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Abstract: In this paper, we investigate and propose the application of an unsupervised machine
learning clustering method to characterize the spatial and temporal distribution of ionospheric
plasma irregularities over the Western African equatorial region. The ordinary Kriging algorithm
was used to interpolate the rate of change of the total electron content (TEC) index (ROTI) over
gridded 0.5◦ by 0.5◦ latitude and longitude regional maps in order to simulate the level of ionospheric
plasma irregularities in a quasi-real-time scenario. K-means was used to obtain a spatial mean index
through an optimal stratification of regional post-processed ROTI maps. The results obtained could
be adapted by appropriate K-means algorithms to a real-time scenario, as has been performed for
other applications. This method could allow us to monitor plasma irregularities in real time over
the African region and, therefore, lead to the possibility of mitigating their effects on satellite-based
location systems in the said region.

Keywords: ionospheric irregularities; ROTI; Kriging; unsupervised machine learning; optimization
sample technique; K-means; low-latitude ionosphere

1. Introduction

Ionospheric electron density irregularities during the nighttime are crucial components
of equatorial ionospheric variability studies. Research has revealed that the ionosphere
over the Equatorial Ionization Anomaly (EIA) region is the most complex region with
the highest variability, and its morphology is much more different from other latitudes.
The effect of nighttime ionospheric plasma irregularities renders space-based systems
almost unusable in these equatorial latitudes [1,2]. Ionospheric irregularities’ occurrence, as
shown by different techniques, indicates a marked seasonal (with peaks during equinoctial
months) and longitudinal variability. The Western low-latitude longitudinal sector of
Africa, considered in this paper, has a higher occurrence of irregularities [3]. It has to be
noted that the higher occurrence of irregularities during equinoctial months at low latitudes
corresponds to the seasonal period of increased development of the EIA [4].

The rate of change of TEC index (ROTI), defined by [5], has been identified to be an
important parameter to characterize the occurrence and magnitude of ionospheric plasma
irregularities all over the globe. This index has been found to correspond to the ionospheric
scintillation, a common radio signal phenomenon of the EIA region [6]. Chandra et al.
in [7] used the ROT and ROTI to identify the signals severely affected by ionospheric
gradients. Abe et al [8] analyzed the signature of plasma irregularities in an SBAS system’s
performance in Central–West African equatorial and low-latitude regions through the ROTI.
Among other results, they found that irregularities greatly contributed to the nighttime
degradation of the SBAS system’s performance in the African equatorial and low-latitude
regions, and 62.5% of the nighttime degradation could be associated with ionospheric
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irregularities over the region. The same authors demonstrated in [9] that the ROTI is a
good parameter to estimate ionospheric irregularities during the storm-time period in the
low-latitude African region.

However, effective evaluation of the ROTI over a region is challenging due to the
scarcity of ground-based data for estimating ionospheric plasma irregularities. In some
regions, the ROTI can only be obtained through the interpolation of sparse measure-
ments. Although various interpolation algorithms are available globally, the accuracy of
the estimated points tends to decrease as the distance between the pierce points increases.
Therefore, the choice of interpolation algorithms and the quality of input data significantly
impact the reliability of ROTI estimation. Predicting ionospheric parameters from ground-
based GNSS measurements with enough accuracy is a key challenge in African ionospheric
studies, particularly due to the irregularly spaced receiver locations. The Kriging interpola-
tion technique appears to offer a solution to the estimation problem, based solely on the
assumptions and knowledge of the variogram, resulting in a low residual error variance
that guarantees confidence bounds [10]. Sayin et al [11] describes Kriging as an algorithm
suitable for the spatial interpolation methodology in environmental geoscience. It estimates
the variance and the spatial correlation structure of the surface from the measurements.
Many researchers have applied the Kriging algorithm to estimate global and regional maps
of ionospheric parameters (e.g., [12–15]). Regional ionospheric TEC and ROTI maps have
been evaluated and observed to provide a reasonable corrective measure for ionospheric
delays [16–19] and monitor the occurrence and severity of large-scale irregularities [20,21].

