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Abstract: Emissions of carbon dioxide (CO2), nitrous oxide (N2O), and methane (CH4), particularly
those from organic soils, need to be reduced in the context of climate change mitigation (CCM).
Here, we estimated the greenhouse gas (GHG) fluxes from nutrient-poor organic soils in cranberry
(Vaccinium macrocarpon) and highbush blueberry (Vaccinium corymbosum) plantations established on
former peat extraction fields compared to active peat extraction fields and pristine raised bogs in
Latvia. A two-year study (2016–2018) was conducted using the manual closed chamber method. In
berry plantations and active peat extraction fields, annual net CO2 fluxes contributed the most to total
GHG emissions, accounting for over 67%, and temperature had the most significant impact on CO2

fluxes. Conversely, annual CH4 fluxes were the primary contributor to total net GHG emissions in
the pristine raised bog, which simultaneously acted as a slight CO2 sink. N2O fluxes were relatively
low among all studied land use types. This study provided quantitative insights into the variation in
GHG fluxes and the environmental variables influencing them, and the obtained data are valuable
to estimate the impact of the establishment of berry plantations on former peat extraction fields on
CCM in the hemiboreal region of Europe.

Keywords: drained organic soil; highbush blueberry; cranberry; commercial berry plantations; peat
extraction fields; raised bog; greenhouse gas emissions

1. Introduction

Peatlands are distributed worldwide [1] and cover 4.23 million km2 or nearly 3% of the
global land area [2]. They contain significant carbon (C) stocks—almost twice the C stock
of the total biomass of the world’s forests [3]. Wetlands provide various ecosystem services
that help humanity adapt to climate change and sequester and store C, thereby reducing
the rate of climate changes [4]. Therefore, wetlands have been the focus of numerous
restoration and reclamation programmes aimed at improving ecosystem services, including
C sequestration, land hydrology, flood mitigation, and biodiversity [5]. Importantly, while
wetlands offer valuable nature-based solutions to the goals of the 2015 Paris Climate
Agreement [6], restoration and reclamation measures must be combined with a dramatic
reduction in GHG emissions [4]. Today, peatlands that have been drained for economical
use or abandoned after peat extraction contribute to almost 5% of global anthropogenic
GHG emissions [7]. The proper management of these drained peatlands is therefore a
key element for reducing GHG emissions. At the same time, climate change, including
increased evapotranspiration and the irregularity of rainfalls as well as artificial drainage
networks, can hinder the ability of peatland ecosystems to continue acting as C sinks [3,8].
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Thus, scientific discussions and efforts for the most appropriate management strategies for
peatlands in the context of CCM are still ongoing.

In the Baltic states (Estonia, Latvia, and Lithuania), peat extraction has directly affected
roughly 90,000 ha of peatlands. Of these, about 30% have already been extracted and are
now abandoned, while the rest of the areas have been afforested, converted into agricultural
lands, including berry plantations [9], or turned into water bodies. Most of the still-extant
abandoned peat extraction sites in the Baltic states were abandoned during and shortly
after the Soviet period (1940–1991) without any restoration efforts [10].

Since berries, such as cranberries and blueberries (Vaccinium spp.), can tolerate wetter
soil conditions [11], establishing berry plantations on former peat extraction sites is one
of the options that has gained the interest of researchers in both socioeconomic and GHG
emission mitigation contexts (e.g., [12]). Collecting berries is a long-standing tradition in
the Nordic and Baltic countries mostly due to their medical and dietary properties [13].
Nowadays, wild berries, such as cranberries, blueberries, and lingonberries, are harvested
in economically significant quantities for both self-consumption and for sale [14,15]. In
Latvia, cranberry cultivation for commercial purposes began in 1985 [13]. The cultivation of
large cranberries (Vaccinium macrocarpon) and lowbush and highbush blueberries (Vaccinium
angustifolium and Vaccinium corymbosum, respectively) in Latvia is commercially impor-
tant, has a growing market demand, and is a rapidly expanding agricultural sector [16].
Both cranberry and blueberry plantations can be established on extracted peatlands with
bare peat and on mineral soils with a high organic matter content [17,18]. Thus, abandoned
peat extraction areas can be transformed into profitable land resources. For blueberries, the
optimum pH range of the upper peat layer is 4.5–5.0 and the residual thickness of the peat
layer should be greater than 0.5 m. If the pH of the peat layer is lower, between 3.5 and 4.5,
cranberries can be considered for cultivation. This crop is also less sensitive to the residual
peat layer thickness if the optimal pH is maintained [19].

The establishment of berry plantations on former peat extraction areas requires land
reclamation measures, which involve preparing the abandoned sites for further use. Recla-
mation and construction designs of drainage and irrigation systems must be approved
according to the procedures set by legislation. If the former peat extraction area was aban-
doned a long time ago, the remaining vegetation, tree trunks, and stumps must be removed.
The land surface must be leveled, irrigation/drainage systems must be constructed, and
then the soil must be cultivated. The soil should be tested and fertilizers, including gypsum,
should be applied if necessary [19,20].

Thus, following reclamation activities and berry plantation establishment, abandoned
peat extraction areas can be used for economic activities, which boost employment and
generate income. Another significant advantage of establishing berry plantations on former
peat extraction areas in the context of CCM is that the topsoil is completely covered by
berry plants, which helps to reduce GHG emissions. In Latvia, the total area of cultivated
blueberry and cranberry plantations in 2023 was 499 and 189 ha, respectively [21].

Among the main factors affecting GHG fluxes from peatlands, as mentioned in the
literature, are air temperature, groundwater level, composition of soil organic matter, living
biomass, dead organic matter, nutrient supply in the soil, and management activities [22].
The GHG balance consists of several components that can act as sources or sinks of the gases.
CO2 is released into the atmosphere through autotrophic and heterotrophic respiration [23].
Autotrophic respiration, caused by metabolic processes in plants, results from the living
above- and belowground plant biomass, whereas heterotrophic respiration results from
the decomposition of soil organic matter by bacteria or fungi [23]. Besides emissions, the
ecosystem CO2 balance also includes photosynthetic CO2 uptake. CO2 captured through
photosynthesis is released in the soil with litter and dead parts of plants, thus contributing to
C input to the soil [24]. Bacterial activity in the soil leads to the release of CH4 and N2O [25].

Earlier studies conducted in Latvia showed that the total GHG emissions from organic
soils in Latvia are equal to the emissions of the whole energy sector [26]. These studies
analyzed surface-to-atmosphere GHG fluxes from rewetted and permanently flooded for-
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mer peat extraction areas in comparison to pristine peatlands. Results showed that among
the studied types of land use, the highest annual CO2 fluxes from soil heterotrophic and
autotrophic respiration were recorded in rewetted former peat extraction areas with re-
stored vegetation and in pristine peatland, while the lowest fluxes were recorded in flooded
former peat extraction areas. Air temperature and groundwater level were identified as
the most significant influencing factors. The highest annual CH4 fluxes were found in
pristine peatland, followed by significantly smaller CH4 fluxes in flooded and rewetted
areas, respectively. Also, they found that N2O fluxes were negligible in all the studied land
use types, with the highest N2O fluxes again observed in pristine peatland [26].

The aim of this study was to estimate surface-to-atmosphere GHG fluxes from cran-
berry and highbush blueberry plantations established on former peat extraction fields
(Histosols) in Latvia and to identify the main factors influencing these fluxes. In addition,
we compared GHG fluxes from cranberry and highbush blueberry plantations on former
peat extraction fields to GHG fluxes from active peat extraction areas and pristine peatlands.

