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Abstract: The data from thirty-one climate stations in the Canadian Prairie provinces of Alberta,
Saskatchewan, and Manitoba are analyzed using a number of day-to-day thermal variability metrics.
These are used to classify each climate station location using a decision tree developed previously.
This is the first application of the decision tree to identify stations as having rural, urban, peri-urban,
marine, island, airport, or mountain climates. Of the thirty-one, eighteen were identified as peri-
urban, with fourteen of these being airports; six were identified as marine or island; four were
identified as rural; one as urban was identified; and two were identified as mountain. The two climate
stations at Churchill, Manitoba, located near the shores of Hudson Bay, were initially identified as
peri-urban. This was re-assessed after adjusting the number of “winter” months used in the metric
for identifying marine and island climates (which, for all other analyses, excluded only December,
January, and February). For Churchill, to match the sea ice season, the months of November, March,
April, and May were also excluded. Then, a strong marine signal was found for both stations. There
is a potential to use these thermal metrics to create a sea ice climatology in Hudson Bay, particularly
for pre-satellite reconnaissance (1971). Lake Louise and Banff, Alberta, are the first mountain stations
to be identified as such outside of British Columbia. Five airport/non-airport pairs are examined to
explore the difference between an airport site and a local site uninfluenced by the airport. In two cases,
the expected outcome was not realized through the decision tree analysis. Both Jasper and Edmonton
Stony Plain were classified as peri-urban. These two locations illustrated the influence of proximity
to large highways. In both cases the expected outcome was replaced by peri-urban, reflective of the
localized impact of the major highway. This was illustrated in both cases using a time series of the
peri-urban metric before and after major highway development, which had statistically significant
differences. This speaks to the importance of setting climate stations appropriately away from
confounding influences. It also suggests additional metrics to assess the environmental consistency
of climate time series.

Keywords: temperature variability; climate classification; Canadian Prairies; climate data; time series;
peri-urban climates; airport climates; mountain climates

1. Introduction

A day-to-day temperature variability framework [DTD] developed by [1], based on [2],
has been found to be a useful metric for detecting thermal variations that are reflective of
local environments, such as urban, rural, peri-urban, marine, island, airport, and mountain
settings [3–19]. The absolute difference between a day’s surface mean temperature with
the previous day’s surface mean temperature (DTD) was introduced as a measure of
thermal variability [1]. This was found to be a better measure of thermal variability than
standard deviation, a result also confirmed by [19]. In addition, day-to-day thermal metrics
have been applied to high-frequency temperature variation [12,15–17,19]. It has also been
applied to other sectors, such as health outcomes [20–25] and economics [26,27].
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An additional metric, ∆DTD, was also introduced by [3]. This is the difference between
the DTD calculated from the maximum temperature of the day (DTDTmax) and that
calculated from the minimum temperature (DTDTmin) of the day. This metric has been
shown to be adept at detecting the difference between urban and rural environments [3,4].
For urban landscapes, insolation is partitioned into sensible heat, subsurface heat, and,
to a lesser extent, latent heat (evaporation of surface water). The response is typically
a substantial increase in temperature (sensible heat) for a given radiative input. Rural
environments and marine (coastal) environments, with the same radiative input as an
urban setting, partition substantially more energy into latent heat, thus evaporating surface
water and fueling the potential for fog and clouds. This mitigates the day-to-day variability,
as demonstrated in [9] for locations along East China’s coast. They examined annually
averaged day-to-day temperature variability, comparing coastal areas to those inland from
the coast. The day-to-day variability of the minimum temperature of the day was found to
be a clear indicator of coastalization. In addition, this metric was found to be better and
more nuanced than traditional measures of continentality/coastalization. This measure has
been used to detect the influence of the Adriatic Sea on coastal locations in Croatia [14], the
South China coast [16], two Canadian coasts [10], and islands in large Canadian lakes [11].
For the Canadian studies, due to the presence of sea and lake ice in winter, an ADTDTmin
was used that omitted the winter months of December, January, and February [10,11].
A latitude weighting was applied to the East China coast study [9], but this was not applied
in the Canadian context [10,11] due to the much more limited range of station latitudes.

