number of avalanche hazards in the study area to the total area of
the study area. When the result of the calculation is positive, avalanche disasters easily
occur in the unit, and the closer the CF value is to 1, the more likely avalanches are to occur.
When the result of the calculation is negative, avalanche disasters do not easily occur in the
unit, and the closer the CF value is to −1, the less likely avalanches are to occur.

3.2. Geodetector

The Geodetector (GD) is a statistical model for detecting spatial heterogeneity and
revealing drivers of hazards, and it can be used to analyze the relative weights of avalanche
impact factors [41]. Geodetectors can detect the relationship between influencing factors
and geographic phenomena without any linear assumptions and can bypass the influence
of subjective factors on the evaluation results [42,43].

SSW =
L

∑
h=1

Nhσ2
h , SST = Nσ2 (2)

where h is the classification of the factor, Nh is the number of cells in classification h, and
N is the number of cells in the study area. σ2

h and σ2 are the variances of the Y values in
stratum h and the entire area, respectively; SSW and SST are the sum of the intra-stratum
variance and the total variance in the entire region, respectively; the q-value denotes the
contribution of the individual influencing factors; this value is computed as follows:

q = 1 −

L
∑

h=1
Nhσ2

h

Nσ2 = 1 − SSW
SST

(3)

https://www.gscloud.cn/
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3.3. Coupling Model

First, 83 avalanche hazard sample points in the transportation corridor were selected,
and an equal number of non-avalanche points were randomly selected, resulting in a
total of 166 independent attribute samples. Nine avalanche hazard influence factors were
comprehensively selected, and the frequency ratio method was used to analyze the factors
influencing the avalanche hazard spatial distribution. The CF value under the grading of
each factor was calculated using the certainty coefficient, and the sensitivity of each factor
to avalanche hazards was calculated using the Geodetector. Finally, the weights calculated
using the Geodetector were weighted and analyzed using the CF value. Stacking of CF and
CF-GD values was performed through GIS software version 10.8, and the natural breakpoint
method was used to divide the avalanche susceptibility in the study area into extremely
high susceptibility, high susceptibility, medium susceptibility, and low susceptibility zones.
Finally, the ROC curves were used to compare the evaluation accuracies of the two models.
The specific evaluation technical route is shown in Figure 3.
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4. Analysis of Factors Affecting the Spatial Distribution of Avalanches

The selection of the influencing factors is the basis for conducting avalanche hazard
susceptibility, and topographic data are constant parameters in predicting avalanches.
The elevation and slope can reflect the magnitude and frequency of avalanches, and the
composite parameters, such as the relief degree of land surface (RDLS), surface incision,
and surface roughness, are used to measure the avalanche stability and reveal the relation-
ship between the geomorphology and snow accumulation. The relationship between the
landform morphology and snowpack is revealed [11]. Snowfall, wind, and temperature are
meteorological factors that trigger avalanches [43,44]. Avalanches caused by heavy snowfall
occur more frequently in the Tien Shan mountains, especially in early February when heavy
snowfall is frequent [45]. The secondary transport effect of wind causes differences in the
distribution of the snow depth across a valley, and changes in wind speed affect the density
of the snowpack, thus increasing the instability of the snowpack. Temperature plays a
decisive role in the formation of avalanches, and when the temperature gradient is large,
deep frost with coarser grains, a brittle structure, and lower cohesion forms, reducing the
stability of the snow cover [46]. Nine topographic and climatic influencing factors were
selected. The topographic parameters include the slope, slope direction, elevation, topo-
graphic relief, ground roughness, and surface cut, while the climatic parameters include
the average monthly winter temperature gradient, average winter wind speed, and average
winter snow depth.
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The frequency ratio (FR) model is a quantitative analysis model that can intuitively
reflect the probabilistic relationship between avalanche hazards and impact factors in
geospace. For avalanche hazards, the practical application is expressed as categorizing and
calculating the affiliation degree of each level of an influence factor to avalanches, which is
calculated as follows:

FRij =
Aij/A
Bij/B

(4)

where A is the total number of avalanche hazards in the study area; B is the total area of
the study area; Aij is the number of hazards under the grading of each influence factor;
and B is the area of the study area under the grading of each influence factor. The oFRij
value reflects the importance of the factors under the grading for the occurrence of an
avalanche. FRij > 1 indicates that the influencing factors under the grading are favorable
for the occurrence of hazards, and FRij < 1 indicates that the influencing factors under the
grading are unfavorable for the occurrence of hazards.

