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Abstract: Between 23 and 25 January 2020, the Metropolitan Region of Belo Horizonte
(MRBH) in Brazil experienced 32 natural disasters, which affected 90,000 people, resulted in
13 fatalities, and caused economic damages of approximately USD 250 million. This study
aims to describe the synoptic and mesoscale conditions that triggered these natural disasters
in the MRBH and the physical properties of the associated clouds and precipitation. To
achieve this, we analyzed data from various sources, including natural disaster records from
the National Center for Monitoring and Early Warning of Natural Disasters (CEMADEN),
GOES-16 satellite imagery, soil moisture data from the Soil Moisture Active Passive (SMAP)
satellite mission, ERA5 reanalysis, reflectivity from weather radar, and lightning data
from the Lightning Location System. The South Atlantic Convergence Zone, coupled with
a low-pressure system off the southeast coast of Brazil, was the predominant synoptic
pattern responsible for creating favorable conditions for precipitation during the studied
period. Clouds and precipitating cells, with cloud-top temperatures below −65 ◦C, over
several days contributed to the high precipitation volumes and lightning activity. Prolonged
rainfall, with a maximum of 240 mm day−1 and 48 mm h−1, combined with the region’s soil
characteristics, enhanced water infiltration and was critical in triggering and intensifying
natural disasters. These findings highlight the importance of monitoring atmospheric
conditions in conjunction with soil moisture over an extended period to provide additional
information for mitigating the impacts of natural disasters.

Keywords: natural disasters; synoptic analysis; mesoscale features; thunderstorms; Minas
Gerais state

1. Introduction
Under global warming, extreme weather events are expected to become more frequent,

following a trend already observed [1]. Climate change has quintupled the occurrence of
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natural disasters [1], as they can contribute both to increasing the frequency of occurrence
of extreme natural events [2] and to increasing socio-environmental vulnerability [3,4].

The unregulated growth of urban areas has significantly disrupted the hydrological cy-
cle, mainly by altering surface drainage capacity. Consequently, the frequency and intensity
of natural disasters, such as floods, landslides, and flash floods, have increased, resulting in
severe socioeconomic challenges and heightened risks to human life [5]. According to the
Brazilian Atlas of Natural Disasters [6], between 1991 and 2012, approximately 126.9 million
people were affected by natural disasters in Brazil. Of these, 21% were impacted by flash
floods, 12% by floodings, 1.79% by landslides, and 1.32% by urban waterlogging (here,
also called by flood). Flash floods were the leading cause of fatalities from 1991 to 2012,
accounting for 58.15% of deaths, followed by landslides at 15.60% [6]. At this point, it is
important to provide a brief distinction between the terms “flood” (urban waterlogging),
“flooding”, and “flash flooding”. Here, the term “flood” is used synonymously with urban
waterlogging and refers to precipitation accumulation in urban areas due to infrastruc-
ture issues. “Flooding” emphasizes the ongoing process or condition of being inundated
with water, typically occurring when a water body overflows. Meanwhile, “flash flood”
describes a sudden and rapid water overflow caused by intense rainfall or dam failures,
usually occurring within minutes to hours and often with destructive force.

The southeastern region of Brazil, composed of four states (Minas Gerais, Rio de
Janeiro, São Paulo, and Espírito Santo), has the highest number of deaths per capita
associated with natural disasters (28 deaths per million inhabitants), exceeding the national
average of 18 deaths per million inhabitants [6]. According to the National Confederation
of Municipalities (CNM), Minas Gerais state (Figure 1) recorded the highest number
of natural disasters in Brazil over the past decade, totaling approximately 8095 events,
including flash floods, floods, and landslides [7]. Many of these events are closely linked
to extreme precipitation during the austral summer [6]. The southeastern region of Brazil
is significantly influenced by the South American Monsoon System, which concentrates
accumulated rainfall during the austral summer months (December–February; DJF) [8].
However, it is essential to note that the region’s climate is also shaped by factors such
as latitude, altitude, continentality, and the influence of the South Atlantic Subtropical
Anticyclone (SASA) [8].