Machine learning is a branch of artificial intelligence that considers that algorithms
can identify patterns and make decisions from datasets with little human intervention.
Unsupervised machine learning is the process of finding hidden patterns in datasets. The
starting point of the unsupervised machine learning process is the division of data points
into groups of similar values called “clusters” that are different from the data of other
groups. Representing data by a few clusters leads to data simplification.

The K-means algorithm [22,23] is an unsupervised machine learning technique that
starts with an initial group of randomly selected centroids, which are used as the beginning
points for every cluster, and then performs iterative calculations to optimize the positions
of the centroids. It stops the process of creating and optimizing clusters when either: (a) the
centroids stabilize or (b) the defined number of iterations is achieved.

K-means has been extensively used in geophysics in areas like weather and climate
predictions [24–29] and seismology [30,31]. K-means has also been used to model the daily
variations in TEC by Pongracic et al [32].

A reliable and accurate index to monitor ionospheric irregularities is a major challenge
in the performance improvement of space-based systems in regions where irregularities
are frequent. Therefore, this paper focuses on the provision of a spatial mean based on a
technique for the optimal stratification of regional ROTI maps using post-processed data.
Appropriate K-means-based algorithms could be used to test real-time data acquisition,
monitoring facilities, and mapping techniques, as has been performed in other applica-
tions [33–35]. Achieving this could lead to possible mitigation effects of ionospheric plasma
irregularities on satellite-based systems.

This paper is organized as follows: Section 2 covers the description of the data along
with the ROTI, Kriging, and K-means techniques. Section 3 presents and discusses the
application of these techniques for ROTI mapping and the proposed sampling method to
obtain a spatial mean in a couple of cases. We finish by drawing a series of conclusions in
Section 4.

2. Materials and Methods
2.1. Data and ROTI Calculation

To achieve the set objective, GNSS ground-based data were obtained from 22 stations
located within the West African equatorial region through a series of public networks like
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the International GNSS Services, IGS, AFREF, NIGNET, and SONEL. The geographical
descriptions of the stations are given in Figure 1 and Table 1.
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Figure 1. Map of geographic locations of GNSS ground-based stations used.

Table 1. GNSS stations used in this study with their coordinates and networks.

#Station Station Code Country Geog. Lat. (◦) Geog. Lon. (◦) Network

1 BJAB Benin 7.11 2.00 GPS-AFREF

2 BJCO Benin 6.23 2.23 GPS-AFREF

3 BJKA Benin 11.07 2.55 GPS-AFREF

4 BJNA Benin 10.15 1.22 GPS-AFREF

5 BJNI Benin 9.57 3.12 GPS-AFREF

6 BJPA Benin 9.21 2.37 GPS-AFREF

7 BJSA Benin 7.56 1.60 GPS-AFREF

8 OUAG Burkina Faso 12.35 −1.95 GPS-IGS

9 YKRO Cote D’Ivoire 6.87 −5.24 GPS-IGS

10 NKLG Gabon 0.35 9.67 GPS-IGS

11 ACRA Ghana 5.6 −0.20 GPS-IGS

12 CGGN Nigeria 10.12 9.12 GPS-IGS

13 OSGF Nigeria 6.92 11.18 NIG-NET GPS

14 ULAG Nigeria 6.52 3.39 NIG-NET GPS

15 FUTA Nigeria 7.2 5.3 NIG-NET GPS

16 RUST Nigeria 4.8 6.98 NIG-NET GPS

17 UNEC Nigeria 6.42 7.51 NIG-NET GPS

18 FUTY Nigeria 9.35 12.5 NIG-NET GPS

19 BKFP Nigeria 12.47 4.23 NIG-NET GPS

20 ABUZ Nigeria 11.15 7.65 NIG-NET GPS

21 FG07 Sao Tome 0.35 6.74 SONEL GPS

22 DAKR Senegal 14.75 −17.49 GPS-IGS
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The ROTI was estimated over these stations in order to have a proxy for the plasma
irregularities encountered by the GPS signals passing through the region. This parameter
was quantified in each visible GPS satellite by taking the standard deviation of the ROT
(time derivative of the TEC) at every 5-minute interval (Equation (1)).

