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Abstract: The rising incidence of droughts in specific global regions in recent years, pri-
marily attributed to global warming, has markedly increased the demand for reliable and
accurate streamflow estimation. Streamflow estimation is essential for the effective manage-
ment and utilization of water resources, as well as for the design of hydraulic infrastructure.
Furthermore, research on streamflow estimation has gained heightened importance because
water is essential not only for the survival of all living organisms but also for determining
the quality of life on Earth. In this study, advanced soft computing techniques, including
long short-term memory (LSTM), convolutional neural network–recurrent neural network
(CNN-RNN), and group method of data handling (GMDH) algorithms, were employed to
forecast monthly streamflow time series at two different stations in the Wadi Mina basin.
The performance of each technique was evaluated using statistical criteria such as mean
square error (MSE), mean bias error (MBE), mean absolute error (MAE), and the correlation
coefficient (R). The results of this study demonstrated that the GMDH algorithm produced
the most accurate forecasts at the Sidi AEK Djillali station, with metrics of MSE: 0.132, MAE:
0.185, MBE: −0.008, and R: 0.636. Similarly, the CNN-RNN algorithm achieved the best
performance at the Kef Mehboula station, with metrics of MSE: 0.298, MAE: 0.335, MBE:
−0.018, and R: 0.597.

Keywords: deep learning; drought; soft computing; GMDH; streamflow; prediction

1. Introduction
Accurate prediction of streamflow is critical for the development and management

of water resources in many parts of the world. This includes applications such as flood
control, dam design and construction, the implementation of hydraulic structures like
bridges, reservoir operation and management, water supply, and hydroelectric power
generation. However, due to the basin’s erratic flow distribution, periodic flow patterns,
and complex, non-linear interactions between its constituent elements—such as climatic
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conditions, soil type, and vegetation cover—accurately estimating a catchment’s streamflow
remains a significant challenge.

In recent decades, numerous studies have been reported on streamflow modeling
via machine learning (ML) approaches. Mehdizadeh and Kozekalani Sales [1] evaluated
the efficiency of artificial intelligence (AI) methods for estimating monthly streamflow
in Northern Iran over the period from October 1964 to September 2014. These methods
included Bayesian networks (BNs), gene expression programming (GEP), autoregressive
(AR), and autoregressive moving average (ARMA), as well as simple multiple linear regres-
sion (MLR). The study revealed that the BN2-AR model at Ponel station and the BN4-AR
model at Toolelat station provided the most accurate streamflow estimations. Al-Juboori [2]
applied random tree (RT) and K-nearest neighbor (KNN) algorithms to estimate the stream-
flow data in Iraq. The results showed that the KNN-RT hybrid model produced promising
outputs. Zhu et al. [3] implemented probabilistic long short-term memory (LSTM) tech-
niques combined with Gaussian processes (GP) to predict daily streamflow in the Upper
Yangtze River (China). Their analysis demonstrated that the proposed model delivered
satisfactory predictions. Analysis has proven that the proposed model exhibits satisfactory
predictions. Yaseen et al. [4] implemented a hybrid neural network combined with rolling
mechanism and gray model algorithms to predict flow over multiple time horizons. The
findings indicated that the hybrid RMGM-ERNN model outperformed the hybrid RMGM-
BP model in terms of prediction accuracy [5]. A combination of adaptive neuro-fuzzy
inference system (ANFIS) and particle swarm optimization (PSO) algorithm was applied to
predict streamflow in India. This study utilized various parameters, including precipitation,
temperature, humidity, and infiltration loss, to enhance model performance. The results
showed that the ANFIS-PSO model outperformed both the standalone ANFIS and artificial
neural network (ANN) models in terms of reliability and accuracy.