The history of natural disasters in the Minas Gerais state is long-standing. For instance,
in 1979, Minas Gerais experienced one of its worst floodings, which isolated 37 municipali-
ties and caused 246 deaths after 35 consecutive days of rain. In 1991, heavy rains impacted
Belo Horizonte (the capital of the state), the Zona da Mata region, and the southern part
of the state, resulting in 42 deaths. The following year, rainfall over 30 consecutive days
affected 47 municipalities, leading to 33 deaths and leaving 33,000 people homeless [9].
According to the Brazilian Integrated System of Information on Natural Disasters (S2iD),
between 2003 and 2016, a State of Public Calamity and a State of Emergency were declared
2677 times in 2056 different municipalities in Minas Gerais [10]. More recently, in January
2020, the media reported an extreme precipitation event that triggered flooding and flash
floods [11]. According to Dalagnol et al. [12], this natural disaster primarily affected the
Metropolitan Region of Belo Horizonte (MRBH), impacting more than 90,000 people and
resulting in economic losses estimated at approximately USD 250 million.

The recurrence of natural disasters in the MRBH requires effective monitoring of risk
areas, environmental education, and efficient state public policies. Regarding monitoring
natural disasters, the performance of civil defense and data availability from rainfall
stations, satellites, radars, radiosondes, and numerical weather forecasting models have
proven to be a fundamental strategy [13]. However, few studies have comprehensively
analyzed these data to investigate the underlying causes and consequences of disaster
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occurrences in this critical region of Brazil. Therefore, the aim of this study is to describe
the synoptic and mesoscale conditions that triggered the natural disasters in the MRBH
between 23 and 25 January 2020, which affected more than 90,000 people, as well as the
physical properties of the associated clouds and precipitation.
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2. Materials and Methods
This study focused on the MRBH (Figure 1) and the natural disasters that occurred

between 23 and 25 January 2020. The MRBH comprising 34 municipalities and data from
different sources were used in this study: records of natural disasters, precipitation from
rain gauges, reanalysis data, satellite images, weather radar, and lightning information, as
summarized in Figure 2 and described as follows.

2.1. Natural Disasters, Precipitation Data, and Analysis

For the identification of natural disasters that occurred in the Minas Gerais state be-
tween 23 and 25 January 2020, we used the database of the National Center for Monitoring
and Early Warning of Natural Disasters (CEMADEN). This database provides the date, lo-
cation (latitude and longitude), type of disaster (flood, flooding, flash flood, and landslide),
and the number of people affected. The primary objective of analyzing natural disaster
occurrence data was to identify the most predominant disasters during the study period.
For this purpose, a histogram of relative frequency was made. In addition, these data allow
us to identify the spatiotemporal patterns of natural disasters in the MRBH.

The precipitation rate plays a pivotal role in the occurrence of natural disasters. In this
context, precipitation data from rain gauges provide reliable estimates with high temporal
resolution. The main objective was to evaluate precipitation intensity in January 2020
within the MRBH. For this analysis, data from 19 rain gauges operated by CEMADEN,
located within 5 km or less of the natural disasters, were utilized (Figure 3). These data
have a temporal frequency of 10 min and are available at http://www2.cemaden.gov.
br/mapainterativo/# (accessed on 10 July 2024). To determine the day of January 2020

http://www2.cemaden.gov.br/mapainterativo/#
http://www2.cemaden.gov.br/mapainterativo/#
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and the hour of the day in which the most precipitation occurred, the analyses for each
pluviometer were separated into two steps: (i) daily precipitation for January 2020 and
(ii) hourly precipitation on 24 January 2020.
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red-Flood, yellow-Flooding, green-Flash Flood, and brown-Landslide. Blue stars represent the
pluviometer’s location. The region highlighted in gray represents the municipalities monitored by
CEMADEN, and in white, the municipalities covered by the MRBH. See the introduction section for
the definition of flood, flooding, and flash flood.