ROTI =
√
< ROT2 > −< ROT >2 (1)

where ROT =
TECi

k−TECi
k−1

tk−tk−1
is the rate of change of TEC computed at every 30 s interval

and then converted into TECu/min; i is the visible satellite; k is the epoch; and TEC is the
total electron content. The ROT and ROTI were measured in TECu/min.

The ionospheric plasma irregularities were studied considering disturbed (2 October
2013; Am = 75) and quiet geomagnetic conditions (28 October 2013; Am = 4). The case of
the moderate storm on 2 October 2013 was selected since it produced an enhancement of
the irregularities in the region. The solar wind plasma speed, interplanetary magnetic field
along the z-axis (IMF-Bz), and disturbance storm time (Dst) indices are shown in Figure 2
as the storm time parametric indices. The increment in the solar wind plasma speed on
2 October 2013 (DOY 275) from about 350 km/s to 525 km/s impacted the interplanetary
magnetic field, and it fluctuated to around −9 nT. The Dst underwent a negative excursion
to around −72. A more in-depth analysis of this storm can be found in [36,37].
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Figure 2. Solar wind plasma speed, IMF-Bz, and Dst parameters for days enclosing 2nd October
2013 storm.

Figure 3 shows an example of the ROT and ROTI variations throughout the storm
day (2 October 2013, day of year (DOY) 275) for two West African stations: FUTY (left)
and NKLG (right). The fluctuations evident after sunset reveal the presence of ionospheric
irregularities and were observed by all visible satellites at both stations.
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Figure 3. An example of irregularities during disturbed conditions on 2 October 2013 (DOY 275),
as indicated by ROT/ROTI in FUTY (left) and NKLG (right) stations. The different colors lines
represent the different visible satellites.

2.2. ROTI Map Estimation

To evaluate the spatial distribution of the ionospheric irregularities over the West
African sector, the ROTI was mapped over the sector using the ordinary Kriging technique
at a grid resolution of 0.5◦ by 0.5◦ longitude and latitude. We need to take into account that
the critical challenge of ionosphere studies in the African sector is to predict the ionospheric
parameters from the observed ground-based GNSS measurements at irregularly spaced
locations. Therefore, the interpolation was a necessary step to perform the group division
of the maps based on their similarity in the ROTI (clustering) in order to obtain a spatial
mean of the irregularities’ occurrence in the region.

Blanch [17] reported that Kriging provides a solution to the problem of estima-
tion based on the assumptions and knowledge of a variogram. In this work, we used
the ordinary Kriging model as described in Blanch et al.; Rodríguez-Bouza et al.; and
Walter et al. [18,19,38] to estimate the ROTI at a nearby ionosphere pierce point (IPP) for
any given point (Equation (2)).

ROTIest = ∑n
i=1 wiROTIIPP(i) (2)

where ROTIest is the estimated ROTI at a given point; w is the weighting matrix, which is
the coefficient that describes the planar fit trend; ROTIIPP is the ROTI at the IPP; and i is the
satellite in view.

w =

[
W − WG

(
GTWG

)−1
GTW

]
c + WG

(
GTWG

)−1
(3)

where W is the reciprocal of the covariance of all the measurements; G is the quantity that
describes the geometry of the measurements; and c is the covariance of the vector and
scalar field, which contains the characteristics of the planar trend and the decorrelation
between the neighboring measurements. The scalar field determines the accuracy of the
algorithm in terms of the multivariate Gaussian distribution, residual error analysis, and
correlation distance between the neighborhood measurements.

W = ∑n
i=1

(
σ2

IPP(i) + σ2
decorr

)−1
(4)

where σ2
IPP(i) is the variance of the ROTI at each IPP, and σ2

decorr is the decorrelation
factor, which was estimated to be 35 cm using the planar fit for the WAAS at the middle
latitude [38,39]. This value could not hold in the equatorial region, where the ionosphere is
driven by many factors and the correlation with geomagnetic activity is not linear, unlike
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at middle latitudes [40]. In order to estimate the decorrelation factor, the approach in [38]
and [41,42] was followed, with the relation found in [43]:

σ2
decorr

(
el, di,j

)
= k (5)

where el is the elevation angle, and di,j is the distance between the ionospheric mea-
surements. The constant factor k that relates the ionospheric delay values among the
measurements was averaged to 70 cm.