Building on the work of [10,11], we used a day-to-day temperature variability metric to
detect island climates in the Great Lakes of North America and two other large water bodies
in the Canadian province of Ontario. These locations exhibited marine characteristics using
the metric developed by [9,10] for ocean coastal locations, ADTDTmin. Comparisons with
neighbouring stations (non-island) for six focal areas in the Great Lakes showed a distinct
marine effect on the corresponding island climate stations. Those displaying marine
characteristics were all island climate stations, and the marine influence, as measured
by day-to-day temperature variability, dropped off rapidly with distance from the local
water body.

Ref. [5] proposed another thermal metric, R∆Tmin, that clearly identifies peri-urban
environments. The term “peri-urban” is used in other disciplines, e.g., [28,29]. Following
this, peri-urban climates are defined as those that occur at transition zones between urban
and rural environments. An unambiguous signal was found for climate stations on the peri-
urban fringe of six urban areas in Canada. Most of the peri-urban sites were airports, and a
follow-up study, [8], showed that airports generate a localized peri-urban climate. They [8]
examined sixty-four airport climate records in Canada. In total, 86% of the airports were
assessed as peri-urban, reflective of either their location at the edge of the urban centers
or the generation of a peri-urban climate by the airport itself. The remaining nine stations
were identified as marine, as introduced above, or “mountain”, a new category identified
in that study. The mountain climate is characterized by low day-to-day variability, likely
the result of localized diurnal circulation (katabatic and anabatic winds) that tends to erase
the climate memory, including the peri-urban signal.

The analysis [8] included a decision tree to identify the nature of the local environment
based on day-to-day thermal variability (Figure 1), enabling the identification of urban,
rural, peri-urban/airport, marine (island), and mountain climates, using ADTDTmin,
R∆Tmin, ∆DTD, and DTDTmin.

In this work, we use the decision tree developed in [8] and apply this tree to 31 climate
stations in the Canadian Prairie provinces of Alberta, Saskatchewan, and Manitoba to deter-
mine the effectiveness of this decision tree in identifying the climate station’s environment.
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Figure 1. Thermal metrics decision tree developed in [8].

2. Materials and Methods
2.1. Data

Surface temperature data (maximum and minimum daily temperature) for a total
of 31 stations were accessed from the Canadian Historical Climate data archived by En-
vironment and Climate Change Canada, (https://climate.weather.gc.ca/historical_data/
search_historic_data_e.html (accessed on 10 May 2024). All stations are in the Canadian
Prairie provinces (Alberta, Saskatchewan, Manitoba) (Table 1, Figure 2). The stations cover
a diverse geography and a range of landforms and proximities to water bodies. While a
homogenized time period is desirable for comparisons among the stations, this would have
severely limited the availability of stations for analysis. Ref. [11] demonstrated the relative
consistency of the measures used temporally, provided the local environment was not
changing with time (such as urbanization). Six airport/non-airport pairs were included as
a follow-up to the observation that airports, away from large water bodies and mountains,
generate a detectable peri-urban climate [8]. These pairs occur at Churchill, Manitoba;
Gimli, Manitoba; Flin Flon, Manitoba; Regina, Saskatchewan; Prince Albert, Saskatchewan;
and Edmonton, Alberta. Building on [11], all stations in the three provinces that ended with
the word “island” were examined, thus enabling the inclusion of the following stations with
sufficient data: Bachelor’s Island, Manitoba; George Island, Manitoba; Beartooth Island,
Saskatchewan; and Egg Island, Alberta. Of the 31 stations, 14 are airports (12 with the
“A” designator plus Island Lake South, Alberta and Estevan, Saskatchewan). To explore if

https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
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mountain climates identified in British Columbia in [8] are present in the Prairie provinces,
stations in the Rocky Mountains were included. These include the following high-elevation
stations: Banff, Jasper, Rocky Mountain House A, and Lake Louise, all in Alberta.
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Figure 2. Map of 31 Stations used in this study in the Canadian provinces of Alberta, Saskatchewan,
and Manitoba.

Table 1. List of 31 climate stations from the Canadian Prairie provinces of Alberta, Saskatchewan,
and Manitoba, including latitude, longitude, elevation, and years of record (see also Figure 2). Note
“A” indicates an airport. For some stations, a prediction is made on the climate classification based
on known characteristics of these stations. Uncertainty in expectation is indicated with “?” for four
locations: Winnipegosis, Gimli, Portage La Prairie, and Prince Albert.