2. Materials and Methods
2.1. Study Sites

The study was conducted over a two-year period between December 2016 and Novem-
ber 2018 in Latvia, an area belonging to the hemiboreal vegetation region of Europe.
Four different types of land use and vegetation (16 study sites in total, soil group His-
tosols) were examined across 11 different raised bogs (Figure 1 and Table 1): (i) cranberry
(Vaccinium macrocarpon) plantations on former peat extraction fields, where the groundwa-
ter level is slightly lowered or close to the surface (the dominant peat type in the upper
layer—raised bog peat); (ii) highbush blueberry (Vaccinium corymbosum) plantations on
former peat extraction fields, where the groundwater level is slightly lowered or close to the
surface (the dominant peat type in the upper layer—raised bog or mixed peat); (iii) active
peat extraction fields with an effective drainage system, where peat was extracted using
the milling method; and (iv) pristine raised bogs, where trees do not exceed a height of
5 m, the projective cover in mature stands does not exceed 20%, and the area continuously
covered with trees does not exceed 0.1 ha.
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Figure 1. Distribution of raised bogs (black dots in the map) in Latvia where the study sites
were established.

The long-term (1991–2020) average annual air temperature in Latvia was 6.8 ◦C, while
the average annual precipitation was 685.6 mm. In the study period (2016–2018), the
average annual air temperature in Latvia ranged from 6.9 to 7.6 ◦C, while the average
annual precipitation ranged from 472.7 to 809.8 mm [27].
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Table 1. General description of the study sites in Latvia.

Type of Land Use
and Vegetation Study Sites Soil Layer,

cm
Mean Soil Bulk Density,

Mean Value ± S.E. (Range), kg m−3

Cranberry plantations on
former peat extraction fields

Kalna_12 (Kalna mire),
Naud_12 (Naudaskalna mire),

Usuri_12 (Ušuru mire),
Lauga_12 (Laugas mire),

Brigi_13 (Bri ‘gu mire)

0–10 166.6 ± 24.2 (110.8–321.3)
10–20 113.0 ± 24.6 (74.1–333.5)
20–30 122.1 ± 23.6 (80.6–333.1)
30–40 117.1 ± 24.8 (72.2–339.2)
40–50 106.0 ± 19.1 (76.5–276.6)

Highbush blueberry
plantations on former peat

extraction fields

Kaigu_11 (Kaigu mire),
Kalna_11 (Kalna mire),

Naud_11 (Naudaskalna mire)

0–10 152.6 ± 15.0 (107.3–226.3)
10–20 120.9 ± 18.5 (46.3–205.8)
20–30 106.4 ± 18.8 (20.4–178.7)
30–40 111.7± 69.3 (70.3–196.6)
40–50 109.9 ± 13.2 (71.4–170.0)

Active peat extraction fields

Kaigu_1 (Kaigu mire),
Usuri_1 (Ušuru mire),

Lamb_1 (Lambārte mire),
Cena_1 (Cena mire),

Silg_1 (Silgulda mire)

0–10 123.9 ± 12.5 (73.6–183.9)
10–20 106.3 ± 4.6 (87.2–136.1)
20–30 100.3 ± 5.2 (73.9–128.9)
30–40 94.2 ± 6.8 (71.8–134.0)
40–50 105.2 ± 8.6 (67.5–163.8)

Pristine raised bog
Lauga_9 (Laugas mire),

Kem_9 (Lielais K, emeru mire),
Liels_9 (Lielsalas mire)

0–10 150.9 ± 11.6 (134.9–173.5)
10–20 128.9 ± 1.3 (126.3–130.4)
20–30 97.5 ± 1.2 (95.7–99.9)
30–40 101.1 ± 21.0 (79.7–143.1)
40–50 75.3 ± 11.2 (56.6–95.2)

2.2. GHG Flux Measurements and Calculations

Between December 2016 and November 2018 (over a period of 24 months), gas sam-
pling was conducted using a manual closed chamber method [28]. Before gas sampling
was initiated, each study site was prepared by installing five permanent circular collars ex-
tending to a depth of 5 cm. Collars were evenly distributed with a 2–3 m distance between
individual collars. During the installation of the collars, the disturbance of vegetation was
avoided or minimized. Gas sampling was conducted during the daytime once a month by
positioning chambers (non-transparent, volume 0.0655 m3, diameter 50 cm) on the collars
and taking four consecutive gas samples (100 cm3) at 20 min intervals (immediately after
positioning the chamber on the collar as well as after 20, 40, and 60 min) using underpres-
surized (0.3 mbar) glass vials. The gas samples were transported to the Climate Change
Laboratory of the Department of Geography at the University of Tartu (Estonia), where
CO2, CH4, and N2O concentrations in gas samples were determined using the Shimadzu
GC-2014 gas chromatograph (Shimadzu Corporation, Kyoto, Japan) equipped with an
electron capture detector, flame ionization detector, and a Loftfield autosampler [29].

GHG fluxes (mg GHG m−2 h−1) were calculated using the ideal gas law equation and
the slope coefficient of linear regression describing the change in the gas concentration
over time (during a 60 min period) in the chamber (based on the results of the gas chro-
matography analysis of four consecutive gas samples). A detailed description of GHG flux
calculations is provided by Bardule et al. [26].

In study sites where the soil is covered with vegetation (cranberry plantations, high-
bush blueberry plantations, pristine raised bog), the estimated CO2 fluxes reflect ecosystem
respiration (Reco), which includes both soil heterotrophic respiration (Rhet) due to the de-
composition of dead organic matter and autotrophic respiration by the aboveground and
belowground parts of plants. For the sites where the soil is covered with vegetation, it
was assumed that the proportion of Rhet to Reco is 0.5 [30] if the air temperature is above
5 ◦C, while Reco equals Rhet if the air temperature is below 5 ◦C. In study sites with bare
soil (active peat extraction fields), the estimated CO2 fluxes reflect Rhet, as there is no
vegetation cover.
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2.3. Measurements of Environmental Parameters

In each study site, unmixed soil samples were collected in three replicates in 2016
using a soil sample probe from the following soil layers: 0–10 cm, 10–20 cm, 20–30 cm,
30–40 cm, 40–50 cm, and 50–100 cm. Pretreatment and physico-chemical analyses of soil
samples were performed according to the ICP Forests guidelines [31] and ISO method-
ology. Soil moisture content was determined according to the LVS ISO 11465 (LVS ISO
11465:2006 +TC1 A/L; Soil quality—Determination of dry matter and water content on
a mass basis—Gravimetric method. Latvian Standards: Riga, Latvia, 2006) (gravimetric
method); soil bulk density was determined according to the LVS EN ISO 11272 (LVS EN
ISO 11272:2014; Soil quality—Determination of dry bulk density (ISO 11272:1998). Lat-
vian Standards: Riga, Latvia, 2014); pH was measured according to the LVS ISO 10390
(LVS ISO 10390:2002 A/L; Soil quality—Determination of pH. Latvian Standards: Riga,
Latvia, 2002) (suspension of soil in 0.01 mol L−1 calcium chloride (CaCl2) solution); to-
tal carbon (Ctot.) content equaled the organic carbon (Corg.) content and was measured
with an elemental analyzer (dry combustion) according to the LVS ISO 10694 (LVS ISO
10694:2006; Soil Qualitsy—Determination of Organic and Total Carbon after Dry Com-
bustion (Elementary Analysis). Latvian Standards: Riga, Latvia, 2006); total nitrogen
(Ntot.) content was determined with a modified Kjeldahl method according to the LVS
ISO 11261 (LVS ISO 11261:2002 L; Soil quality—Determination of total nitrogen—Modified
Kjeldahl method. Latvian Standards: Riga, Latvia, 2002); concentrated nitric acid (HNO3)
extractable phosphorus (P) concentration in soil samples was determined according to ISO
11466 (ISO 11466:1995; Soil quality—Extraction of trace elements soluble in aqua regia. ISO
International standard: Geneva, Switzerland, 1995) and LVS EN 14672 and potassium (K)
concentration was determined using atomic absorption spectroscopy method.