The variance was defined as:

σ2
IPP =

∑N
i=1

(
ROTIippi

− µROTI

)2

N
(6)

where σ2
IPP shows the accuracy of the ROTI map over the study area, µROTI is the mean

of the ROTI over the study area, N is the IPP number, and ROTIippi
is the ith element in

the set.
In addition, we set the maximum search radius distance and the minimum number of

IPPs to predict a value at a 0.5◦ × 0.5◦ grid resolution to 600 km and 8, respectively, against
the 2100 km and 10 used generally at middle latitudes [44,45].

Figure 4 shows an example of the ROTI at an IPP over the West African region at
a given epoch (2 October 2013 2000 UT) on the left side and the resultant interpolated
ROTI map after applying the Kriging technique on the right. It can be noticed that the
IPPs around the DAKR station in Figure 4 were not considered in the interpolation. For
the reasons explained above, the regional maps of the ROTI were further reduced to the
densest area of IPPs.
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Figure 4. ROTI values at IPP (left) during disturbed conditions on 2 October 2013 (DOY 275) at
2000 UT and ROTI map after Kriging interpolation (right). Empty red circles in both maps represent
the GNSS ground-based stations used.

2.3. Optimization Sample Technique

The majority of ionosphere variable indices are determined through regular grids.
However, in cases where the area lacks a regular pattern of sample locations or measure-
ments, this solution might be too restrictive. Since the maps of the ROTI in the region are
irregularly shaped in each epoch, we applied an optimization sample method based on
an irregular grid. This approach is widely used in the survey and monitoring of natural
resources and presents some advantages, one of them being to avoid the border effects due
to the increase in Kriging variance. Moreover, an irregular pattern was expected to lead
to a more precise spatial mean [46]. This process consisted of splitting the study area into
clusters or cells as compact as possible using an unsupervised machine learning technique,
as described in the Introduction.
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For this task, we used a specialized R library, spcosa [47], to implement spatial coverage
sampling and, thus, obtain the spatial means of the mapped ROTI in the study region.
The spcosa package made use of a well-established method for geographical partitioning
and cluster analysis, K-means, to find compact clusters in a multivariate property space.
The clusters were represented by their centroids, and the method aimed to minimize an
objective function (Equation (7)), which is the mean shortest squared distance (MSSD):

MSSD =
1
N∑ minj

(
D2

ij

)
(7)

where N is the number of raster cells, and (D2
ij) is the minimum squared distance between

the ith cell and all the cluster centroids.
K-means proceeds in an iterative way, starting with an initial solution, which can be a

random configuration of cluster centroids. Then, 2 steps are repeatedly alternated: one for
the reallocation of raster cells from one cluster to another, and another for the recalculation
of the coordinates of the centroids. The iteration process stops when the MSSD function
cannot be lowered.

3. Results and Discussion
3.1. Regional ROTI Maps under Different Geomagnetic Conditions

In this section, we present some results of the performance of the application of
ordinary Kriging geospatial interpolation over the West African sector. The nighttime values
of the ROTI are used to showcase the validity of the interpolation technique and monitor
the distribution of the electron density over the region under study during two different
geomagnetic condition events. Figures 5 and 6 show examples of the time regime evolution
of the plasma irregularities over the West African region using hourly regional ROTI maps
(left column) and their variance (right column) during two geomagnetic conditions on 2
and 28 October 2013 with different signatures. The variance maps indicate the performance
of the interpolation technique over the region. The complete set of ROTI maps every 5 min
for this case is provided as a movie in the Supplementary Materials.