The snow depth is directly related to the triggering of avalanches. By using ArcGIS
spatial interpolation tools and weather station data to deduce the winter snow depth in
other regions, we determined that the average snow depth in winter in the study area was
32–85 cm, and the slope was reclassified into five levels: 32–40 cm, 40–50 cm, 50–60 cm,
60–70 cm, and 70–85 cm. The average snow depth in most areas of the transportation
corridor was around 50–70 cm. When the snow depth exceeds 40 cm, the frequency ratio
is 1.01, and the probability of avalanches is higher. The frequency ratio increases with
the increase in the snow depth. When the snow depth exceeds 70 cm, the frequency ratio
reaches 1.24, and avalanches have the highest probability of occurring under this single
condition. When the frequency ratio is 1.01, the probability of avalanches occurring is 1.24.
The frequency ratio increases with increasing snow depth. Details are shown in Figure 4.
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Figure 4. (a) Average winter snow depth; (b) average winter snow depth frequency ratio.

The wind affects the density and stability of the snow layer, facilitating the triggering
of avalanche disasters. The ArcGIS spatial interpolation tool and weather station data were
used to derive the average winter wind speeds in other regions. The average winter wind
speeds in the study area were around 0.9–2.6 m/s. The average winter wind speeds were
reclassified into five levels: 0.9–1.3 m/s, 1.3–1.6 m/s, 1.6–2 m/s, 2–2.3 m/s, and 2.3–2.6 m/s.
When the monthly mean wind speed increases to 1.6 m/s, the frequency ratio is 1.06, which
favors avalanches. Details are shown in Figure 5.
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Figure 5. (a) Average winter wind speed; (b) average winter wind speed frequency ratio.

Temperature plays a decisive role in the formation of avalanches, and the ArcGIS
spatial interpolation tool and weather station data were used to derive the gradient of the
monthly mean temperature change in winter in other regions. The temperature gradient in
the study area was around 9.5–12.5 ◦C/month, and the temperature gradient was reclassi-
fied into five levels: 9.5–10.5 ◦C, 10.5–11 ◦C, 11–11.5 ◦C, 11.5–12 ◦C, and 12–12.5 ◦C. As the
gradient of the temperature change increases, the frequency ratio tends to increase. When
the monthly average temperature change gradient reaches 11 ◦C/month, the frequency
ratio is 1.03, which indicates that the probability of avalanche occurrence in the transporta-
tion corridor is higher when the monthly average temperature change gradient exceeds
11 ◦C/month. When the temperature gradient exceeds 12 ◦C/month, the frequency ratio
reaches a maximum of 1.14, and the probability of avalanche occurrence is the highest
under this single condition. Details are shown in Figure 6.
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The surface roughness is the ratio of the curved surface area of a surface unit to its
projected area on the horizontal plane. The surface roughness is a macro-terrain factor that
reflects the degree of relief and erosion of the terrain [47]. The DEM surface roughness of
the study area with a 12.5 m spatial resolution was calculated by using ArcGIS software,
and the surface roughness was reclassified into five levels: 1–1.08, 1.08–1.16, 1.16–1.24,
1.24–1.36, and 1.36–2.6. As the surface roughness increases, the frequency ratio initially
increases and then decreases, with surface roughness values of 1.6–1.36. A frequency ratio
of >1 is favorable for avalanche-prone area development. For surface roughness values of
1.24–1.36, the maximum frequency value is 1.54, and the probability of avalanches occurring
under this single condition is the largest. Details are shown in Figure 7.
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The relief degree of a land surface refers to the height difference between the highest
point and the lowest point in a specific area, and it can directly reflect the regional relief
characteristics [48]. It is a quantitative index that describes the regional geomorphology,
and it is also an important indicator for natural disaster assessment. The DEM relief degree
of the land surface with a 12.5 m spatial resolution for the study area was calculated using
ArcGIS software, and the relief degree of the land surface was reclassified into five levels:
0–100, 100–200, 200–300, 300–400, and 400–500. As the relief degree of the land surface
increases, the frequency ratio initially increases and then decreases, and the relief degree
of the land surface is within the range of 300–500, with a frequency ratio of >1, which is
favorable for avalanche occurrence under this condition. Details are shown in Figure 8.