In each study site, two groundwater wells (PVC pipes) were installed vertically at
a depth of 1.5 m. Concurrent with GHG flux measurements, the groundwater level was
measured manually, as well as the dissolved oxygen (DO) content; electrical conductivity
(Cond.), water pH, and the oxidation-reduction potential (ORP) were determined using YSI
ProDSS Multiparameter Digital Water Quality Meter (YSI, a Xylem brand, Yellow Springs,
OH, USA).

Concurrent with GHG flux measurements, air temperature and soil temperature at
5, 10, 15, and 30 cm depths were measured using a Comet data logger (Comet system,
s.r.o., Roznov pod Radhostem, Czech Republic) equipped with temperature probes. Soil
moisture (volumetric water content) at a 5 cm depth was determined using a ProCheck
meter (Decagon Devices, Pulman, WA, USA) equipped with a moisture sensor.

2.4. Estimation of Carbon Input with Plant Litter

In the pristine raised bogs, C input with plant organic matter (1.43 ± 0.65 t C ha−1 y−1)
was assumed according to the earlier estimates reported by [32–35]; the mean value was
calculated from these studies.

In the cranberry plantations, C input with the plant organic matter (1.82 ± 0.21 t C ha−1 y−1)
was assumed based on the estimates of above- and belowground biomass of vegetation in
cranberry plantations in Latvia [36], and assuming that the root turnover rate is 0.41 [37],
the leaf retention time is two years [33] and the C content in biomass is 48% [32].

In highbush blueberry plantations, aboveground litter from blueberry bushes was
collected using ten litter traps (0.049 m2) in each study site. Litter was collected once a
month for a whole year (12 consecutive months). After collecting the litter samples, they
were combined and the dry mass was determined. The C concentration in litter samples was
determined using an elemental analyzer (dry combustion) according to the LVS ISO 10694.
Additionally, we used a coefficient of 1.2 to estimate C input with belowground litter
to C input with aboveground litter based on the approximate proportion reported by
Moore et al. [33]. We assumed that the cover of blueberry bushes in the highbush blueberry
plantations is 40%.



Atmosphere 2024, 15, 1102 6 of 26

2.5. Estimation of Annual Greenhouse Gas Fluxes

Annual GHG fluxes were calculated as a cumulative value of the mean monthly
fluxes (expressed as t CO2-C ha−1 month−1, kg CH4-C ha−1 month−1, kg N2O-N ha−1

month−1) covering all calendar months (from January until December) and expressed as
t CO2-C ha−1 y−1, kg CH4-C ha−1 y−1, and kg N2O-N ha−1 y−1. Annual net CO2 fluxes
or CO2 emission factors for each land use type were calculated as the difference between
annual soil Rhet and C input into soil with plant litter.

2.6. Statistical Analysis

All statistical analyses were performed using licensed Statistica software (StatSoft
Statistica 12) with additional integrated R modules [38] and the software environment R
(version 4.3.3) and RStudio (2023.12.1) [39]. To test the hypothesis of the normal distribution
and the homogeneity of the variance in the obtained study data, the Shapiro–Wilk W test
and a histogram of the density of the normal distribution were used and a comparison
graph was built on a normal probability plot. In the case of non-compliance of the study
data to the theory of the normal distribution, further statistical processing was performed
using nonparametric statistics.

Statistically significant differences in variables of soil general chemistry between
different soil layers and types of land use and vegetation were estimated using the Wilcoxon
rank-sum exact test, with pairwise comparisons adjusted for multiple testing using the
Bonferroni correction. To link mean GHG fluxes to various environmental variables, a
simple regression analysis and Spearman correlation (r) analysis were performed. A
significance level of p < 0.05 was used.

3. Results
3.1. Soil and Groundwater Physico-Chemical Variables

In general, within the same type of land use and vegetation, variation in soil chemical
variables (Table 2) between different soil layers was relatively small (additionally confirmed
by the analysis of confidence intervals). The mean Corg. concentration tended to increase
in deeper soil layers compared to upper soil layers across all studied types of land use.
However, statistically significant differences in Corg. concentrations were found only in
active peat extraction fields where a significantly higher Corg. concentration was found in
the 50–100 cm soil layer compared to the 0–10 cm and 10–20 cm soil layers (p = 0.028 and
p = 0.007, respectively). In none of the studied types of land use, statistically significant
differences in Ntot. concentrations and soil pH between different soil layers were found.
Some individual cases of significantly lower concentrations of P and K in the deeper soil
layers compared to the upper soil layers were observed (Table 2).

Among the studied types of land use and vegetation, the lowest mean Corg. concen-
trations were found in cranberry plantations on former peat extraction fields and pristine
raised bogs. Furthermore, several significant differences in Corg. concentrations between
the soil layers at depths of 10 and 100 cm were found (Table 2). The highest mean Corg.
concentration was observed in the deepest analyzed soil layer (50–100 cm) in active peat
extraction fields (598.6 ± 10.15 g kg−1). Statistically significant differences in this soil layer
compared to all other studied types of land use were found (p < 0.035). A statistically sig-
nificant difference in Ntot. concentration was found only for the 0–10 cm soil layer between
the pristine raised bogs where the highest Ntot. concentration among all studied soil layers
and types of land use was found (15.0 ± 1.24 g kg−1) and cranberry plantations (p = 0.044).
No statistically significant differences in soil pH between different types of land use were
found, while several significant differences in P and K concentrations between different
types of land use were found for 20–30 cm, 30–40 cm, and 40–50 cm soil layers (Table 2).
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Table 2. Soil chemical variables in different soil layers by types of land use and vegetation. Different
lowercase letters denote significant differences (p < 0.05) between different soil layers within the
same type of land use and vegetation. Different capital letters denote significant differences (p < 0.05)
between types of land use and vegetation within the same soil layer.

Type of Land Use
and Vegetation

Soil Layer,
cm

Corg.,
Mean ± S.E.

(Range),
g kg−1

Ntot.,
Mean ± S.E.

(Range),
g kg−1

P,
Mean ± S.E.

(Range),
g kg−1

K,
Mean ± S.E.

(Range),
g kg−1

pH CaCl2,
Mean ± S.E.

(Range)

Cranberry plantations
on former peat

extraction fields

0–10 512.2 ± 23.22 a,A

(304.3–577.0)
10.3 ± 0.97 a,A

(5.3–17.5)
0.25 ± 0.02 a,A

(0.16–0.35)
0.46 ± 0.05 a,A

(0.26–0.84)
3.1 ± 0.22 a,A

(2.4–4.4)

10–20 547.6 ± 6.97 a,AB

(514.5–590.2)
8.9 ± 0.88 a,A

(5.65–15.43)
0.17 ± 0.02 b,A

(0.09–0.30)
0.82 ± 0.50 a,A

(0.12–6.31)
3.0 ± 0.20 a,A

(2.5–4.3)

20–30 561.6 ± 14.8 a,A

(529.1–711.1)
9.6 ± 0.97 a,A

(4.7–15.9)
0.19 ± 0.03 ab,A

(0.08–0.47)
0.35 ± 0.04 a,A

(0.12–0.54)
3.0 ± 0.21 a,A

(2.5–4.4)

30–40 548.6 ± 6.62 a,A

(509.2–577.7)
8.0 ± 0.67 a,A

(5.1–11.9
0.13 ± 0.01 b,A

(0.09–0.19)
0.32 ± 0.05 a,A

(0.14–0.79)
3.1 ± 0.23 a,A

(2.5–4.7)