Figure 5 presents the results of the ordinary Kriging interpolation of the instantaneous
ROTI values in the West African regional maps for 2 October 2013 (DOY 275). The figure
shows the non-uniform distribution of the ROTI over the study area on the left, indicating
the presence of nighttime plasma irregularities in yellow–red from 1900 UT, while the
magnitude of the irregularities was stronger during the hours of 2000–2200 UT, as indicated
by the higher ROTI values. In general, as seen from the variance maps in Figure 5 (right), it
is observed that the prediction values corresponded well to the measured values in nearly
all the interpolated areas considered. There was an exception in some parts at the border
near the sea, which were far away from the measurements, where high values of variance
were observed, indicated by the red regions.

In the same vein, Figure 6 shows the results of another test case that shows the
performance of ordinary Kriging interpolation on the regional map. The ROTI data obtained
during the quietest geomagnetic conditions on 28 October (DOY 301) 2013 were used. The
results show the presence of plasma irregularities from the southern crest of the anomaly
that spread westward. The pattern of the irregularities insulating the eastward side of
the region was validated with the variance maps (Figure 6, right column). Also, in this
case, low variance values near the IPPs where interpolation was performed can be seen.
The histogram in Figure 7, corresponding to the variance values of all the ROTI maps
every 15 min for day 301 exhibits mean, standard deviation, and 99% and 75% percentile
values of 0.2, 0.63, 0.53, and 0.65, respectively. This confirms that the Kriging interpolation
algorithm’s modeled values may be accurate compared with experimental values.
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Figure 7. Histogram of the ROTI variance values after Kriging interpolation corresponding to all
maps every 15 min on day 301, 2013. The mean, standard deviation, and 99% and 75% percentile
values are included.

3.2. Optimum Sampling Applied to Test Cases

When the K-means clustering algorithm is applied, there exists a trade-off between the
number of clusters (k-value) and computational efficiency. Increasing the k-value enhances
the capacity to discern underlying structures within the data yet, concurrently, it escalates
the computational complexity and time. In contrast, diminishing the k-value streamlines
the computation but may result in the omission of significant patterns. Therefore, striking
an optimal balance between the number of clusters and computational efficiency is crucial
when selecting the k-value. Even though various methods exist to find an optimal number
of clusters, in our application of the K-means method, we decided to apply a visual
inspection of the resulting clusters for different k-values based on the data structures and
the appropriate cluster size for a region with a radius that varies from 500 to 600 km. In our
test cases, we determined, after some trials, that stratification into 30 strata could represent
a good approximation of the structures of the irregularities in the studied region in order to
use their centroids as a regional index. It has to be taken into account that the number of
clusters determined the computation time of the algorithm.

Figure 8 (right) shows the spatial coverage sampling for the test case on 2 October 2013
(DOY 275) at 20.20 UT associated with the ROTI map (left). The centroids of the clusters
found after the stratification were taken as the sample points and the corresponding ROTI
value for each one was obtained.
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After the stratification and sampling, the locations and values of the centroids were
reported in Table 2. An estimation of the spatial mean in the area and standard deviation
was obtained from the stratified samples. In the case of the epoch of DOY 275 of the year
2013 in Figure 8, the ROTI spatial mean was 0.59 TECu/min, and the standard deviation
was 0.32 TECu/min.

Table 2. Coordinates of the cells in Figure 5 with ROTI values at centroids.

#Cluster Lon. Lat. Roti

1 1.0406142 5.4264093 0.98796
2 9.0656952 5.4496616 0.89953
3 0.7574102 0.7424731 0.24533
4 13.9909615 12.8552702 0.32832
5 1.84456 15.9886426 0.28087
6 9.4122007 17.0629056 0.33742
7 12.86602 6.1328875 0.94803
8 7.8254299 1.4123836 1.1094
9 −2.4998058 3.88543 0.4506
10 −2.5378407 8.3695419 0.2559
11 −6.6016795 9.9428645 0.77241
12 9.5246104 13.2109367 0.3707
13 −4.6222565 12.7082078 0.35477
14 10.3590898 9.4368107 0.29737
15 6.5936256 10.0758751 0.62692
16 6.0172696 15.4801344 0.54801
17 5.4927833 −2.122805 0.17332
18 −6.4449116 6.3504329 0.97968
19 11.6189996 1.7535332 1.3688
20 −0.5090778 11.9470749 0.37997
21 4.0738014 2.2208489 0.67802
22 5.3790547 6.0552358 0.53311
23 2.1775499 8.9743649 0.9368
24 10.3294307 −2.5482636 0.55764
25 12.4568628 16.0298895 0.47352
26 3.6786224 12.5873912 0.90425
27 −5.8302737 2.1316645 1.0141
28 −4.5715688 −0.8569324 0.3142
29 14.2820471 9.4893215 0.30181
30 −1.9906776 15.3468051 0.2656