Shu et al. [6] evaluated the accuracy of extreme learning machine (ELM), convolu-
tional neural network (CNN), and ANN models based on various graphical approaches
and statistical metrics to create models and predict river flow for the Huanren Reservoir
and Xiangjiaba Hydroelectric Power Plant in China. The results demonstrated that the
CNN model outperformed both ELM and ANN. Lin et al. [7] suggested the hybrid DIFF-
FFNN-LSTM model by linking align ANN, first-order difference (DIFF), and LSTM models
to predict hourly stream flow. The DIFF-FFNN-LSTM model achieved high-accuracy
statistical outputs for hourly flow predictions in the Andun Basin of China. Khosravi
et al. [8] compared the daily flow prediction performance of BAT-based algorithms, such
as multilayer perceptron (MLP-BAT), ANFIS-BAT, SVR-BAT and random forest (RF-BAT),
and CNN-BAT algorithms, in the Korkorsar basin in northern Iran. Their analysis revealed
that the CNN-BAT algorithm outperformed the other models. Forghanparast and Moham-
madi [9] compared the accuracy of CNN, LSTM, ELM, and Personal Attention LSTM in
the monthly flow forecast of the Texas Colorado River. The models also evaluated river
water scarcity and flood conditions. Analysis results indicate that the ELM model is more
ineffective in capturing extreme flow states than deep learning models. Haznedar et al. [10]
applied the PSO-LSTM approach to combine monthly flows in the Zamantı and Eğlence
rivers in the Seyhan Basin. The prediction results were compared with the ANFIS model
to validate the proposed approach’s effectiveness. As a result, it has been proven that the
PSO-LSTM approach exhibits promising results in flow estimation. Katipoğlu [11] studied
the prediction of streamflow of Amasya, integrating a discrete wavelet transform (DWT)
and ANN model. The study demonstrated that monthly streamflow could be accurately
forecasted using prior rainfall, temperature, and streamflow data, along with the Coiflet 5
mother wavelet and the ANN hybrid model. Furthermore, Katipoğlu et al. [12] introduced
advanced hybrid models combining the artificial bee colony (ABC) algorithm with ANN
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(ABC-ANN) and Local Mean Decomposition (LMD) with ABC-ANN (LMD-ABC-ANN).
These models were applied to predict streamflow at stations in Ordu, Rize, and Trabzon in
the Eastern Black Sea Region of Türkiye.

In Algeria, the prediction of streamflow in mountainous basins is and will become
an essential hydrological task. ML models have become increasingly popular for making
such forecasts in recent years. Abda et al. [13] also proposed flow models based on soft
computing techniques to predict daily flows in the Oued Sebaou basin in northern Algeria.
They used random forest (RF), ANN, and locally weighted linear regression (LWLR). The
prediction results demonstrated that RF was the superior algorithm for both the training and
validation stages. Moreover, compared to a single ANN model based on backpropagation
and the Bayesian regularization algorithm, Tikhamarine et al. [14] examined the efficacy
of a hybrid ANN model combined with discrete wavelet transform (DWT) compared to a
single ANN model based on backpropagation and the Bayesian regularization algorithm.
Monthly flow data from the Bouchegouf gauging station in the Seybouse basin were used
for the analysis. The results indicated that the hybrid model, combining DWT and ANN,
outperformed the standalone ANN model. This suggests that the hybrid model may be a
valuable resource for addressing a variety of prediction challenges. Also, through a study
conducted in the semi-arid zone of Algeria’s northern wadi, Beddal et al. [15] employed
monthly hydrometric data collected between July 1983 and May 2016 to develop a multiple
linear regression (MLR) model and back propagation neural network (BPNN) model to
predict the discharge of the wadi Hounet sub-basin. The prediction results demonstrated
that the BPNN model outperformed the MLR model in both the learning and validation
stages in terms of performance and accuracy. The best model may be identified by looking
at the NSE, R, and RMSE values for training and validation. Soil and Water Assessment
Tool (SWAT) and MIKE SHE models are two other hydrological tools that are utilized for
streamflow prediction [16]. Using time series forecasting approaches, researchers have
forecasted and analyzed water level patterns in Bern and Philadelphia (PA) [17,18]. Kartal
et al. [19] predicted streamflow for Kızılırmak Baisn of Türkiye via integrating cognitive
approaches and meteorological variables (precipitation, temperature, relative humidity,
wind speed). However, inaccurate remote sensing data are necessary for tributaries and
snow-fed rivers; the underlying mechanism is very non-linear, and the data are noisy or
lacking. This makes predictive modeling very difficult. In order to manage water resources,
lessen the impact of flooding, and reduce or prevent disasters, it is crucial to predict river
flow rates using models. Particularly in times of severe weather and climate change, precise
flow forecasts are essential for effective planning and decision-making [20]. Fatemeh and
Kang [21] state that one possible approach to increase the precision of river forecasts is to
combine cognitive algorithms with meteorological data.

Due to the limited information available in the literature, this study aimed to analyze
the predictive performance of different machine learning and deep learning models in the
context of seasonal rivers in arid areas.