Station Province Lat (N) Long (W) Elev Years Expected

Winnipeg A Manitoba 49.92 97.25 238.7 2001–2010 Peri-urban

Winnipegosis Manitoba 51.65 99.93 257.6 1998–2003 ?

Island Lake A Manitoba 53.83 94.65 235.3 1983–1992 Peri-urban

Bachelor’s Island Manitoba 51.75 99.9 255.9 1997–2004 Marine

George Island Manitoba 52.8 97.63 219.5 1971–1980 Marine

Gimli Manitoba 50.63 97.02 222.8 1994–2003 ?

Gimli A Manitoba 50.63 97.05 222.2 1961–1970 Peri-urban

Churchill A Manitoba 58.74 94.07 29.3 2011–2020 Peri-urban

Churchill Marine Manitoba 58.78 94.18 13.4 1938–1947 Marine

Portage La Prairie Manitoba 49.98 98.32 261.2 1981–1990 ?

Flin Flon Manitoba 54.77 101.88 320.0 2011–2020 Rural

Flin Flon A Manitoba 54.68 101.68 304.2 2001–2009 Peri-urban

Sandy Lake Manitoba 50.5 100.1 624.8 1991–2000 Rural
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Table 1. Cont.

Station Province Lat (N) Long (W) Elev Years Expected

Regina A Saskatchewan 50.43 104.67 577.6 1981–1990 Peri-urban

Regina University Saskatchewan 50.42 104.58 573.0 1981–1990 Urban

Yorkton A Saskatchewan 51.27 102.47 498.3 1991–2000 Peri-urban

Beartooth Island Saskatchewan 59.22 109.7 238.0 1995–2000 Marine

Estevan Saskatchewan 49.22 102.97 580.6 2012–2021 Peri-urban

Prince Albert Saskatchewan 53.17 105.75 436.50 1931–1940 ?

Prince Albert A Saskatchewan 53.22 105.67 428.20 2001–2010 Peri-urban

Saskatoon A Saskatchewan 52.17 106.72 504.1 1991–2000 Peri-urban

Calgary A Alberta 51.11 114.02 1099.1 1991–2000 Peri-urban

Island Lake South Alberta 54.82 113.54 618.7 2016–2023 Peri-urban

Egg Island Alberta 59.98 110.44 214.9 2013–2018 Marine

Banff Alberta 51.18 115.57 1383.7 1981–1990 Mountain

Jasper Alberta 52.88 118.07 1062.2 1981–1990 Mountain

Rocky Mountain House A Alberta 52.43 114.92 988.2 1981–1990 Peri-urban

Calmar Alberta 53.29 113.86 720.0 1991–2000 Rural

Edmonton A Alberta 53.32 113.58 723.3 1994–2003 Peri-urban

Edmonton Stony Plain CS Alberta 53.55 114.11 766.3 2011–2020 Urban

Lake Louise Alberta 51.43 116.22 1524.0 1991–2000 Mountain

2.2. Analysis

To facilitate the decision tree analysis, a number of metrics, as indicated in Figure 1,
are calculated. These include ADTDTmin, R∆Tmin, ∆DTD, and DTDTmin.

All metrics arise from a day-to-day temperature variability framework. The for-
mulation for DTD temperature variability metrics, DTD, ∆DTD, and R∆T, are taken
from [1,3,5], respectively:

DTD = Σi (Ti − Ti−1)/(N − 1) (1)

where i is the daily counter over the time period of interest and a total of N − 1 pairs of
values are used.

∆DTD = DTDTmax − DTDTmin (2)

∆T+ = [(Σi=1
n−1|Ti+1 − Ti|)]/N+ if (Ti+1 − Ti) > 0

0 if (Ti+1 − Ti) < 0
(3)

∆T− = [(Σi=1
n−1|Ti+1 − Ti|)]/N− if (Ti+1 − Ti) < 0

0 if (Ti+1 − Ti) > 0
(4)

R∆T = ∆T+/∆T− = N−/N+ (5)

where N− is the number of cold transitions and N+ is the number of warm transitions.
Ref. [10] found that DTD should be adjusted in cold climates by excluding December,

January, and February data when examining marine climates in Canada, ADTDTmin.