40–50 546.2 ± 6.07 a,AB

(511.3–583.5)
8.7 ± 0.76 a,A

(5.7–15.2)
0.15 ± 0.01 b,AB

(0.09–0.21)
0.32 ± 0.04 a,A

(0.14–0.72)
3.2 ± 0.26 a,A

(2.5–5.1)

50–100 554.2 ± 5.98 a,A

(524.1–592.5)
10.1 ± 1.17 a,A

(6.6–20.9)
0.19 ± 0.02 ab,A

(0.10–0.35)
0.33 ± 0.08 a,A

(0.13–1.03)
3.1 ± 0.30 a,A

(2.0–4.8)

Highbush blueberry
plantations on former
peat extraction fields

0–10 543.2 ± 8.83 a,A

(510.8–588.2)
11.3 ± 1.24 a,AB

(7.3–18.9)
0.28 ± 0.08 a,A

(0.09–0.82)
0.82 ± 0.30 a,A

(7.3–18.9)
3.1 ± 0.22 a,A

(2.6–4.2)

10–20 554.6 ± 12.79 a,AB

(510.3–616.2)
10.1 ± 0.83 a,A

(7.0–13.3)
0.26 ± 0.09 a,A

(0.09–0.93)
0.41 ± 0.12 ab,A

(0.14–1.04)
3.1 ± 0.23 a,A

(2.5–4.1)

20–30 549.3 ± 11.85 a,AB

(514.9–630.6)
9.3 ± 0.94 a,A

(6.0–14.1)
0.34 ± 0.12 a,A

(0.04–0.89)
0.41 ± 0.10 ab,AB

(0.13–1.08)
3.2 ± 0.25 a,A

(2.5–4.3)

30–40 557.3± 15.79 a,AB

(510.5–652.4)
9.2± 0.97 a,A

(6.6–15.4)
0.14± 0.04 a,A

(0.02–0.34)
0.21± 0.03 b,A

(0.07–0.34)
3.3± 0.28 a,A

(2.6–4.4)

40–50 555.8 ± 11.56 a,AB

(514.5–616.6)
10.4 ± 1.62 a,A

(5.5–20.0)
0.09 ± 0.01 a,A

(0.03–0.17)
0.19 ± 0.03 b,AB

(0.06–0.29)
3.3 ± 0.28 a,A

(2.6–4.5)

50–100 552.9 ± 8.61 a,A

(526.1–601.5)
12.0 ± 1.52 a,A

(6.9–19.9)
0.18 ± 0.08 a,A

(0.01–0.79)
0.32 ± 0.09 ab,A

(0.09–0.94)
3.4 ± 0.25 a,A

(2.7–4.5)

Active peat extraction
fields

0–10 546.2 ± 3.87 a,A

(529.9–561.3)
10.5 ± 1.35 a,AB

(6.4–20.3)
0.21 ± 0.05 a,A

(0.03–0.53)
0.28 ± 0.08 ab,A

(0.07–0.65)
2.9 ± 0.11 a,A

(2.6–3.5)

10–20 546.8 ± 2.59 a,A

(538.1–559.6)
7.5 ± 0.71 a,A

(5.4–11.1)
0.28 ± 0.08 a,A

(0.12–0.84)
0.28 ± 0.06 a,A

(0.09–0.59)
3.0 ± 0.15 a,A

(2.6–3.8)

20–30 556.7 ± 4.23 ab,A

(537.3–575.2)
9.4 ± 1.39 a,A

(5.3–16.0)
0.25 ± 0.09 a,A

(0.10–0.95)
0.16 ± 0.04 ab,B

(0.06–0.42)
3.1 ± 0.19 a,A

(2.7–4.0)

30–40 563.0 ± 6.28 ab,A

(532.8–590.0)
9.1 ± 1.37 a,A

(4.8–17.6)
0.12 ± 0.01 a,A

(0.08–0.17)
0.08 ± 0.02 b,B

(0.02–0.15)
3.2 ± 0.22 a,A

(2.7–4.1)

40–50 571.2 ± 9.85 ab,A

(523.1–609.1)
11.6 ± 2.44 a,A

(4.4–25.6)
0.14 ± 0.01 a,AB

(40.11–0.24)
0.37 ± 0.26 ab,B

(0.03–2.43)
3.3 ± 0.23 a,A

(2.7–4.3)

50–100 598.6 ± 10.15 b,B

(550.2–644.0)
11.9 ± 1.22 a,A

(7.6–18.2)
0.15 ± 0.02 a,A

(0.03–0.21)
0.20 ± 0.09 ab,A

(0.01–0.90)
3.6 ± 0.29 a,A

(2.8–4.8)

Pristine raised bog

0–10 517.7 ± 11.33 a,A

(479.3–575.6)
15.0 ± 1.24 a,B

(9.7–21.3)
0.32 ± 0.04 a,A

(0.12–0.45)
0.52 ± 0.11 ab,A

(0.06–1.20)
2.8 ± 0.04 a,A

(2.6–2.9)

10–20 513.9 ± 8.51 a,B

(475.6–549.6)
10.9 ± 5.5 a,A

(5.1–23.6)
0.23 ± 0.09 a,A

(0.08–0.32)
0.36 ± 0.12 a,A

(0.22–0.56)
2.8 ± 0.04 a,A

(2.7–3.0)

20–30 525.8 ± 4.64 a,B

(507.8–550.6)
12.8 ± 1.21 a,A

(8.3–20.0)
0.22 ± 0.03 a,A

(0.07–0.30)
0.52 ± 0.19 ab,AB

(0.12–1.51)
2.8 ± 0.05 a,A

(2.6–3.1)

30–40 523.0 ± 6.00 a,B

(500.1–555.9)
10.5 ± 1.38 a,A

(6.7–19.2)
0.16 ± 0.04 a,A

(0.06–0.35)
0.32 ± 0.16 ab,AB

(0.17–0.26)
2.8 ± 0.05 a,A

(2.6–3.2)

40–50 514.0 ± 8.37 a,B

(481.5–547.9)
11.7 ± 1.95 a,A

(6.1–21.1)
0.17 ± 0.02 a,B

(0.12–0.26)
0.14 ± 0.03 b,B

(0.05–0.32)
2.8 ± 0.05 a,A

(2.7–3.1)

50–100 548.2 ± 12.27 a,A

(511.1–601.5)
10.5 ± 1.01 a,A

(7.1–14.9)
0.14 ± 0.01 a,A

(0.10–0.19)
0.15 ± 0.03 ab,A

(0.08–0.36)
3.0 ± 0.08 a,A

(2.8–3.5)
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Table 2. Cont.

Type of Land Use
and Vegetation

Soil Layer,
cm

Corg.,
Mean ± S.E.

(Range),
g kg−1

Ntot.,
Mean ± S.E.

(Range),
g kg−1

P,
Mean ± S.E.

(Range),
g kg−1

K,
Mean ± S.E.

(Range),
g kg−1

pH CaCl2,
Mean ± S.E.