2.2. Meteorological Satellite, Radar Data, and Analysis

We use satellite and radar data to describe the mesoscale patterns associated with
clouds and precipitation from 23 to 25 January 2020. Precipitation estimates from satellites
indicate spatial distribution in large regions and are widely used for monitoring natural
disasters [14]. Precipitation from the MERGE product was used to assess the spatial distri-
bution of rainfall in the MRBH. MERGE combines precipitation estimates by the satellites
from the Global Precipitation Measuring (GPM) Integrated Multi-satellite Retrievals for
GPM (IMERG) with precipitation measurements from pluviometers [15]. MERGE has a
spatial resolution of 0.1◦ (longitude × latitude), accumulated precipitation in hourly, daily,
and monthly scales, and is available at http://ftp.cptec.inpe.br/modelos/tempo/MERGE/
GPM/ (accessed on 10 July 2024).

Monitoring cloud-top properties is a good way to obtain information on the intensity
of thunderstorms [16]. For example, clouds with lower cloud-top temperatures are typically
area-related to stronger updraft conditions and efficient ice formation. To assess the spatial
distribution of the clouds that triggered the natural disasters, brightness temperature
information from the Geostationary Operational Environmental-16 (GOES-16) satellite,
made available at INPE, was used (http://ftp.cptec.inpe.br/goes/goes16/retangular/,
accessed on 8 April 2024). Brightness temperatures of the 10.3 µm infrared channel (Ch13)
from the Advanced Baseline Imager (ABI) sensor were used, with a spatial resolution of
2 km and a temporal resolution of 10 min. The ABI sensor and the infrared channel were
chosen due to their importance for evaluating clouds and cloud-top characteristics such
as size and temperature. For this purpose, maps of infrared brightness temperature from
23 to 25 January 2020 were made.

In addition to precipitation, soil moisture is an important factor in contributing to the
trigger of natural disasters [17]. To test this hypothesis, we evaluated the spatial–temporal
behavior of soil moisture before, during, and after natural disaster occurrences. For this
analysis, surface soil moisture (mm) data from Soil Moisture Active Passive (SMAP), a
National Aeronautics and Space Administration (NASA) satellite product that spans the
globe [18], were used. The data have a spatial resolution of 10 km and were processed
through Google Earth Engine (https://developers.google.com/earth-engine/datasets/
catalog/NASA_USDA_HSL_SMAP10KM_soil_moisture#bands, accessed on 20 September
2021). The dataset represents an integration between soil moisture native observations
from SMAP into the modified two-layer Palmer model using a 1-D Ensemble Kalman
Filter (EnKF) data assimilation approach. SMAP employs estimates from microwave
measurements provided by a microwave radiometer at 1.41 GHz and a Synthetic Aperture
Radar (SAR) at 1.26 GHz. We have used the SMAP dataset rather than the model dataset
(e.g., ERA5) due to the strong correlation between microwave measurements and soil
conditions. Several works have utilized satellite-based soil moisture estimates to analyze
natural disasters, yielding promising results [19,20]. In this work, a spatial analysis was
performed with the SMAP for 24 January 2020, and a time series from December 2019 to
February 2020, was inspected to elucidate the soil moisture behavior before, during, and
after the occurrence of natural disasters.

Weather radar data were also used to analyze the storm’s vertical structure. The radar
is located in Belo Horizonte city (19.94◦ S and 44.43◦ W) and is operated by the Minas Gerais
Energy Company (CEMIG). The weather radar is located at 128.0 m altitude, operating with
a temporal resolution of 8 min. Constant Altitude Plan Position Indicators (CAPPIs) were

http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/
http://ftp.cptec.inpe.br/modelos/tempo/MERGE/GPM/
http://ftp.cptec.inpe.br/goes/goes16/retangular/
https://developers.google.com/earth-engine/datasets/catalog/NASA_USDA_HSL_SMAP10KM_soil_moisture#bands
https://developers.google.com/earth-engine/datasets/catalog/NASA_USDA_HSL_SMAP10KM_soil_moisture#bands
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produced, with a horizontal and vertical spatial resolution of 1 km, ranging from 3 to 15 km
in height. Reflectivity CAPPI images at a height of 3 km were plotted from 23 January to
25 January at 12 different times to track the storm. In addition, since 24 January was the
day with the highest precipitation accumulation, vertical cross-sections of the storm were
derived using the CAPPIs from 3 to 15 km height. The vertical cross-sections are commonly
used to visualize a two-dimensional section of the storm in its interior [17,21,22].