3. Results
3.1. Decision Tree Analysis

All categories (urban, rural, peri-urban, marine, mountain) were represented in the
Prairie provinces (Figure 3). The largest group was peri-urban, including both airport and
non-airport stations. Marine was largely islands [11], plus the modified Churchill stations
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with longer “winters”, discussed below. The first two mountain climate stations outside
of British Columbia [8] were identified at Lake Louise and Banff (Table 2, Figure 3). The
following sections will explore the success of the classification system, the five locations with
paired airport/non-airport stations, island and marine climates, and mountain climates in
more detail.
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Figure 3. The 31 stations plotted by classification type (colour) and as a function of R∆Tmin. Blue
represents marine and island stations (dark blue for marine and lighter blue for island). Darker orange
are peri-urban climates, not at airports, and lighter orange are peri-urban climates at airports. Green
designates rural climates, and red denotes urban climates. Purple signifies a mountain classification.

Table 2. Results of the day-to-day temperature analysis for the thirty-one locations for the following
metrics: ADTDTmin, R∆Tmin, ∆DTD, and DTDTmin. Red highlighted stations show marine (island)
characteristics, purple indicates an airport (peri-urban) climate, green identifies rural climates, orange
indicates an urban climate, and blue is used for those with mountain characteristics. Black bolding
occurring in the sixth column indicates those stations that were characterized as “?” in Table 1. These
results are also presented as a function of R∆Tmin in Figure 3.

Location ADTDTmin R∆Tmin ∆DTD DTDTmin Classification Predictive
Success?

Winnipeg A 3.3 1.19 −0.11 3.63 Peri (airport) Yes

Winnipegosis 3.06 1.07 0.12 3.39 Peri

Island Lake A 3.07 1.27 0.47 3.53 Peri (airport) Yes

Bachelor’s Island 1.97 1.07 0.35 2.37 Marine (Island) Yes

George Island 1.98 1.01 0.81 1.98 Marine (Island) Yes

Gimli 3.64 1.09 −0.6 4.06 Peri

Gimli A 3.12 1.22 0.34 3.55 Peri (airport) Yes
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Table 2. Cont.

Location ADTDTmin R∆Tmin ∆DTD DTDTmin Classification Predictive
Success?