(Range)

95% confidence interval
(CI), all types of land

use and
vegetation pooled

0–10 490.0–562.5 7.47–15.48 0.20–0.34 0.15–0.88 2.60–3.15

10–20 512.1–565.6 6.02–12.08 0.16–0.31 0.24–0.43 2.52–3.23

20–30 523.4–565.4 6.83–13.07 0.15–0.35 0.11–0.59 2.49–3.36

30–40 517.9–574.8 6.74–11.21 0.11–0.16 0.05–0.40 2.45–3.50

40–50 507.2–584.5 7.50–13.20 0.08–0.19 0.05–0.31 2.52–3.53

50–100 528.5–601.5 7.83–13.47 0.13–0.20 0.11–0.34 2.35–3.90

The mean values of Corg., Ntot., P, and K concentrations and the soil pH in the soil
layer of 0–50 cm are shown in Figure 2. The lowest mean Corg. concentration and simul-
taneously, the highest Ntot., P, and K concentrations, were observed in the pristine raised
bogs. However, the mean values of analyzed chemical variables between different types of
land use were in a relatively narrow range (Figure 2).
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In the soil layer of 50–100 cm (Appendix A, Figure A1), the highest levels of Corg.,
Ntot., and P were found in active peat extraction fields. In contrast, the lowest average Corg.
content was observed in the pristine raised bogs, while the concentrations of Ntot., P, and K,
as well as the soil pH, were lowest in cranberry plantations on former peat extraction fields.
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Groundwater pH is influenced by the complex interactions between groundwater
and soil. Among the studied types of land use and vegetation, the highest mean ground-
water pH (the most alkaline environment) was observed in active peat extraction fields
(5.15 ± 0.04), while the lowest mean pH (the most acidic environment) was observed in
the pristine raised bogs (4.27 ± 0.03, Appendix A, Figure A2). In all studied types of land
use and vegetation, groundwater pH (Appendix A, Figure A2) was higher (more alkaline)
than the soil pH of CaCl2 (Figure 2). In active peat extraction fields, the mean soil pH of
CaCl2 in 0–50 cm layer was lower than the groundwater pH by 2.0 units, while in highbush
blueberry and cranberry plantations, the difference was 1.62 and 1.25 pH units, respectively.
However, in order to accurately compare the obtained results, it is necessary to develop
models that relate the measurements of soil pH in water and CaCl2, as presented in the
publications of Minasny et al. [40].

3.2. Environmental Variables (Temperature and Groundwater Level)

In each of the studied land use types, a specific microclimate (air and soil temperature,
groundwater level) was observed (Table 3). The highest mean groundwater level was
observed in the pristine raised bogs (7.0 ± 0.56 cm) and during the study period (field
surveys), the groundwater level did not drop below 35 cm. In active peat extraction fields
and berry plantations, the mean groundwater level ranged from 41.6 to 52.3 cm.

Table 3. Mean air temperature and soil temperature in different soil layers and the groundwater level
in studied types of land use and vegetation.

Type of Land Use and Vegetation
Temperature Groundwater Level *,

Mean Value ± S.E.
(Range), cm

Measurement
Point

Mean Value ± S.E.
(Range), ◦C

Highbush blueberry plantations on
former peat extraction fields

Air 11.3 ± 0.57 (−6.8–31.8)

45.3 ± 1.99 (0.0–160.0)

Soil, 5 cm 9.0 ± 0.44 (−1.9–23.4)

Soil, 10 cm 8.3 ± 0.39 (−1.5–20.9)

Soil, 15 cm 7.6 ± 0.33 (−0.3–19.3)

Soil, 30 cm 7.7 ± 0.32 (−0.1–19.5)

Cranberry plantations on former peat
extraction fields

Air 13.0 ± 0.59 (−9.4–32.8)

41.6 ± 1.27 (−12.0–118.5)

Soil, 5 cm 10.8 ± 0.46 (−4.0–27.0)

Soil, 10 cm 9.5 ± 0.40 (−4.4–24.2)

Soil, 15 cm 8.5 ± 0.34 (−0.6–21.3)

Soil, 30 cm 8.6 ± 0.33 (−0.5–21.3)

Active peat extraction fields

Air 11.9 ± 0.59 (−6.6–33.0)

52.3 ± 1.98 (−0.5–150.0)

Soil, 5 cm 9.5 ± 0.46 (−2.7–25.9)

Soil, 10 cm 8.3 ± 0.42 (−4.0–22.0)

Soil, 15 cm 7.6 ± 0.36 (−1.2–18.9)

Soil, 30 cm 7.6 ± 0.35 (−1.0–18.7)

Pristine raised bog

Air 9.4 ± 0.49 (−10.1–26.7)

7.0 ± 0.56 (−23.0–35.0)

Soil, 5 cm 7.9 ± 0.42 (−1.5–24.4)

Soil, 10 cm 7.4 ± 0.38 (−1.0–20.7)

Soil, 15 cm 7.2 ± 0.34 (−0.5–19.0)

Soil, 30 cm 7.3 ± 0.33 (−0.3–19.1)

* Negative values reflect the groundwater level above the ground surface.
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Slight differences in mean air and soil temperatures between the different types of
land use and vegetation were observed (Table 3). However, it was not possible to reliably
determine whether these differences in air and soil temperature were caused by interactions
with vegetation or by specific relief conditions.

The mean groundwater temperature (Appendix B, Figure A3) in the active peat extrac-
tion fields was 8.27 ± 0.20 ◦C. In the pristine raised bogs, the lowest mean groundwater
temperature was observed (7.45 ± 0.18 ◦C). The mean groundwater temperature in the
highbush blueberry plantations was 0.12 ◦C lower than in the active peat extraction fields
(8.15 ± 0.19 ◦C), while the highest value of the mean groundwater temperature was ob-
served in cranberry plantations (9.04 ± 0.17 ◦C).

3.3. Variation in Greenhouse Gas Fluxes and Its Affecting Factors

The highest mean CO2–C fluxes reflecting soil heterotrophic respiration were observed
in highbush blueberry and cranberry plantations on former peat extraction fields (higher by
8.8 and 8.6 mg m−2 h−1 compared to active peat extraction fields). The lowest mean CO2–C
fluxes (16.0 mg CO2–C m−2 h−1) were recorded in the pristine raised bogs, which was even
lower (by 0.4 mg CO2–C m−2 h−1) than in the active peat extraction fields (Figure 3). If
we evaluate the mean CO2–C fluxes using the coefficient of variation (CV), the smallest
deviations were observed in the highbush blueberry and cranberry plantations on former
peat extraction fields (110.0 and 112.0%, respectively). In active peat extraction fields, the
CV was 135.0%, while in the pristine raised bogs—119.6%.
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The highest mean CH4-C fluxes were observed in the pristine raised bogs (1.43 mg CH4-
C m−2 h−1, Figure 4), while the CV in the pristine raised bogs was the lowest (395.4%). In
other types of land use, significantly lower mean CH4-C fluxes were observed, with 0.12 mg
CH4-C m−2 h−1 in active peat extraction fields (CV 580.8%), 0.24 mg CH4-C m−2 h−1 in
highbush blueberry plantations (CV 495.8%), and 0.07 mg CH4-C m−2 h−1 in cranberry
plantations (CV 471.8%).

The magnitude of N2O-N fluxes (Figure 5) was significantly lower compared to other
GHGs. However, the highest mean N2O-N fluxes were observed in highbush blueberry
plantations (0.008 mg N2O-N m−2 h−1, CV 697.5%), while in cranberry plantations, the
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mean N2O-N fluxes were lower (0.003 mg N2O-N m−2 h−1, CV 432.5%). The lowest
mean N2O-N fluxes were observed in the pristine raised bogs (0.002 mg N2O-N m−2 h−1);
however, the CV was the highest (1097.0%).
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To determine the most significant correlations between GHG fluxes and different envi-
ronmental variables, Spearman rank correlation coefficients were calculated (Table 4). Air
temperature, soil temperature at different depths, and groundwater temperature showed
the most significant impact on CO2–C fluxes (heterotrophic respiration). CH4-C emissions
were more dependent on soil moisture, groundwater pH, and oxidation-reduction potential
(ORP). The impact of different environmental variables on the N2O-N fluxes was quite
insignificant; only soil moisture, groundwater pH, and conductivity had weak correlations
(Table 4).
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Table 4. Spearman rank order correlations (significant at p < 0.05) between GHG fluxes and envi-
ronmental variables. CO2–C fluxes reflecting soil heterotrophic respiration. Marked (bold) values
represent significant correlations at p < 0.05.