Dry rivers exhibit intermittent or seasonal flow patterns and pose challenges for ac-
curately predicting streamflow because of their dynamic nature. Traditional hydrological
models frequently encounter difficulties in effectively capturing dry riverine systems’ com-
plexity and non-linear nature. This research mainly focuses on comparing the performance
of LSTM, CNN-RNN, and GMDH models in predicting monthly streamflow in dry rivers,
employing advanced soft computing techniques.
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2. Materials and Methods
2.1. Study Area and Data

The study region, the Wadi Mina Basin, is located in northwest Algeria (Figure 1). It is
located between 00◦22′59′′ E and 01◦09′02′′ E and between 34◦41′57′′ N and 35◦35′27′′ N.
Its area is 4900 km2, and its elevation ranges from 164 to 1327 m. The terrain is rugged and
complex, and the climate is continental, with significant temperature fluctuations. The main
wadi extends 135 km from south to north. Wadi Mina is the principal and final tributary
on the left bank of the Wadi Chelif. Its boundaries are the Ouancharis Mountains in the
northeast, the Bani Chougrane Mountains in the northwest, the Saida Mountains in the
west, the Frenda Mountains in the southeast, and the high plateau in the south. In addition,
for vegetation cover, the scrubs make up 32% of the ground vegetation cover, followed
by wood and cereal crops at 35.8%. The annual temperature fluctuates between 16 and
19.5 degrees Celsius on average. Most of the 500–250 mm of annual precipitation falls be-
tween November and March [22]. For this study, monthly runoff data from five hydrometric
stations were collected between 1974 and 2009 by the Agence Nationale des Ressources
Hydriques (ANRH) (Table 1 and Figure 1). Furthermore, the Mann–Whitney test, linear
regression, and the double mass curve procedures were used to check the homogeneity of
the data and guarantee their quality. The method detected some inhomogeneities, and the
erratic data were adjusted with data from reliable adjacent stations [23]. (Tables 1 and 2
and Figure 1).
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Table 1. Characteristics of gauging stations.

ID Name Elevation (m) Basin Area (km2) Latitude Longitude

013401 Sidi Abdelkader
Djillali 241 480 35◦28′46.05′′ N 0◦35′19.99′′ E

013001 Kef Mehboula 502 680 35◦18′05.21′′ N 0◦50′47.89′′ E
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Table 2. Training options of the LSTM model.

Parameters of LSTM Model

Number of Features = 1 Max. Epochs = 200 Learning Rate Schedule = piecewise’
Number of Responses = 1 Gradient Threshold = 1 Learn Rate Drop Period = 125

Number of Hidden Units = 200 Initial Learning Rate = 0.005 Learn Rate Drop Factor = 0.2
Train algorithm: Adam Verbose = 0

2.2. Long Short-Term Memory (LSTM)

LSTMs represent a significant improvement over RNNs for series forecasting since
the method addresses the traditional RNNs’ vanishing gradient problem by integrating
gate functions and state dynamics [24,25]. The structure of the LSTM model is presented in
Figure 2. The LSTM has memory blocks through layers. Each layer consists of repetitively
linked memory cells and forget, input, and output gates [25,26]. The input gate facilitates
the addition of information to the cell state as follows: (1) the input values inserted into the
cell state are regulated by the sigmoid function, (2) a vector containing all possible values
to be inserted into the cell state is generated by the hyperbolic tangent function, and (3) the
regulated filter is multiplied by the vector just generated, and the information is inserted
into the cell state. The forget gate, which uses a multiplication filter, discards information
that is unnecessary for the LSTM to interpret the processes or deemed less significant. The
output gate selects relevant information from the present cell state and outputs it.
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Assume the input time series data are x = (x1, x2, . . . , xt−1, xt). A typical LSTM
cell comprises hyperbolic tangent and sigmoid (σ) layers, along with multiplication (×)
and pointwise summation (+) operations. It can be used to estimate the target variables
y = (y1, y2, . . . , yt−1, yt) by refreshing the gates (output gate yt, forget gate ft, and input
gate it) on the memory cell ct, from time t = 1 to T. It is mathematically given below [25,27]:

it = σ(wixt + Riht−1 + bi) (1)
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ft = σ
(

w f xt + R f ht−1 + b f

)
(2)

yt = σ
(
wyxt + Ryht−1 + by

)
(3)

ct = ftct−1 + itct (4)

ct = σ(wcxt + Rcht−1 + bc) (5)

ht = ytσ(ct) (6)

The values bi, b f , and by represent bias vectors for the input, forget, and output gates,
respectively. The matrices wi, w f , and wy correspond to the weights connecting the input,
forget, and output gates to the input. The vector xt represents the input data, while ht
represents the output vector. Ri, R f , and Ry indicate the weight matrices from the input,
forget, and output gates to the input, respectively. The variables ct−1 refer to the previous
cell state, and ht−1 is the output vector of the previous cell state.