Churchill A 1.91 1.23 1.43 2.69 Marine No

Churchill Marine 2.3 1.12 0.99 3.18 Marine Yes

Portage La Prairie 2.61 1.09 1.14 2.96 Peri

Flin Flon 3.0 0.97 0.15 3.44 Rural Yes

Flin Flon A 3.28 1.08 −0.33 3.73 Peri (airport) Yes

Sandy Lake 3.50 1.04 −0.39 3.97 Rural Yes

Regina A 2.94 1.13 0.79 3.33 Peri (airport) Yes

Regina University 3.3 1.03 0.29 3.83 Urban Yes

Yorkton A 2.88 1.17 0.42 3.31 Peri (airport) Yes

Beartooth Island 2.13 1.1 0.6 2.47 Marine (Island) Yes

Estevan 2.89 1.16 0.64 3.27 Peri (airport) Yes

Prince Albert 3.49 0.99 −0.19 3.99 Rural

Prince Albert A 3.12 1.19 −0.06 3.52 Peri (airport) Yes

Saskatoon A 2.98 1.12 0.19 3.51 Peri (airport) Yes

Calgary A 2.87 1.14 1 3.19 Peri (airport) Yes

Island Lake South 3.07 1.27 0.47 3.53 Peri (airport) Yes

Egg Island 2.28 1.07 0.28 2.78 Marine (Island) Yes

Banff 2.84 0.98 −0.19 3.23 Mountain Yes

Jasper 2.78 1.09 −0.08 3.14 Peri No

Rocky Mountain House A 2.99 1.07 0.52 3.42 Peri Yes

Calmar 3.05 1 −0.4 3.46 Rural Yes

Edmonton A 2.98 1.11 0.17 3.27 Peri (airport) Yes

Edmonton Stony Plain 2.45 1.08 0.75 2.85 Peri No

Lake Louise 2.83 0.97 −0.42 3.19 Mountain Yes

3.2. Climate Classification

The decision tree analysis (“Classification” column) did well in identifying the various
landscapes (Figure 3). Of the twenty-seven that were predicted, twenty-four were classified
as expected. The three that were not classified as expected included Churchill A, which, due
to the proximity to Hudson Bay, had marine characteristics that dominated the peri-urban
signal typically found at airports and also observed in [10]. This station only exhibited
marine characteristics when the ADTDTmin metric excluded more winter months than
December, January, and February but broadened the “winter” months to include November,
March, April, and May, consistent with local ice behaviour [30]. One of the stations in the
Rocky Mountains, Jasper, was classified as peri-urban rather than mountain, even though it
is not an airport station. This will be explored fully in the mountain climate section below.

The third and final one was Edmonton Stony Plain. It was expected to be urban due
to this classification in [5]. However, a different time period was selected from 2011 to 2020
in the present study rather than 1991–2000 in [5]. The Edmonton Stony Plain climate record
allows for a five-decade analysis, and this is presented in Figure 4. For the 1970s, 1980s,
and 1990s, R∆Tmin fell below the 1.05 peri-urban threshold but was above the threshold
for the 2000s and 2010s. The station is located within 100 m of a major highway (16A), the
Yellowknife Highway, that connects Edmonton to the Rocky Mountains. It is a divided
highway with at least two lanes in each direction. Highway 16A is part of Highway 16,
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which was built in 1997. This coincides with the change in climate classification to peri-
urban. The new, wider highway was closer to the climate station (the station did not move)
and the thermal characteristics of the highway, not unlike that of an airport, are reflected
in the change of classification. This illustrates the efficacy of the day-to-day temperature
variability framework in detecting changing environments at climate stations.
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Figure 4. R∆Tmin for Edmonton Stony Plain, decadal average from the 1970s to the 2010s. Blue
indicates below the peri-urban threshold and red indicates above the peri-urban threshold.

In Table 2, four locations, Winnipegosis, Gimli, Portage La Prairie, and Prince Albert,
were designated as “?”. Two of these, Gimli and Prince Albert, will be discussed in the
next section when we examine airport/non-airport pairs. The other two were classified
as peri-urban, although neither is located at an airport. For Portage La Prairie, the cli-
mate station is located on the northwest fringe of the city, and the local airport is south
of the city. For Winnipegosis, the town is located on the southwestern shore of Lake Win-
nipegosis. The climate station is located on the western fringe of the town. The relevant
locations of both Portage La Prairie and Winnipegosis climate stations are consistent with
the peri-urban classification.

3.3. Paired Airport/Non-Airport Locations

For five locations, we can make a direct comparison of the airport and non-airport
locations (Gimli, Flin Flon, Regina, Prince Albert, Edmonton). This provides an opportunity
to examine further the nature of airport climates that were first identified in [8] using day-to-
day thermal metrics. In Table 3, we report the aggregated airport/non-airport averages and
the results of the t-test. Only R∆Tmin showed a statistically significant difference between
the airports and non-airports consistent with [8]. Of the pairs, Gimli and Edmonton were
both peri-urban. The other three non-airport stations were either urban (Regina) or rural
(Flin Flon, Prince Albert), so it is understandable that ∆DTD and DTDTmin, which are
used to sort between urban and rural, were not statistically different between the two
groups. The peri-urban nature of the airport locations is clear across three landform types:
rural, urban, and peri-urban. For both locations in which both airport and non-airport
are peri-urban, the airport had a stronger peri-urban signal (R∆Tmin). Other than this, the
analysis does not provide any definitive insight into differences, if any, between peri-urban
climates produced at airports and those not produced at non-airports. As noted above,
the Edmonton case was strongly influenced by the proximity of a major highway and its
expansion. We explore the pairs of locations further by providing higher-resolution maps
of these specific locations (Figures 5–9).
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Table 3. Airport/non-airport pairs comparison. Five pairs are aggregated and tested for statistical
significance using a t-test for all four day-to-day thermal metrics, ADTDTmin, R∆Tmin, ∆DTD, and
DTDTmin. Bolded p value indicates statistical significance (p < 0.05).