Variable
Air

Temp.,
◦C

Soil
Temp., 5
cm, ◦C

Soil
Temp.,

10 cm, ◦C

Soil
Temp.,

15 cm, ◦C

Soil
Temp.,

30 cm, ◦C

Soil
Mois-
ture,

m3 m−3

Ground-
Water
Level,

cm

Water
Temp.,
◦C

Water
pH

Water
ORP,
mV

Water
Cond.,

µS cm−1

Water
ODO,

mg L−1

CO2–C,

mg m−2 h−1
CH4–C,

mg m−2 h−1

N2O–N,

mg m−2

h−1

Air temp., ◦C 1.00
Soil temp.,
5 cm, ◦C 0.95 1.00

Soil temp.,
10 cm, ◦C 0.93 0.98 1.00

Soil temp.,
15 cm, ◦C 0.86 0.94 0.96 1.00

Soil temp.,
30 cm, ◦C 0.86 0.93 0.96 1.00 1.00

Soil moisture, m3

m−3 0.10 0.17 0.19 0.22 0.21 1.00

Groundwater
level, cm −0.13 −0.14 −0.14 −0.15 −0.15 −0.02 1.00

Water temp., ◦C 0.71 0.80 0.83 0.90 0.90 0.51 −0.12 1.00
Water pH 0.11 0.13 0.15 0.16 0.16 −0.39 −0.08 0.37 1.00
Water ORP, mV −0.20 −0.19 −0.18 −0.16 −0.16 0.38 0.09 −0.06 −0.45 1.00
Water cond.,
µS cm−1 0.19 0.21 0.21 0.23 0.24 −0.12 −0.11 0.26 −0.03 −0.06 1.00

Water ODO,
mg L−1 −0.25 −0.24 −0.24 −0.22 −0.23 −0.11 0.00 −0.25 0.01 0.38 −0.20 1.00

CO2–C, mg m−2

h−1 0.76 0.79 0.79 0.80 0.80 0.15 −0.13 0.73 0.15 −0.12 0.23 −0.24 1.00

CH4-C, mg m−2

h−1 0.01 0.03 0.03 0.06 0.06 0.54 −0.11 0.08 −0.29 0.28 −0.13 −0.10 0.12 1.00

N2O-N, mg m−2

h−1 0.03 0.02 0.01 0.02 0.03 −0.17 −0.03 0.04 0.16 −0.09 0.13 0.04 0.12 −0.12 1.00

The variation in CO2–C fluxes (soil heterotrophic respiration) depending on air tem-
perature (Figure 6) and soil temperature at a depth of 5 cm (Figure 7) was best described
by nonlinear (polynomial type) regressions. We obtained similar regression equations of
the polynomial type for all the studied types of land use showing that the magnitude of
CO2–C fluxes increased with increasing air temperature. The main part of the experimental
data (recorded fluxes) was within the predicted deviations (red dotted line, Figures 6 and 7)
according to the obtained regression equations. The polynomial curve of the equation
most accurately describes the experimental data, since the air temperature cannot increase
exponentially or linearly. Despite some data points fitting linear or exponential curves,
their application for the analysis is not justified due to actual temperature changes with
alternating warmer and cooler periods.

The regression equations of CO2–C fluxes (soil heterotrophic respiration) depending
on soil temperature (Figure 7) are based on the results of temperature measurements at
a soil depth of 5 cm. Strong correlations between CO2–C fluxes and soil temperature in
the deeper soil layers were also determined (Table 4). However, a decrease or increase
in soil temperature at depth is only a matter of time and the resulting dependencies on
measurements at depths of 10, 20, and 30 cm had similar trends. Similarly, a significant
impact of changes in the groundwater temperature on the intensity of CO2–C fluxes
was found (Figure 8). Consequently, the temperature of the environment (air, soil, and
groundwater) constitutes a mechanism that influences the intensity of CO2–C fluxes.

Although correlations between CH4 fluxes and soil moisture, groundwater pH, and
the ORP were determined (Table 4), no reliable regression equations describing the variation
in CH4 fluxes were found (Appendix C, Figures A4–A6). However, given the presence
of reliable Spearman correlation coefficients obtained from the cumulative analysis of
experimental data (without stratification in types of land use), an increase in the number of
measurements could have a clarifying impact on the strength of correlations and regressions
describing the relationships between CH4 fluxes and different potentially affecting factors.
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Based on the results of Spearman rank order correlations (Table 4), regressions de-
scribing the dependence of N2O fluxes on changes in groundwater pH were analyzed
(Appendix D, Figure A7). We obtained a reliable equation at a significance level of p < 0.05
only for cranberry plantations. However, the correlation coefficient indicated only a moder-
ate strength in the relationship between the magnitude of N2O fluxes and groundwater pH.

3.4. Annual Greenhouse Gas Fluxes

Estimated annual GHG fluxes, including net CO2 fluxes from soil in the studied types of
land use and vegetation, are shown in Table 5; default GHG emission factors for drained or-
ganic soils and rewetted areas provided by the Intergovernmental Panel on Climate Change
(IPCC) [41] are added for comparison. Among the studied types of land use and vegetation,
the highest mean annual Rhet (2.23 ± 0.46 t CO2-C ha−1 y−1) was estimated in highbush
blueberry plantations followed by cranberry plantations (2.14 ± 0.18 t CO2-C ha−1 y−1),
while the lowest mean annual Rhet (1.36 ± 0.19 t CO2-C ha−1 y−1) was observed in the
pristine raised bog. Mean annual net CO2 fluxes, calculated as the difference between
the annual Rhet and the annual C input with plant litter, ranged from slight removals
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(−0.07 ± 0.68 t CO2-C ha−1 y−1) in the pristine raised bogs to 1.56 ± 0.19 t CO2-C ha−1 y−1

in active peat extraction fields.
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Estimated annual CH4 fluxes varied widely from 6.65 ± 1.77 kg CH4-C ha−1 y−1 in
cranberry plantations to 128.0 ± 27.5 kg CH4-C ha−1 y−1 in pristine raised bogs. In contrast,
annual N2O fluxes varied in a narrow range from 0.18 ± 0.15 kg N2O-N ha−1 y−1 in
cranberry plantations to 0.65 ± 0.33 kg N2O-N ha−1 y−1 in highbush blueberry plantations.

A summary of estimated cumulative annual GHG fluxes expressed in CO2 equivalents
using global warming potential (GWP) values for a 100-year time horizon [42] is provided
in Figure 9. The highest total GHG fluxes (sum of annual net CO2 fluxes, CH4 fluxes, and
N2O fluxes) were observed in active peat extraction fields (6.23 t CO2 eq. ha−1 y−1), while
the lowest were in cranberry plantations (1.50 t CO2 eq. ha−1 y−1). In active peat extraction
fields, highbush blueberry, and cranberry plantations, the net CO2 fluxes formed the largest
contribution to total GHG emissions—from 67.6% in highbush blueberry plantations to
91.8% in active peat extraction fields. On the contrary, in the pristine raised bogs, CH4
fluxes had the largest contribution to total GHG emissions. Furthermore, the combined
emissions of CH4 and N2O (4.92 t CO2 eq. ha−1 y−1) in the pristine raised bogs significantly
exceeded CO2 removals (−0.26 t CO2 eq. ha−1 y−1), indicating that pristine raised bogs are
a source of GHG emissions.
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Table 5. Estimated annual GHG fluxes (mean value ± S.E.) in the studied land use types. Negative
values of annual GHG fluxes indicate the removal of GHG from the atmosphere. Default GHG
emission factors for drained organic soils and rewetted areas (temperate climate zone, nutrient
status—poor) provided by the IPCC [41] are added for comparison.