The training parameters of the LSTM model are presented in Table 2. This study uses
the LSTM layer with 200 hidden units to train the LSTM model, and the algorithm (adam)
is used as the solver. The gradient threshold value was used as 1 to prevent the gradients
from bursting. The initial learning coefficient was chosen as 0.005, and after 100 epochs, the
learning rate was multiplied by a factor of 0.2.

2.3. Convolutional Neural Network (CNN)

The CNN model consists of hidden, input, and output layers. Typically, a 3-D array
input is supplied to a convolution layer in which the dimensions are denoted by number of
channels, weight, and height. Supposing it is a 1-D input x = (xt)

N−1
t=0 of size N with no

zero, the feature output map is produced with the input by a M1 3-D filter set, w1
h for h = 1,

. . ., M1, where the filters are implemented in the input channels [24,27].

a1(i, h) =
(

w1
h × x

)
(i) = ∑+∞

−∞ w1
h(j)× (i − j) (7)

in which a1 ∈ R1×N−k+1×M1 represents the output of the first convolutional layer, and
w1

h ∈ R1×k×1 denotes the filter weights. The resulting feature map then undergoes an
activation function h(.), which introduces non-linearity. The output of the first layer is
presented as: f 1 = h(a 1

)
.

The hidden layer contains pooling (PL), convolutional (CL), and fully connected (FCL)
layers. The CL automatically extracts features in different regions of the raw input or
intermediate feature maps via learnable filters [28]. The filter uses the shared weight matrix
to apply the convolution process [29]. The PL turns all values in the pooling window into a
single value. Furthermore, the computational cost of the training process is decreased by
this layer. This layer addresses any overfitting problem [30].

For the hidden layer l = 2, . . ., L, the feature map of input f l−1 ∈ R1×Nl−1×Ml−1 , where
1 × Nl−1 × Ml−1 is the size of the output filter map from the previous convolution with
Nl−1 = Nl−2 − k + 1, is converted with a set of M1 filters w1

h ∈ R1×k×Ml−1 , h = 1, . . ., M1, to
produce a feature map a1 ∈ R1×Nl×Ml as below [25,28].

a1(i, h) =
(

wl
h × f l−1

)
(i) = ∑Ml−1

j=−∞ w1
h(j, m) f l−1(i − j, m) (8)

The FCL smooths the high-level deduced features learned by the CL and combines
features to gain the final output. The obtained values of feature are then evaluated by
passing them through non-linear activation functions f 1 = h

(
a1). After CL, the network

output will be the matrix f L, whose size is based on the number of filters and filter size
utilized in the final layer [25,28]. The structure of the CNN model is presented in Figure 3.
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Table 3 shows the parameters used in training the CNN-RNN model. Accordingly,
the past 1- and 2-months’ time series were used in the streamflow estimation. Levenberg–
Marquardt algorithm was used in the training of the network. Levenberg–Marquardt
optimization speeds up the error calculation process by applying the least squares method.
While training the model, the Adam algorithm was used as a solver. In the setup of the
CNN-RNN model, 70% of the streamflow data are reserved for training and testing.

Table 3. Training options of the CNN-RNN model.

Parameters of CNN-RNN Model

Network architecture: CNN-RNN Horizon = 50 Learning rate = 0.1
Months to look back: 1, 2 Mini Batch Size = 48 Solver: Adam
Train Function = trainlm Max. Epochs = 250 Momentum constant = 0.25

2.4. Recurrent Neural Network (RNN)

LSTM, the recurrent neural network, can explore long-term dependencies among
related events over time. It was applied to several topics, such as weather forecasting [31],
droughts [32], and solar radiation [33]. The RNN avoids long-term dependencies [24,34],
which maintains data in a controller exterior to the normal flow by a new state unit. This
memory state block also occurs in a conventional neuron. In the hidden state, the forget
gates, output, and input permit RNN to evaluate and check the data flow in isolated chunks,
separating two portions known as working memory and memory cells. The memory cell is
in charge of the antecedent data from the previous hidden state (i.e., ht−1) and new input
data, xt, by the forget gate (g):

gt = σ
(
wg × [ht−1, xt] + bg

)
(9)

in which the working memory (ht) is utilized as an output gate to govern the proportion
of the current memory ct.