The surface incision refers to the difference between the average elevation and the
lowest elevation within the area adjacent to a point, which can reflect the condition of
erosion cutting into the surface [49]. The DEM of the surface incision with a 12.5 m spatial
resolution for the study area was calculated using ArcGIS software, and the surface incision
was reclassified into five classes: 0–50, 50–100, 100–150, 150–200, and 200–250. As the
surface incision increases, the frequency ratio tends to increase and then decrease, and
within the surface incision range of 100–200, the frequency ratio is >1, making avalanches
more likely to occur under this condition. Details are shown in Figure 9.
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Avalanches are sensitive to slopes, and a slope that is too low or too high is detrimental
to the development of avalanche hazards. The DEM of the slope with a 12.5 m spatial
resolution for the study area was calculated using ArcGIS software, and the slope was
reclassified into six levels: 0–10◦, 10–20◦, 20–30◦, 30–40◦, 40–50◦, and >50◦. Traffic corridor
areas mainly have slopes of 20–40◦, and they are concentrated between 30◦ and 40◦. As
the slope increases, the frequency ratio gradually increases. The maximum value of the
frequency ratio occurs in areas with slopes of 30–40◦, and the frequency ratio decreases
when the slope is >40◦, indicating that the slopes most favorable for avalanche development
are 30–40◦, <20◦, and >50◦. The frequency ratio of <20◦ and >50◦ slopes is <1, which is not
favorable for avalanche development. Details are shown in Figure 10.
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As the sunshine, snowfall, and wind speed are different for different slope aspects, the
snow depth and snow layer characteristics are different for different slope aspects, which
further affects avalanche development. The DEM of the slope aspect of the study area with
a 12.5 m spatial resolution was calculated using ArcGIS software, and the slope aspect
was reclassified into eight classes ((19)): north (337.5–22.5◦), northeast (22.5–67.5◦), east
(67.5–112.5◦), southeast (112.5–157.5◦), south (157.5–202.5◦), southwest (202.5–247.5◦), west
(247.5–292.5◦), and northwest (292.5–337.5◦). The calculation results show that the east,
southeast, and northwest slope aspects are favorable for the development of avalanche
hazards in the transportation corridor. The frequency ratios are all >1, and the largest
frequency ratios are for the east and northwest slope aspects. Details are shown in Figure 11.
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Elevation is one of the factors influencing the occurrence of avalanche disasters. The
DEM of the elevation with a 12.5 m spatial resolution was extracted using ArcGIS software.
The elevation in the study area ranged from 1422 to 3497 m, and the elevation was reclassi-
fied into five levels ((21)): 1–1.5 km, 1.5–2 km, 2–2.5 km, 2.5–3 km, and 3–3.5 km. In the
transportation corridor, the elevations were mainly between 1.5 and 3 km. As the elevation
increases, the frequency ratio increases and then decreases. The maximum frequency ratio
is 1.79 when the elevation is in the range 2–2.5 km, which indicates that elevations of
2–2.5 km in the study area are the most favorable for the occurrence of avalanche disasters.
Details are shown in Figure 12.
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5. Results
5.1. Selection of Avalanche-Influencing Factors

The frequency ratios of nine influence factors, namely, meteorological factors (mean
winter temperature gradient, mean winter snow depth, and mean winter wind speed)
and topographic factors (elevation, aspect, slope, relief degree of land surface, ground
roughness, and surface incision), were obtained via calculations (Table 2). The results
show that all nine factors played a positive role in avalanche development. Thus, our
vulnerability evaluation is based on these nine factors. The calculation results of the
evaluation factors are shown in Table 2.