2.3. Reanalysis and Synoptic Analysis

ERA5 reanalysis from the European Center for Medium-Range Weather Forecasts
(ECMWF) [23] provided the atmospheric variables used in this study. Reanalysis combines
historical observations and outputs of numerical models [24]. The data used have a spa-
tial resolution of 25 km and hourly frequency. The variables obtained at pressure levels
(950, 850, 700, 600, 550, 500, 300, 250, and 200 hPa) were: horizontal wind components,
mass divergence, air temperature, specific humidity, and vertical velocity. In addition, we
also used precipitable water, mean sea-level pressure (MSLP), and Available Convective
Potential Energy (CAPE) from 23 to 25 January 2020. Through the data mentioned, the fol-
lowing synoptic fields (maps) were produced: (i) wind intensity at 250 hPa (representative
of upper-level jets), thickness at 500–1000 hPa (representative of the horizontal temperature
gradients), mass divergence at 250 hPa (it triggers upward movement in the atmosphere
column), and MSLP (it allows to identify high and low-pressure systems); (ii) precipitable
water and runoff 850 hPa; (iii) moisture convergence at 850 hPa, wind vectors at 850 hPa,
and negative vertical velocity (omega) at 500 hPa (representative of upward movement);
and (iv) vertical wind shear between 1000 and 500 hPa, which is an approximation for the
layers at 0 and 6 km in height. Additionally, synoptic charts from the Center for Weather
Forecasting and Climate Studies (CPTEC) of the National Institute for Space Research
(INPE) were used. These charts are for three atmospheric layers: (i) near-surface, (ii) middle
(500 hPa), and (iii) upper-levels (250 hPa).

2.4. Characterization of Spatial Distribution of Lightning

Clouds that produce lightning are related to intense thunderstorms, which can produce
higher precipitation rates. In addition, a higher lightning rate (Lightning Jump) typically
precedes severe weather events (strong winds, hail on the surface, and tornadoes) [25]. In
this way, the spatial distribution of lightning for 23, 24, and 25 January 2020 was analyzed.
For this purpose, data from the Earth Networks Total Lightning Network (ENTLN) of
the Earth Networks were used. This network has approximately 70 sensors covering the
south and southeast regions and parts of Brazil’s midwest and northeast regions. The data
used refer to return strokes and comprise the information of date and time of occurrence;
it is worth mentioning that throughout the text, the word lightning was used to refer
to return strokes. Previous studies indicate that total lightning data—representing the
sum of intracloud (IC) and cloud-to-ground (CG) lightning—is a better proxy for convec-
tion intensity than CG lightning alone. Accordingly, total lightning data for 23, 24, and
25 January 2020, were interpolated onto a grid with a 4 km spatial resolution. Daily total
lightning density maps were generated, representing the number of lightning events (IC
plus CG) per square kilometer per day.

3. Results and Discussion
3.1. Overview of Natural Disasters and Associated Impacts

The heavy precipitation events took place between 23 and 25 January 2020, affecting
several municipalities in the MRBH, totaling 32 occurrences of natural disasters. The most
recurrent typology was landslides, with 17 records, and floods, with 12 records (Figure 4).
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In some places, more than one type of phenomenon was recorded (Figure 3). According
to Dalagnol et al. [12], these natural disasters affected more than 90 thousand people,
causing 13 deaths. The economic losses reached approximately USD 240 million (the dollar
exchange rate in January 2020 was BRL 4.09). The press recorded some landslides and
flooding in photos, as shown in Figure 5. The roads were inundated with water and mud,
rendering passage impassable for vehicles and pedestrians.
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Figure 6 shows the accumulated daily precipitation in January 2020 from the plu-
viometric stations located in the MRBH. January begins with heavy rainfall in several
municipalities (Figure 6a–d), with values close to 100 mm day−1. In addition, some cities
registered intense precipitation on 17 January (more than 100 mm day−1), for example:
Brumadinho (230 mm day−1 in the pluviometer of Alberto F., Figure 6b) and Raposos
(140 mm day−1 in the pluviometer of Água L., Figure 6c). On the following days, even with
less intensity, the rain remains constant, as in the case of Caeté (Figure 6b) and Nova Lima
(Figure 6c). On the other hand, on 23 January, the rain covered all cities, with high rainfall
rates (above 50 mm day−1). However, the precipitation peak occurred on 24 January, mainly
in Nova Lima (Vale do S., Figure 6c), with a volume greater than 200 mm. According to
Parizzi et al. [26], it can rain up to 350 mm in January in Belo Horizonte, so the precipitation