∼
c t is an updated state generated by xt and ht−1 with the help of

tanh layer. It can be written as follows:

jt = ρ
(
vj × [ht−1, xt] + φj

)
(10)

∼
c t = tanh(vc × [ht−1, xt] + φc) (11)
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Both ct−1 and ct are obtained in the forget gate (g) and input gate (j), as follows:

ct = gt × ct−1 + it ×
∼
c t (12)

There are two stages involved in processing the output. The output gate, known as a
novel gate, determines the relevant components. The ct state is activated using the tanh
function and then adjusted by multiplying it with the obtained ot to produce the desired
output ht. In other words, the output gate helps select the relevant information, while the
ct state is modified and combined with the output gate to generate the final output ht.

ot = σ(v0 × [ht−1, xt] + b0) (13)

ht = ot × tanhh(ct) (14)

in which ρ() is the sigmoid activation function, φg, φj, φc, φ0 are bias vectors, and
vg, vj, vc, v0 are weight matrices.

2.5. The Group Method of Data Handling Model (GMDH)

The GMDH algorithm was pioneered by Ivakhnenko [35] to set models and identify
complex systems. It was defined to obtain higher-order regression polynomials for solving
problems related to modeling and classification. The inputs and output variables can be
clarified by complex polynomial series by the Volterra series, called the Kolmogorov–Gabor
polynomial [35]:

y = a0 + ∑M
i=1 aixi + ∑M

i=1 ∑M
j=1 aijxixj + ∑M

i=1 ∑M
j=1 ∑M

k=1 aijkxixjxk + . . . (15)

where x is the system’s input, M is the number of inputs, and a is the coefficients or weights.

y = y0 + a1xi + a2xj + a3xixj + a4x2
i + a5x2

j (16)

The Gauss normal equation is resolved to acquire a value for each m model. The ai of
nodes in each layer are defined as below:

A =
(

XTX
)−1

XTY (17)

where
Y = [y1y2 . . . yM]T , A = [a0, a1, a2, a3, a4, a5] (18)

1 x1p x1q x1px1q x2
1p x2

1q

1 x2p x2q x2px2q x2
2p x2

2q
...

...
...

...
...

...
1 xMp xMq xMpxMq x2

Mp x2
Mq

 (19)

where M represents the count of real values. The primary function of GMDH relies on
the forward propagation of the signal through nodes, akin to neural networks. Each layer
comprises elementary nodes that relay the output to the nodes in the succeeding layer as
shown in Figure 4. The fundamental steps involved in conventional GMDH modeling
are as follows [36,37]. The following guidelines involve (1) selecting normalized data
X = {x1, x2, . . ., xM} as input variables and separating data into training and testing data
sets; (2) setting MC2 = M(M − 1)/2 new variables in the training data set and the regression
polynomial for first layer by forming the quadratic expression, which is nearly equal to the
output (y) in Equation (16); (3) identifying the contributing nodes at each hidden layer by
analyzing error values and replacing the least useful variable with new columns of Z in
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place of old columns (X); (4) conducting this process by repeating steps (2) and (3). The
iterative computation is finalized if the test data errors in each layer do not decrease.
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Figure 4. The framework of GMDH.

2.6. Selection of Model Input Combinations

PACF graphs of streamflow values are presented in Figure 5. The delayed streamflow
values of these graphs exceeding the confidence limit are presented as input to the models.
Accordingly, streamflow values with a delay of 2 months at Sidi Abdelkader Djillali station
and a delay of 1 month for Kef Mehboula station were presented as inputs to the AI models.
This study used newly developed LSTM, CNN-RNN, and GMDH techniques to compare
the performance of DL and ML approaches in estimating monthly streamflow values. In
the setup of the models, 70% of the data were chosen as training and the rest as testing.
Partial autocorrelation graphs (PACF) were used to select model input combinations. The
performances of the established models were compared according to MSE, MAE, MBE, and
R values.
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2.7. Measurement of Model Prediction Success