Table 2. Evaluation factor frequency ratios, CF, and GD.

Factors Factor Grading Frequency Ratio CF GD

Average
temperature

gradient

9.5–10.5 0.56 −0.44

0.35
10.5–11 0.73 −0.27
11–11.5 1.04 0.03
11.5–12 1.04 0.04
12–12.5 1.14 0.12

Average snow
depth

32–40 0.41 −0.59

0.25
40–50 1.01 0.01
50–60 1.00 0.00
60–70 1.08 0.07
70–85 1.24 0.19
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Table 2. Cont.

Factors Factor Grading Frequency Ratio CF GD

Average wind
speed

0.9–1.3 0.89 −0.11

0.17
1.3–1.6 0.35 −0.65
1.6–2 1.07 0.06
2–2.3 1.87 0.47

2.3–2.6 1.08 0.07

Surface
roughness

1–1.08 0.54 −0.46

0.13
1.08–1.16 0.80 −0.20
1.16–1.24 1.43 0.30
1.24–1.36 1.54 0.35
1.36–2.6 0.47 −0.53

Surface incision

0–50 0.59 −0.41

0.11
50–100 0.62 −0.38

100–150 1.03 0.03
150–200 1.66 0.40
200–250 0.72 −0.28

RDLS

0–100 0.00 0.00

0.12
100–200 0.62 −0.38
200–300 0.87 −0.13
300–400 1.73 0.42
400–500 1.16 0.13

Elevation

1–1.5 km 0.00 0.00

0.15
1.5–2 km 0.23 −0.77
2–2.5 km 1.79 0.44
2..5–3 km 0.85 −0.15
3–3.5 km 0.83 −0.17

Aspect

N 0.22 −0.78

0.75

NE 0.94 −0.06
E 1.73 0.42

SE 1.13 0.12
S 0.39 −0.61

SW 0.76 −0.24
W 0.69 −0.31

NW 1.77 0.44

Slope

0–10◦ 0.37 −0.63

0.55

10–20◦ 0.36 −0.64
20–30◦ 1.03 0.03
30–40◦ 1.24 0.19
40–50◦ 1.11 0.10
>50◦ 0.00 0.00

5.2. CF Model Results

The value of the coefficient of determination (CF) for each of the nine evaluation
factors was calculated using Equation (1). The calculation results are presented in Table 2.
The avalanche susceptibility of the traffic corridors was classified by ArcGIS-10.8 software,
where the calculated CF values were first superimposed and reclassified into four classes
by the natural breaks (Jenks) method: very high susceptibility, high susceptibility, medium
susceptibility, and low susceptibility areas. These susceptibility grades accounted for
14.51%, 25.89%, 32.73%, and 26.87%, respectively. The zoning results are shown in Table 3.
Among them, the extremely high susceptibility zone and high susceptibility zone accounted
for 59.6%, and they were located on both sides of the river valley in the middle and upper
parts of the transportation corridor. The results of the calculations are shown in Table 3.
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Table 3. Comparison of different model predictions.

Susceptibility
Level

CF GD-CF

Area
(km2) Area Ratio Avalanche

Number
Avalanche

Ratio
Area
(km2) Area Ratio Avalanche

Number
Avalanche

Ratio

Low 6.04 14.51% 2.00 2.41% 4.75 11.40% 3.00 3.61%
Medium 10.79 25.89% 4.00 4.82% 11.91 28.60% 5.00 6.02%

High 13.64 32.73% 23.00 27.71% 15.52 37.27% 31.00 37.35%
Very high 11.19 26.87% 54.00 65.06% 9.47 22.74% 44.00 53.01%