Similarly, in Figure 9 and Table 3, the results that illustrate another case during a
quiet time corresponding to an epoch on DOY 301 of the year 2013 are given. In this
example, the spatial mean found was 0.29 TECu/min, and the standard deviation was
0.15 TECu/min, corresponding to a low occurrence of irregular structures and low ROTI
values in all the region.
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Table 3. Coordinates of the cells in Figure 6 with ROTI values at centroids.

#Cluster Lon. Lat. Roti

1 5.33433035 17.935405 0.25196
2 11.44710797 9.1741088 0.26178
3 10.34243442 5.8323767 0.31078
4 −1.85233973 13.635944 0.4807
5 −2.71429565 0.4553038 0.25837
6 −0.11120521 10.2096185 0.38294
7 1.4351383 13.4653392 0.21679
8 6.47425093 −2.8970902 0.15069
9 1.64522135 17.1000017 0.34119
10 2.02938754 0.8038183 0.50119
11 12.1004933 12.6976959 0.16265
12 10.18263684 1.8554506 0.43152
13 −0.06530547 3.510308 0.84188
14 −3.46841862 10.1579548 0.24123
15 7.92117177 10.954396 0.074431
16 11.95834614 16.4556678 0.23902
17 3.62740587 4.1560713 0.30639
18 6.34823896 0.5981264 0.2985
19 9.45749638 −2.020902 0.38298
20 −1.95639684 6.8142173 0.30587
21 6.22859991 7.6175812 0.1379
22 4.84957444 14.1012447 0.13958
23 3.26280007 −2.1870801 0.26696
24 −3.61956196 3.6408247 0.33199
25 −5.20300959 6.5937315 0.39425
26 3.74976675 10.4215318 0.13719
27 8.4389697 14.5183123 0.072586
28 7.04080151 4.1116067 0.21658
29 8.87521784 17.9407346 0.22048
30 1.67284558 7.114281 0.3569

4. Conclusions

This study used an unsupervised machine learning technique to provide a spatial
mean of the rate of change of TEC index (ROTI) to characterize the irregularities of the
ionosphere over the West African region. Due to limitation of the availability of GNSS
ground-based stations in the region, we performed ordinary Kriging interpolation to moni-
tor and map the evolution of the ionospheric plasma irregularities. Two cases representing
geomagnetically disturbed and quiet conditions during a period of high occurrence of
ionospheric plasma irregularities in the equinoctial month of October 2013 were analyzed.
A sampling technique based on the K-means algorithm was applied to generate an optimal
design of clusters of the ROTI maps to provide a representative regional spatial mean of
the ionospheric irregularities’ distributions. This method is recognized to perform better in
identifying clusters with a spherical shape as in the case of the ROTI regional maps over
the Western African region.

The conclusions derived from the cases under study are as follows: (1) the results show
that the ordinary Kriging algorithm produced low values of variance of approximately
0.5 TECu/min2 in about 99% of the study area, implying trust in the results obtained;
(2) it has been shown that the instantaneous ROTI maps produced by the ordinary Kriging
algorithm could be a valid representation of the spatio-temporal plasma electron density
distribution in regions with a low density of receivers such as the study region; and (3) the
partitioning of the region into compact clusters allowed us to obtain a spatial mean of the
ROTI values that could be useful for monitoring the irregularities’ occurrence over a region.
If applied to denser GNSS stations regions, where no interpolation is needed, the clusters
could be determined directly from the ROTI values at the IPPs, allowing instantaneous
values for monitoring and mitigation purposes in real time.
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Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/atmos15091098/s1, Video S1: ROTI maps for DOY 275 of the year 2013 every
15 minutes.
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