Annual GHG Fluxes Unit

Studied Type of Land Use and Vegetation

Active Peat Extraction
Fields

Pristine Raised
Bog

Highbush Blueberry
Plantations on Former
Peat Extraction Fields

Cranberry Plantations
on Former Peat

Extraction Fields

Estimated annual soil
heterotrophic

respiration (Rhet)
t CO2–C ha−1 y−1 1.56 ± 0.19 1.36 ± 0.19 2.23 ± 0.46 2.14 ± 0.18

Annual carbon input
with plant litter t C ha−1 y−1 - 1.43 ± 0.65 1.63 ± 1.12 1.82 ± 0.21

Annual net CO2 fluxes t CO2–C ha−1 y−1 1.56 ± 0.19 −0.07 ± 0.68 0.60 ± 1.21 0.32 ± 0.28

IPCC (2014) default
CO2 emission factor [41] t CO2–C ha−1 y−1 2.8 (95% CI 1.1. . .4.2)

Rewetted organic soils,
poor: −0.23 (95% CI

−0.64. . .0.18)

Cropland:
7.9 (95% CI 6.5. . .9.4)

Estimated annual CH4
fluxes kg CH4–C ha−1 y−1 10.6 ± 6.0 128.0 ± 27.5 21.0 ± 18.3 6.65 ± 1.77

IPCC (2014) default
CH4 emission factor [41] kg CH4–C ha−1 y−1 4.6 (95% CI 1.2. . .8.3)

Rewetted organic soils,
poor: 92 (95% CI

3. . .445)

Cropland:
0 (95% CI −2.1. . .2.1)
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Table 5. Cont.

Annual GHG Fluxes Unit

Studied Type of Land Use and Vegetation

Active Peat Extraction
Fields

Pristine Raised
Bog

Highbush Blueberry
Plantations on Former
Peat Extraction Fields

Cranberry Plantations
on Former Peat

Extraction Fields

Estimated annual
N2O fluxes kg N2O–N ha−1 y−1 0.28 ± 0.18 0.33 ± 0.30 0.65 ± 0.33 0.18 ± 0.15

IPCC (2014) default
N2O emission

factor [41]
kg N2O–N ha−1 y−1 0.3 (95% CI

−0.03. . .0.64)
Rewetted organic soils:

negligible
Cropland:

13 (95% CI 8.2. . .18)
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4. Discussion

Here, we estimated the annual net GHG (CO2, CH4, and N2O) fluxes from soil in
cranberry and highbush blueberry plantations established on former peat extraction fields
compared to active peat extraction areas and pristine raised bogs. This study did not cover
the contribution of GHG fluxes from drainage ditches, dissolved organic carbon exported
from organic soils, and off-site CO2 emissions associated with the use of peat to the total
(ecosystem level) GHG budget.

All studied sites covering both pristine and managed areas were with raised bogs,
also called ombrotrophic bogs, and corresponded to nutrient-poor organic soils. In topsoil
layers (0–10 cm and 10–20 cm), the soil C/N ratios, which indirectly characterize the
intensity of mineralization (decomposability of organic matter) and thus soil fertility [43],
were above 20 (among individual soil samples), while the mean C/N ratios at different
sites grouped depending on type of land use and vegetation were above 35, indicating
potential microbial immobilization [43] and a low rate of N release per unit of organic
matter [44]. The establishment and management of commercial berry plantations is one of
the potential scenarios of the after-use of peat extraction areas with nutrient-poor organic
soils. In such a case, respective areas can be accounted for under the agricultural land
category within national GHG inventories following the IPCC guidelines. However, an
important nuance that distinguishes drained organic soils used for highbush blueberry and
cranberry plantations on former peat extraction fields from typical drained organic soils
used for agriculture is a relatively low soil fertility (high soil C/N ratio) and pH (acidic
environment) suitable for these berry plantations, contrary to conventional agriculture.
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4.1. CO2 Fluxes

Peatlands, in general, and northern peatlands, in particular, are one of the key C-
sequestering ecosystems, storing one-third of global C stocks in soil [45]. Usually, pristine
peatlands act as CO2, one of the major GHGs, sinks; however, the balance can vary signifi-
cantly depending on environmental conditions, including drought periods and subsequent
rewetting and land use type and management activities [33]. Also, the results of our
study (annual net CO2 fluxes) showed that pristine raised bogs were slight CO2 sinks
(−0.07 ± 0.68 t CO2-C ha−1 y−1), while all other studied types of land use and vegetation
were CO2 sources. The highest annual net CO2 fluxes were observed in active peat extrac-
tion fields (1.56 ± 0.19 t CO2-C ha−1 y−1), where the contribution of annual net CO2 fluxes
to total GHG emissions reached 91.8%. It was reported earlier [46] that in the first few years
of peat extraction, residual labile C contained in the top peat layer promotes C mineral-
ization and high levels of CO2 emissions. Within 3−4 years, the respiration rate reaches
a plateau and then declines over time. We also observed a lower annual heterotrophic
respiration in active peat extraction fields compared to highbush blueberry and cranberry
plantations, which may also be the result of the accumulation of inhibitory compounds
such as lignins, phenolic, or humic substances that hamper the activity of extracellular
enzymes [47]. At the same time, the use of former peat extraction areas for plant (including
highbush blueberry and cranberry) cultivation probably leads to a reduction in the role of
these inhibitory compounds due to the influence of agricultural activities.

We found that temperature (air, soil, and groundwater) was the most important in-
fluencing factor of CO2 fluxes in all studied types of land use and vegetation. In general,
temperature is one of the most frequently reported CO2 flux (both ecosystem respiration
and soil heterotrophic respiration)-affecting factors [19]. On the contrary, other researchers
(e.g., [46]) reported that temperature and soil moisture, which are also typical influencing
factors of CO2 emission, had a relatively low impact on the soil (peat) respiration rate. Ac-
cording to Oestmann et al. [48], the groundwater level affected the net ecosystem exchange
of CO2 in Sphagnum sites on former peat extraction areas, also due to the drying of mosses.
In addition to the hydrological characteristics of sites, the development of vegetation cover
affects the net ecosystem exchange of CO2, as vegetation cover contributes to increasing
CO2 fluxes for ecosystem respiration. Evidence suggests that abandoned peat extraction
areas can become significant sources of CO2 emissions during dry periods [3,49]. Therefore,
leaving them without reclamation or cultivation is not advisable for CCM.

Our estimates of annual net CO2 fluxes in active peat extraction fields were slightly
lower (while within the 95% confidence interval) than the IPCC default emission factor
provided for peatlands managed for extraction in boreal and temperate climates/vegetation
zones (Table 5). While our estimates of annual net CO2 fluxes in highbush blueberry and
cranberry plantations on former peat extraction fields were significantly lower than the
IPCC default emission factor provided for croplands with drained organic soils, a land
use category under which commercial berry plantations can be accounted within national
GHG inventories.