5.3. Results of the Coupled CF-GD Model

Based on the ArcGIS statistics for the grading of each influencing factor, the relative
weights of the avalanche-influencing factors in the transportation corridor were calculated
according to the geodetic detector model (Equation (2)), and the results of the analysis
and calculation revealed that the contributions of the nine influencing factors to avalanche
development, in descending order, were as follows: slope aspect (29.07%), slope angle
(21.32%), temperature gradient (13.57%), average snow depth (9.69%), average wind speed
(6.59%), elevation (5.81%), surface roughness (5.04%), relief degree of land surface (4.65%),
and Surface incision (4.26%). The slope aspect, slope angle, and mean winter temperature
gradient contributed a proportion of 63.95% to avalanche development, suggesting that
topographic and temperature variations have greater influences on avalanche development
within transportation corridors. The evaluation factor contributions are shown in Figure 13.
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Using Equations (1) and (2), the affiliation values of the nine avalanche-influencing
factors for the transportation corridor were calculated and weighted with the weight values
calculated using the geodetic detector to obtain an avalanche susceptibility distribution
map for the coupled CF-GD model in the transportation corridor. The traffic corridor
susceptibility was classified by ArcGIS-10.8 software, where the calculated CF-GD values
were first superimposed and then reclassified into four classes by the natural breaks (Jenks)
method. These susceptibility levels accounted for 11.4%, 28.6%, 37.27%, and 22.74%,
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respectively, of the study area. The extremely high susceptibility and high susceptibility
areas were mainly located on both sides of the valley in the middle part of the transportation
corridor. The results are shown in Figure 14b.
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5.4. Validation of Model Results

The two avalanche susceptibility models yielded the same avalanche hazard distribu-
tion patterns, i.e., mainly located on both sides of the river valley in the middle section of
the transportation corridor. Five large avalanches (1–5) and one potential avalanche point
(6) were identified during the site investigation. The highway passes through the flow area
or accumulation area of avalanches 1, 2, and 6, and avalanches 3, 4, and 5 will affect the
construction. Based on the results of the susceptibility evaluation, the five avalanche points
and one potential avalanche point all appear in the very high susceptibility area on the
susceptibility map, demonstrating that the results of the evaluation are consistent with the
actual situation. The results of the field survey are shown in Figure 15 (1–6#) (‘#’ is the
number of avalanches).

ROC curves are often used for accuracy validation of the susceptibility evaluation
model, and the accuracy is expressed as the AUC. A large AUC indicates that the accuracy
of the model is higher and the model is more predictive [50]. The percentage accumulation
of the susceptible area under the classification represents the horizontal axis specificity,
and the percentage accumulation of the avalanche hazard points represents the vertical
axis sensitivity [20]. The calculation results are shown in Figure 16. The AUC value of the
CF-GD coupling model is 0.889, the AUC value of the deterministic coefficient model is
0.836, and the AUC values of the two models derived from the calculation results are >0.8,
so it can be concluded that the model results have a high accuracy, and the CF-GD coupling
model has a higher accuracy than the CF model.
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6. Discussion

Qualitative analysis and quantitative analysis are the mainstream types of avalanche
hazard susceptibility evaluation methods at present. Reducing the influence of subjective
factors on susceptibility evaluation is the advantage of quantitative analysis methods
such as Geodetectors, compared with expert scoring methods such as qualitative analysis
methods. The CF model and GD model results intuitively reflect the contributions of the
different grading factors to avalanche hazard development and the main controlling factors
of avalanche hazard development. The coupled CF-GD model compensates for the fact
that the explanatory power of a single model cannot distinguish the influencing factors,
and the evaluation accuracy of the coupled model is higher than that of a single model.
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This coupling method has higher requirements for the completeness of avalanche
sample data, and at this stage, the evaluation is carried out in small-scale regions, and the
evaluation accuracy is affected by the quality of avalanche sample data, which cannot fully
respond to the relationship between the formation of hazards and the evaluation factors.
Under these conditions, this approach could also be applied to areas other than traffic
corridors but would need to be tested for applicability. With the development of machine
learning, the coupling method combining machine learning and traditional statistical
methods will further improve the accuracy of avalanche susceptibility assessment, which
requires more avalanche samples to support.