https://g1.globo.com/mg/minas-gerais/noticia/2020/01/24/chuva-forte-provoca-alagamento-na-pampulha-em-belo-horizonte.ghtml
https://g1.globo.com/mg/minas-gerais/noticia/2020/01/24/chuva-forte-provoca-alagamento-na-pampulha-em-belo-horizonte.ghtml


Atmosphere 2025, 16, 102 8 of 20

recorded on the 24th (122.98 mm) can be considered intense, as this value represents 35%
of what was expected for the month. In addition, the highest number of landslides in the
MRBH was observed on this day.
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Figure 6. Accumulated daily precipitation (mm day−1) in the MRBH in January 2020 with data from
pluviometers provided by CEMADEN for the cities: (a) Belo Horizonte (BH), Betim (BE), Rio Acima
(RA), (b) Brumadinho (BR), Caeté (CA), Ibirité (IB), (c) Nova Lima (NL), Ribeirão das Neves (RN),
Raposos (RA) and (d) Santa Luzia (SL), Vespasiano (VE).

Satellite information is an additional component and essential for a better understand-
ing of the rainfall spatial distribution in this region. Figure 7 shows the spatial distribution
of the accumulated daily precipitation from the MERGE product. It is possible to ob-
serve that the rain is distributed throughout the Minas Gerais state on the 24th and 25th
(Figure 7b,c). However, it is in the MRBH that the largest accumulations occur
(~170 mm day−1). Hence, this result converges with the data measured in the rainfall
station. However, despite the focus of this study being the MRBH, other regions of Minas
Gerais also experienced intense precipitation.

Regarding the accumulated hourly precipitation for 24 January 2020 (Figure 8), it can
be observed that there was a record (close to 50 mm h−1) of rainfall at certain times. In
some cities, the rain occurred constantly during the day, as in the case of Ibirité (Serra D.)
and Caeté (Cidade J. and José B.) (Figure 8b). On the other hand, it is noted that in Belo
Horizonte (Av. Silva L., Figure 8a), the highest volume of rain was concentrated in the early
morning hours, totaling more than 40 mm in 5 h. This observation aligns with the time of
occurrences recorded by the media [11] (Figure 5). In addition, note that the precipitation
peak (48 mm h−1) at the beginning of the day in several cities, such as Nova Lima (Oswaldo
B. P., Vale do S., and Honório B., Figure 8c), is possible. The distribution by type of natural
disasters in the MRBH shows a higher frequency of landslides (53.1%), followed by floods
(37.5%) (Figure 4). The reason for the highest occurrences of landslides may be the intense
precipitation from January 23 to 25. However, the preceding rains may have contributed to
intensifying the natural disasters.
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In addition to the topography and precipitation rates, another factor influencing the
frequency and magnitude of natural disasters is the use and occupation of risk areas. The
occupation of risk areas is especially problematic in episodes of extreme rainfall when
precipitation is greater than the soil’s capacity to retain water, exceeding the saturation
level and causing landslides and floods. In this context, soil moisture content, when near
to (or above) the available capacity of soil water, aggravates these occurrences [27,28].
For example, the SMAP products show that in most parts of the Minas Gerais state, soil
moisture (Figure 9a) values were close to 25 mm, representing almost the maximum soil
moisture value the SMAP product could estimate. Mendes et al. [29] found that the
critical soil moisture content values for triggering landslides are close to soil saturation.
Figure 9b helps to understand the temporal behavior of soil moisture content. Note that on
24 January, when there was a higher occurrence of mass movements, soil moisture was
above the average for the period (represented by the gray line). This result is expected
since it was on this day that the peak of precipitation occurred in most municipalities in the
MRBH (Figure 6). However, what draws attention to this figure is that in December, the soil
moisture values were already above the average for the summer period (gray line). In this
way, the precipitation that preceded the event may also have contributed to the numerous
occurrences of landslides in several places between the 23rd and the 25th of January. On
the 24th, for example, more than 100 mm were registered in Belo Horizonte, a municipality
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hit by landslides. As demonstrated in the study by Barbosa [30], heavy and less intense but
prolonged rains favor this type of phenomenon.
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3.2. Synoptic Patterns