4.2. CH4 Fluxes

CH4 has a global warming potential (GWP) of 28 times that of CO2 over a 100-year
horizon [42]. Among the studied types of land use and vegetation, annual CH4 fluxes
ranged from 6.65 ± 1.77 kg CH4-C ha−1 y−1 in cranberry plantations on former peat
extraction fields to 128.0 ± 27.5 kg CH4-C ha−1 y−1 in pristine raised bogs. In active
peat extraction fields, the contribution of annual CH4 fluxes to total annual GHG fluxes
was comparatively low (6.3%). In cranberry and highbush blueberry plantations, the
contribution of annual CH4 fluxes was higher—16.6% and 24.1% of total annual GHG
fluxes, respectively, while in the pristine raised bogs, annual CH4 fluxes were the main
contributor to total annual net GHG fluxes (102.6%). A significant difference in the amount
of annual CH4 fluxes between pristine raised bogs and the other studied types of land
use and vegetation was related to soil moisture conditions. In the pristine raised bogs,
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the mean groundwater level was 7.0 ± 0.56 cm, while in the active peat extraction fields
and berry plantations, the mean groundwater level was in a range from 41.6 to 52.3 cm
(Table 3). It is well known that CH4 fluxes released into the atmosphere result from two
contrary microbial metabolic processes (CH4 production and CH4 oxidation) controlled
by the groundwater level and thus, oxygen availability. A shallow groundwater table or a
permanently waterlogged condition causes anaerobic conditions that favor methanogenesis,
while drainage and the consequent downward movement of the groundwater level causes
aerobic conditions that enhance methanotrophy [50].

According to Oestmann et al. [48], CH4 fluxes increased with an increase in the
average daily soil temperature. However, in our studies, no reliable correlation between
these environmental variables and CH4 fluxes was found (Table 4), whereas at the sites of
distribution of Eriophorum angustifolium and Eriophorum vaginatum, Oestmann et al. [48]
obtained higher CH4 emissions, similar to our results. The researchers explained such
patterns by the fact that wetland plants, in particular, moss, have aerenchyma tissues
that contribute to better gas transport. Similar patterns were also described by other
researchers [51–54].

Among all studied types of land use and vegetation, our estimates of annual CH4
fluxes were higher than the latest default IPCC CH4 emission factors (Table 5). In the active
peat extraction fields and berry plantations, estimated annual CH4 fluxes even exceeded
95% confidence intervals of CH4 emission factors provided by the IPCC for peat extraction
fields and drained croplands, respectively, while our estimates of annual CH4 fluxes in
the pristine raised bogs were within the 95% confidence intervals of CH4 emission factors
provided by the IPCC for rewetted organic soils with poor nutrient status (Table 5).

4.3. N2O Fluxes

Among the studied GHGs, N2O is the most potent GHG, with a GWP 265 times that of
CO2 over a 100-year horizon [42]. Although N2O has the highest GWP, the contribution of
annual N2O fluxes to total annual GHG fluxes was comparatively low—ranging from 1.9%
in active peat extraction fields to 8.3% in highbush blueberry plantations in former peat
extraction fields. However, all studied types of land use and vegetation acted as slight N2O
sources with mean annual N2O emissions in a range from 0.18 ± 0.15 kg N2O-N ha−1 y−1

in cranberry plantations to 0.65 ± 0.33 kg N2O-N ha−1 y−1 in highbush blueberry planta-
tions (Table 5).

Contrary to Yao et al. [55], we did not find a close relationship between the N concen-
tration in the soil and annual N2O emissions, although our estimates of the intensity of
N2O fluxes depending on the type of land use and soil general chemistry (Figure 2) agreed
with their findings. Other researchers [56–58] also could not find a strong relationship be-
tween N concentration in soil and N2O fluxes. It is considered that N fertilizers boost N2O
production by providing a substrate for microbial N conversion through nitrification and
denitrification [59]. However, other researchers, e.g., [60] reported that high concentrations
of nitrates (NO3

−) would not necessarily lead to high N2O fluxes. When growing plants
without the application of fertilizers, the effect of anthropogenic factors on the processes
of nitrogen denitrification in the soil becomes more significant [57,58]. At the same time,
anaerobic conditions in the soil occurring simultaneously with a sufficient amount of NO3

−

probably lead to a more intensive denitrification process [61,62]. This explains insignif-
icant but reliable correlations between N2O emissions, soil moisture, and groundwater
characteristics in our studies (Table 4).

Our estimates of annual N2O fluxes in active peat extraction fields were in line with the
latest [41] N2O emission factors for peatland managed for extraction in boreal and temper-
ate climates/vegetation zones provided by the IPCC (Table 5). Under saturated conditions
and sequentially low oxygen availability, it is considered that N2O fluxes are negligible due
to limited nitrification and denitrification processes, two complementary processes that
produce N2O. This assumption is also provided by the IPCC as Tier 1 level for rewetted
organic soils [41]. However, our estimates showed that annual N2O fluxes (emissions) in
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pristine raised bogs were as high as in the active peat extraction fields, while estimated
annual N2O fluxes from drained organic soils in highbush blueberry and cranberry plan-
tations were significantly lower than the IPCC default N2O emission factor provided for
drained organic soils in croplands in the whole boreal and temperate climates/vegetation
zones. Furthermore, our estimates were even significantly lower than the 95% confidence
interval of the IPCC default N2O emission factor for croplands. Most likely, the significantly
lower estimated annual N2O fluxes in highbush blueberry and cranberry plantations can
be explained by the low decomposability of organic matter (high soil C/N ratio associated
with microbial N immobilization [44]). For instance, Yao et al. [63] found that annual N2O
fluxes’ dependence on the soil C/N ratio follows an optimum Gaussian curve, with a
threshold at a C/N ratio of about 18–19. Similarly, Klemedtsson et al. [64] reported a strong
negative correlation between N2O fluxes and the soil C/N ratio across Histosols.

5. Conclusions

Establishing commercial berry plantations is one of the potential scenarios for the
temporal further use of peat extraction areas (on raised bogs). However, these soils have a
relatively low fertility (high C/N ratio) and an acidic environment (low pH). This distin-
guishes these soils from typical drained organic soils used for conventional agriculture.

The estimated cumulative annual net GHG (sum of net CO2, CH4, and N2O) fluxes
in cranberry and highbush blueberry plantations (1.50 and 3.25 t CO2 eq. ha−1 y−1,
respectively) were notably lower than those in active peat extraction fields (6.23 t CO2 eq.
ha−1 y−1) and pristine raised bogs (4.66 t CO2 eq. ha−1 y−1). Thus, the establishment of
cranberry and highbush blueberry plantations on former peat extraction fields (on raised
bogs) can be considered as a CCM measure to reduce GHG emissions from soil in peat
extraction fields.

Among studied type of land use, the highest annual net CO2 fluxes were observed in
active peat extraction fields (1.56 ± 0.19 t CO2-C ha−1 y−1), while pristine raised bogs were
slight CO2 sinks (−0.07 ± 0.68 t CO2-C ha−1 y−1). Temperature was the most important
environmental variable influencing CO2 fluxes across all studied land use types. The
contribution of annual CH4 fluxes to total cumulative annual net GHG fluxes in all studied
land use types was relatively low (6.3–24.1%), excluding pristine raised bogs, where annual
CH4 fluxes (128.0 ± 27.5 kg CH4-C ha−1 y−1) were the main contributor. The significantly
higher annual CH4 fluxes in pristine raised bogs in comparison to the other studied land
use types were related to different soil moisture conditions that depend on the groundwater
level. All studied land use types were minor sources of N2O fluxes, with average annual
N2O emissions ranging from 0.18 ± 0.15 kg N2O-N ha−1 y−1 in cranberry plantations to
0.65 ± 0.33 kg N2O-N ha−1 y−1 in highbush blueberry plantations. However, no clear
relationships were found between annual N2O emissions and different environmental
variables, including soil N concentration.

Future research should include more frequent (including diurnal measurements) and
long-term GHG flux monitoring to further improve the estimation of the contribution
of organic soils to overall GHG emissions from land use, land use change, and forestry
(LULUCF) sector. Additionally, future research should focus on the potential impacts
of climate change and weather extremes, including periods of drought, on the magni-
tude of GHG fluxes, not only in managed land with organic soils, but also in pristine
ecosystems (peatlands).
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