ADTDTmin R∆Tmin ∆DTD DTDTmin

Airport 3.09 1.15 0.18 3.48

Non-airport 3.10 1.04 0.08 3.62

t-test p-value 0.97 0.02 0.75 0.57
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Figure 5 shows the two Gimli stations. The town of Gimli (population: 6600) is located
on the western shore of Lake Winnipeg in Manitoba. The two stations are located west of
the town of Gimli, 2 km from the shore, and Gimli A, 4 km from the shore. The marine
influence was found to fall off rapidly with distance from the shore in [11], and this is the
case with Gimli with ADTDTmin well above the threshold of 2.35. The Gimli station is
located at the western edge of the town, consistent with the peri-urban classification. As
indicated in the diagram, the station is close to a provincial highway and this was found to
contribute to a peri-urban classification for Edmonton Stony Plain (see above).

The Flin Flon Airport (Flin Flon A) is located 15 km (Figure 6) southeast of the town of
Flin Flon (population: 5200). The Flin Flon climate station is located at the north end of the
town, consistent with the rural climate classification. Although the Flin Flon A is near a
lake, Lake Athapapuskow, the marine influence was not detected, with ADTDTmin well
above the 2.35 threshold (3.28).

Figure 7 shows the two Regina stations. The stations are approximately 6 km apart.
The airport is located to the southwest of the city. The University of Regina (Regina
University) is located in the southeast part of the city (population: 226,000). This station is
classified as urban with ∆DTD above the 0.2 threshold (0.29) and the R∆Tmin below the
peri-urban threshold of 1.05 (1.03). In contrast, the Regina (Regina A) has an R∆Tmin of 1.13,
well above the peri-urban threshold.

The two Prince Albert stations are shown in Figure 8. The two stations are about 8 km
apart, with Prince Albert A (the airport) located northwest of Prince Albert (population: 38,000)
and the Prince Albert climate station located south of the city. This station has a ∆DTD of
−0.19, well below the urban threshold of 0.20 and, thus, is classified as a rural station.
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Figure 9 displays the Edmonton pair of stations, Edmonton Stony Plain and Edmonton
A (airport). Both are classified as peri-urban, and both are located some distance from the
city of Edmonton. Edmonton Stony Plain is 40 km to the west of Edmonton and Edmonton
A, about 25 km south of the city. The evolution of the climate at Edmonton Stony Plain
was explored above (Figure 4) and linked to the proximity of a major highway, 16A, which
clearly contributes to the peri-urban nature of the climate. Edmonton A is located well
south of the city and not in the urban fringe as was the case for Regina and Prince Albert. It
is an unambiguous case of an airport generating a peri-urban climate (similar to Flin Flon
and Gimli).

3.4. Marine/Island

Island climates were identified using these metrics for the first time outside of On-
tario [11]. These were Bachelor’s Island (MB), George Island (MB), Egg Island (AB), and
Beartooth Island (SK). These four are located on large bodies of water: Lake Winnipegosis
for Bachelor’s Island, Lake Winnipeg for George Island, and Lake Athabasca for both Egg
Island and Beartooth Island (Figure 2). Of these, with the exception of Bachelor’s Island,
there were no pairings with local shore stations. Winnipegosis was the nearest shore climate
station to Bachelor’s Island. While Bachelor’s Island was identified as having an island
climate, this was not the case for Winnipegosis (peri-urban), located about 1 km from the
Lake. This is consistent with the focal area analysis for the Great Lakes examined in [11]
that showed the marine influence dropping off rapidly with distance from the water body.

A marine classification also occurred for the two Churchill, Manitoba stations (Figure 10).
As noted above, the marine nature only became apparent when the “winter” months were
expanded to match the timing of sea ice in Hudson Bay [30], that is, including November,
March, April, and May. This was detected at both Churchill Marine and Churchill A even
though the airport station was located 2 km inland. The vastness of Hudson Bay and the
low relief (Churchill A has an elevation of 30 m) likely accounts for the penetration of the
marine influence, as was found for coastal stations for the Atlantic and Pacific Oceans [9,10]
but not found for stations like Gimli and Winnipegosis which are similar distances from
smaller bodies of water, as was the case for the Great Lakes [11]. This also may have
application in determining the presence of sea ice in Hudson Bay, particularly for the time
period prior to satellite reconnaissance (before 1971), building on other earlier attempts
using temperature variation [30].
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3.5. Mountain