Figure 10 shows the near-surface, mid-level, and upper-level atmospheric conditions
between 23 and 25 January 2020. During these three days, at upper levels, the Bolivian
High is displaced southwest from its climatological position. There is a trough between
southeastern Brazil and the South Atlantic Ocean, and downstream of this system, an
amplified ridge is present (Figure 10a–c). Eastward of the ridge, the upper-level cyclonic
vortex appears within the figure’s domain only on 25 January (Figure 10c). At mid-levels
(Figure 10d–f), the most prominent features are the ridge over Chile, which is also a
signature of the Bolivian High, and the trough between the continent and the Atlantic
Ocean. Throughout the period, the mid-level trough axis crosses the western portion of
southeastern Brazil, leaving most of Minas Gerais on its eastern side. Therefore, Minas
Gerais is under favorable conditions for upward movement in the atmospheric column and,
consequently, cloud development. At the near-surface (Figure 10g–i), under the interface
between the trough and the ridge over the Atlantic Ocean at mid-levels, the South Atlantic
Convergence Zone (SACZ) is indicated in green. Its oceanic branch is connected to a
subtropical cyclone (absence of fronts linked to the low-pressure center) called Kurumi by
the Brazilian Navy, which underwent an extratropical phase on January 25. The described
circulation pattern in Figure 10 is typical of SACZ episodes [31]. The SACZ is generally
welldefined when there is a cold front or a cyclone near the coast [32], as these low-pressure
systems help create a horizontal pressure gradient that channels the continental flow toward
southeastern Brazil.
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Figure 9. (a) Soil moisture (mm) in the Minas Gerais state on 24 January 2020, from SMAP product.
The red line represents the MRBH. (b) Time series from December 2019 to February 2020 of soil
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maximum (red) values inside the region. The gray horizontal line represents the mean soil moisture
content value between December 2019 and February 2020.

After an extensive analysis of different atmospheric fields, the indication of the SACZ
is provided in the near-surface chart (Figure 10g–i). Some of these fields are shown in
Figure 11 (in this study, we focused only on the Minas Gerais state). Along with the
upper-level winds, it is important to consider the mass divergence, which was intense on
24 January around the MRBH (indicated by the red line in Figure 11(1b)). Under this area
of divergence, there is an area of convergence at 850 hPa, resulting from the meeting of
northwesterly and southeasterly winds (Figure 11(2b)). The northwest winds transport
warm, moist air from the Amazon to Minas Gerais, while southern winds bring humidity
from the Atlantic Ocean due to low pressure on the Brazilian coast. This moist air can be
observed through the precipitable water (Figure 11(2b)). The combination of these variables
triggers upward movement. Indeed, Figure 11(3) shows the upward motion at 500 hPa
around the MRBH. The upward movements are also influenced by surface warming during
the austral summer. In summary, the combination of the described patterns led to the
development of a persistent band of clouds and precipitation from southern Amazonia
to the Atlantic Ocean named the SACZ which is the primary precipitation system in
southeastern Brazil during the summer [33].
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Figure 10. Synoptic charts at (a–c) 250 hPa, (d–f), 500 hPa, and (g–i) near-surface for 23, 24, and
25 January 2020 at 18:00 UTC. In (a–f), streamlines are indicated in cyan, wind intensity (knots) in
shaded, and geopotential height in white lines. In (a–c), the upper-level jets’ core is highlighted in
dashed lines. In (g–i), MSLP is indicated by yellow lines, and the thickness of 500–1000 hPa by dashed
lines; this level also shows the atmospheric systems: Intertropical Convergence Zone (orange), SACZ
(green), cold fronts (blue), warm fronts (red) and occluded fronts (purple). Source: CPTEC/INPE.