The factor weights calculated using the coupled model revealed that the weight values
of the slope aspect and slope angle were the largest, indicating that these two factors played
dominant roles in the distribution of the avalanche hazards. The avalanche occurrence
is highly sensitive to the slope angle. A slope that is either too steep or too gentle is
detrimental to avalanche development, and the effects of solar radiation and wind speed
on the snowpack on slopes with different aspects affect the distribution of avalanches. In
the future, we will consider using sub-aspects in the susceptibility evaluation to include the
mechanism factors affecting avalanche development, such as solar radiation and ground
temperature changes, in the evaluation system in order to further analyze the nonlinear
relationships between avalanche hazards and different evaluation factors and to improve
the evaluation progress.

Most of the highway routes are located in very high and high avalanche susceptibility
areas, which seriously threatens infrastructure such as roadbeds, bridge abutments, and
tunnel openings. Therefore, these areas require intensified hazard assessment and preven-
tion measures, such as the installation of snow stabilization fences in avalanche initiation
zones and the construction of snow guide bunds to alter avalanche flow paths.

7. Conclusions

In order to ensure the smooth flow of transport corridors, and help the economic
development and security of the property of mountain people, it is important to carry out
avalanche susceptibility assessment in transport corridors. This study identified meteoro-
logical and topographical conditions favorable to avalanche occurrence in the transport
corridor; the main factors favoring avalanche occurrence in the study area were slope
direction, slope angle, and average winter temperature gradient, and a map of avalanche
susceptibility in the transport corridor was produced.

The avalanche hazard dataset for the Wen Quan to Khorgos section of the G219Wen
Quan to Khorgos transportation corridor was collected through a joint air–ground survey,
and nine factors, namely, the mean winter temperature gradient, mean winter snow depth,
mean winter wind speed, surface roughness, surface incision, relief degree of the land
surface, elevation, slope angle, and slope aspect, were selected to analyze the spatial
distribution pattern of avalanche hazards in the transportation corridor. An evaluation
system of avalanche disaster susceptibility was further established, and the evaluation
accuracies of the coupled CF-GD model and CF model were compared and analyzed. The
conclusions that follow were obtained.

(1) The analysis of the influencing factors through the frequency ratio method revealed
that among the factors affecting the spatial distribution of avalanche hazards in the
transportation corridor from G219Wen Quan to Khorgos, the most favorable ranges
for the occurrence of hazards were as follows: snow depth of >40 cm, wind speed
of >1.6 m/s, temperature gradient of more than 11 ◦C, elevations of 2–2.5 km, slope
angles of 30–40◦, east, southeast, and northwest slope aspects, a surface roughness of
>1.16, a relief degree of land surface of >300 m, and a surface incision of >100 m. The
main factors favoring avalanche development in the study area were the slope aspect,
slope angle, and average winter temperature gradient.

(2) Based on the susceptibility evaluation conducted using the coupled CF-GD model,
the study area was divided into four levels: low susceptibility, medium susceptibility,
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high susceptibility, and very high susceptibility areas, which accounted for 11.4%,
28.6%, 37.27%, and 22.74% of the total area of the study area, respectively. The high
susceptibility area accounted for the largest proportion of the study area, and the low
susceptibility area accounted for the smallest proportion of the study area. The very
high susceptibility and high susceptibility areas were located in the middle section of
the river valley in the middle part of the transportation corridor. The extremely high
susceptibility and high susceptibility areas were mainly located in the middle of the
valley of the transportation corridor. This is consistent with the results of the field
investigation. The results of this study provide support for local avalanche mitigation
and prevention.

(3) The accuracy of the evaluation model was verified according to the AUC value. The
AUC value of the CF model was 0.836, and the AUC value of the coupled CF-GD
model was 0.889. The coupled model had a higher accuracy than the single model, and
the accuracy of the coupled model was about 6.34% better compared with the single
model. The coupled model is more suitable for avalanche susceptibility evaluation;
coupled models are more accurate than single-model avalanche susceptibility zoning
maps and can provide more precise information for avalanche control. Our research
method can be used as a reference for other avalanche-prone mountain areas.

(4) The coupled CF-GD model can generate a reliable snow avalanche susceptibility
mapping that has a sound scientific basis for preventing and mitigating damage
caused by avalanches. Therefore, the methods outlined in this paper should be tested
through application in other areas as they may improve avalanche susceptibility
assessments in other avalanche-prone areas.
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