Four stations in the Rocky Mountains were part of the 31 stations studied. Of these,
Rocky Mountain House A, an airport, was expected to be peri-urban and this proved to be
the case. Lake Louise and Banff (Figures 11 and 12) were classified as mountain, although
they were at the DTDTmin 3.20 threshold. For both these locations, the stations are situated
in a valley flanked by mountains, as was the case for those identified in [8] with the diurnal
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production of winds, which serve to erase climate memory. These orographic conditions are
also in place for Jasper (Figure 13), and so it was contrary to the expectation that this station
was labelled as peri-urban. The location is not an airport. Additional data are available
for Jasper, a decadal analysis was performed for the 1940s to the 1980s, and R∆Tmin is
plotted for this time series in Figure 14. For the 1940s and 1950s, the station was below the
threshold for peri-urban (<1.05) and was classified as “rural”. From the 1960s onwards, the
peri-urban threshold was exceeded (1960s, 1970s, 1980s). Using the coordinates provided
by the data archive, the station appears to be located to the east of the Athabasca River,
whereas the town of Jasper is on the western side of the river. The coordinates provided
have a precision to the nearest minute and report zero seconds, unlike many other climate
stations. Assuming the coordinates were rounded off to the nearest minute, points A, B, C,
D are plotted in Figure 14. This range of locations allows for the station to be located on
the west bank of the Athabasca. Given that this is not an automated station and it requires
daily observation and recording, location B seems the most likely (near the train station,
Jasper TS, in Figure 13). The location is key to understanding the change in R∆Tmin that
occurred in the 1960s. In addition to the railway being near B, the Yellowhead Highway
(#16) is in close proximity to both A and B. During the 1960s, the Yellowhead Highway
was constructed and officially opened in 1970. Thus, Jasper may be in a similar situation to
Edmonton Stony Plain in the late 1990s. The peri-urban classification is likely the result of
the developing transportation infrastructure and its close proximity to the climate station.
Once again, this emphasizes the importance of the location of climate stations and the
ability of these metrics to detect and quantify such effects. This may form the foundation
for assessing time series and assist in homogenizing temperature time series [31–33].
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Figure 14. Jasper, 1941–1990, R∆Tmin, decadal averaging. Red dots indicate decades above the
1.05 threshold, and blue dots indicate those below the 1.05 threshold.

4. Discussion

In this work, a climate classification developed as a decision tree in [8] was applied
to 31 climate stations in the Canadian Prairie provinces of Alberta, Saskatchewan, and
Manitoba. The decision tree performed well and bodes well for application to other regions.
All climate classifications were found in the Prairies: rural, urban, peri-urban, marine,
island, airport, and mountain. Island climates, for the first time, were found outside of
Ontario [11]. Mountain climates were found for the first time outside of British Columbia [8].
The presence of airport climates, as peri-urban climates, was affirmed consistently for all
airport climate station time series examined in the Prairies. Other than the tendency for
airport climates to have a stronger peri-urban signal (R∆Tmin) than those not coming
from an airport location, no other insights were gained, and no proposal for a metric or
combination of metrics to distinguish between these two types of peri-urban climates is
being brought forward.

A few misclassifications served to provide greater insights into the relevant climate
type and potential areas of exploration. Churchill A, for example, had marine characteristics
if the “winter” season was extended to match the seasonality of the sea ice distribution in
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Hudson Bay [9,30]. This leads to the interesting possibility of using the marine metric to
identify the ice-free season in Hudson Bay and enable the sea ice climatology to extend
before the availability of satellite reconnaissance (1971) [30].

For two locations, the unexpected peri-urban classifications (Edmonton Stony Plain,
Jasper) were likely the result of the development of highway infrastructure in close prox-
imity, clearly evident with statistically significant differences between the period pre- and
post-development periods for the peri-urban metric, R∆Tmin. This result emphasizes the
importance of siting climate stations appropriately away from confounding influences.
This leads to the potential application of these thermal metrics to the assessment of the
time series consistency of the local environment for climate stations and the feasibility and
perils of merging climate station records in temperature homogenization projects [32,33].
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