Once the ingredients for cloud formation are present, the clouds must regenerate
continuously. The vertical wind shear magnitude between 0 and 6 km (represented by the
levels of 1000 and 500 hPa) is a reliable indicator of the dynamic environmental conditions
supporting thunderstorm development and maintenance [34]. Figure 11(4) shows that the
vertical wind shear varied from 9 to 16 m s−1 around the MRBH. Shear values exceeding
5–10 m s−1 indicate favorable conditions for the formation of thunderstorms [34–36]. These
shear values, combined with the warm and moist air predominant in the region were
fundamental to forming clouds and precipitation.
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Figure 11. Atmospheric fields at 18:00 UTC on (a) 23, (b) 24, and (c) 25 January 2020. (1) Wind
intensity at 250 hPa higher 30 m s−1 s (shaded), thickness 500–1000 hPa (m; red dotted lines), mass
divergence at 250 hPa (×10−5 s−1; blue line), and mean sea level pressure (MSLP, gray lines). (2)
Precipitable water (shaded) and streamlines at 850 hPa. (3) Convergence (yellow lines) and winds
(vectors) at 850 hPa and vertical velocity at 500 hPa (Pa s−1, negative values in shaded). (4) Vertical
wind shear 500–1000 hPa (m s−1). In all panels, the red line represents the MRBH.

3.3. Physical Characteristics of the Thunderstorms

Figure 12b shows that, at the beginning of 23 January, the state of Minas Gerais was
already covered with extensive cloud cover. However, during the afternoon of the 23rd
(Figure 12d) and continuing into the 24th (Figure 12e–h), the convective cloud cluster
initially concentrated over the Goiás state (Figure 12a), shifted and remained over Minas
Gerais, particularly over the MRBH (indicated on the map by red lines). The cloud-top
temperature over the study region on this day was approximately −60 ◦C, indicating
deep vertical development and the presence of multiple Cumulonimbus clouds. Note that
the cloud band is well-organized in the northwest–southeast direction the following day
(Figure 12i–l). As discussed earlier, this cloud band was characterized by the formation
of the SACZ over the study region. Additionally, on 25 January, between 00:00 UTC
(24 January, 21:00 local time) and 06:00 UTC (25 January, 03:00 local time), intense convective
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cores persisted, with cloud-top temperatures near −75 ◦C, including over the MRBH. After
this period, the region remained cloudy, likely dominated by stratiform clouds.
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Figure 13 illustrates the reflectivity observed by the radar at 3 km height from
23 January to 25 over the study region. A precipitating system developed from 23 to
12 UTC (09:00 local time) (Figure 13) and remained stationary over the area until 24 January,
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at 12:15 UTC (09:15 local time), dissipating at 18:12 UTC (15:12 local time). However, at
00:01 UTC (21:01 local time), a new system was formed over the MRBH and disbanded at
noon UTC (09:00 local time) on the 25th. On the 24th, the convective cell persisted over the
MRBH, indicating precipitation over the region, which coincides with data observed by
rainfall stations (Figure 6). In Figure 14, it is possible to analyze the vertical structure of
clouds over the MRBH. At that time, several precipitating cells were observed covering
the radar area, and principally, more deep clouds occurred close to MRBH. For example,
reflectivity values up to 40 dBZ were observed close to MRBH (Figure 14a). The vertical
cross in this cloud indicates that its convective cell had a depth of approximately 5 km
(Figure 14b). These results show that although at that moment the precipitating cell did not
show very deep clouds with strong updrafts, it was the succession of clouds over several
days that produced the high volume of accumulated rain in this region. This observation is
consistent with the typical meteorological characteristics of SACZ.

Figure 15 shows the Minas Gerais state’s lightning density for 23, 24, and 25 January.
Note that on 24 January, the highest (up to four lightning strikes per day per km2) lightning
density occurred over the study region. This pattern agrees with what was discussed in
Figure 12 about the spatial distribution of convective clouds. On 23 January, the convective
cells were concentrated in the southwest of Minas Gerais, close to Goiás state. On 24 January,
it concentrated in the MRBH, causing intense precipitation, as recorded by the rainfall
stations (Figure 6), negatively impacting the region (Figure 5). Finally, on 25 January,
there was less lightning density in the entire state of Minas Gerais. The relationship
between convective clouds and the occurrence of lightning is justified because this type
of cloud has a large vertical extension, favoring the formation of ice in its interior. As
previously discussed, the wind shear in the region allowed for both the maintenance of rain
clouds and the collision between the ice particles, allowing the electrification of the clouds
and, consequently, lightning production [37]. However, for a better understanding of the
lightning density of a storm, it is necessary to deepen the analysis regarding the cloud’s
growth rate, size, and temperature [38].
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4. Conclusions
This study evaluated the meteorological conditions that triggered the natural disasters

in the MRBH between 23 and 25 January 2020. This event caused several inconveniences
for the MRBH, harming more than 90 thousand people, resulting in economic losses of
approximately USD 250 million and 13 deaths [12].
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Thirty-two natural disasters in the MRBH were registered between 23 And 25 January
2020. Moderate precipitation (up to 150 mm day−1) had been recorded since the beginning
of the month, with a maximum of 240 mm day−1 on 24 January. Throughout that same
day, rainfall was recorded with a maximum of 48 mm h−1. In addition, the increase in soil
moisture since December 2023, reaching a maximum of 24 mm on 24 January, corroborates
the occurrence of natural disasters. The extended duration of rainfall, combined with the
region’s soil characteristics, promoted substantial soil infiltration, which became saturated.
These factors were pivotal for the occurrence and escalation of natural disasters.

Regarding the synoptic environment, the presence of the SACZ and the low-pressure
system on the southeast coast of Brazil was responsible for the heavy rains that triggered
floods and landslides in the study region. The mesoscale analysis through satellite im-
ages showed the occurrence of several clouds during the period of the natural disasters.
Brightness temperatures as low as −65 ◦C were recorded for several convective cells.

Weather radar indicated that the thunderstorms presented precipitating cells through-
out the study region, with moderate reflectivity (up to 40 dBZ). The spatial distribution
of lightning density (intracloud plus cloud-to-ground) showed moderate intensity, with a
peak of approximately four lightning strikes per day per km2. Lightning indicates condi-
tions favorable for ice formation and strong updrafts, essential for convective precipitation
and lightning formation.

The meteorological analysis conducted in this study can contribute to understanding
weather patterns associated with disasters in the MRBH. Other factors, not linked to natural
phenomena but to socioeconomic conditions—such as the occupation of high-risk and
vulnerable areas—are also relevant to the magnitude of these events. These factors are the
main reasons for the number of people affected by natural disasters in Brazil.

In addition to enhancing scientific knowledge about meteorological patterns associated
with natural disasters, the analysis presented in this work can also contribute to formulating
and improving public policies aimed at disaster risk management in urban environments.
This procedure can be applied to monitor and develop strategies for sustainable urban
development. In Brazil, for example, the National Civil Defense and Protection Policy
(PNPDEC) [39], instituted on 10 April 2012, aims to integrate prevention, mitigation,
preparation, response, and recovery actions within the legal framework [39]. As observed
by Oda et al. [19], the technical knowledge generated by such studies can help develop
prevention, mitigation, and preparation strategies.

This study also highlights the importance of combining various meteorological
datasets. To achieve this combination, expanding the network of meteorological stations
and weather radars in Brazil is essential. Enhancing integration among meteorological
centers would be a crucial step toward achieving this goal. For future work, considering
climatological precipitation, it is suggested that the return period of such events for the
state of Minas Gerais be evaluated. Additionally, studying vulnerability in this region,
identifying risk areas, and jointly assessing the natural and social causes of the natural
disasters recorded in this study are essential.
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