The preciseness of LSTM, CNN, RNN, GMDH, and CNN-RNN models was assessed
via some statistical metrics to forecast the streamflow. This study used four different
statistical metrics to compare the estimation performance of streamflow prediction. The
models’ performance was assessed with mean square error (MSE), mean absolute error
(MAE), mean bias error (MBE), and the correlation coefficient (R). MSE represents the
mean square errors between the predicted values and the true values. This metric is an
effective tool for evaluating the overall performance of the model because it penalizes large
errors more. MAE calculates the mean of the absolute values of the differences between
the predicted values and the observations. This metric makes it easier to interpret the
magnitude of the errors and prevents positive or negative errors from canceling each other
out. Small error values indicate the accuracy and consistency of the models. MBE is a
metric used to detect systematic errors in the model. It determines the tendency of the
predicted values to deviate from the observations (positive or negative). A positive MBE
indicates that the model generally overestimates the values; a negative MBE indicates that
it underestimates the values. The correlation coefficient measures the linear relationship
between the predicted and observed values. An R value close to 1 indicates that the model
represents the observations with high accuracy. This metric is important in understanding
the strength of the relationship between variables, as well as evaluating the overall accuracy
of the predictions. Equations of statistical metrics are commonly interpreted in several
studies [25,38]. R is the linear regression strength between actual and estimated values. The
relationship is the strongest when R = 1. The MAE and MSE provide information about the
preciseness of the models. The following equations materialize when employed to derive
these metrics.

R =

√√√√∑n
i=1(oi − omean)

2 − ∑n
i=1(oi − pi)

2

∑n
i=1(oi − omean)

2 (20)

MSE =
1
N ∑n

i=1 (p i − oi)
2 (21)

MAE =
1
N ∑n

i=1|(pi − oi)| (22)

MBE =
1
N ∑n

i=1(pi − oi) (23)

in which o is the actual value, and p is the predicted value; oi and pi are the actual and
predicted ith value. Error values near 0 and R show the most accurate estimation results.

3. Results
3.1. CNN-RNN Results

In this part of the study, extreme flow values were estimated by combining CNN and
RNN. The previous 1- and 2-month data were used as input to the model. In this approach,
the CNN algorithm was utilized for feature extraction, and RNN was employed to estimate
streamflow values. MATLAB 2019a was used to develop all models.

Convolutional layers reveal the local characteristics of the data by shifting the inputs
using filters. Pooling layers reduce the size of the data and allow features to be expressed
more generally, thus enhancing the success of the model. RNN is an effective approach for
capturing temporal or serial dependencies of data. As a result, the future situation can be
modeled based on past data. Figure 6 shows the training development of the CNN-RNN-
based streamflow prediction model constructed at Sidi AEK Djillali and Kef Mehboula
stations. As shown in the Figure 6, with the increase in the number of iterations, the error
values and loss values decrease, indicating the model’s successful training.
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Figure 6. Training development of the CNN-RNN algorithm at (a) Sidi AEK Djillali and (b) Kef
Mehboula stations.

In Figure 7, streamflow time series in the test phase are compared to show the perfor-
mance of the CNN-RNN algorithm. Accordingly, it is seen that generally close estimates
are obtained at the Sidi AEK Djillali station, except for the peak values. In addition, esti-
mation results more comparable to reality are obtained at Kef Mehboula station than at
other stations. However, peak values could not be estimated. For this reason, the models’
performances are generally seen as poor. The near-zero streamflow values can explain this
situation due to droughts in the basin.
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Figure 7. Time series estimation of the CNN-RNN model in the testing phase at (a) Sidi AEK Djillali
and (b) Kef Mehboula stations.

Figure 8 shows the scatter diagrams of the CNN-RNN model during the testing phase.
Accordingly, although the data at Sidi AEK Djillali station are far from the regression line,
the data at Kef Mehboula station approach the regression line a little. In addition, the
correlation coefficients of the models are 0.54 at Sidi AEK Djillali station, while it is around
0.60 at Kef Mehboula station. When the actual and estimation data are examined, the flow
values above 1 cannot be estimated well. However, other values have been estimated quite
successfully.



Atmosphere 2025, 16, 106 12 of 19

Atmosphere 2025, 16, x FOR PEER REVIEW 12 of 20 
 

 

reason, the models’ performances are generally seen as poor. The near-zero streamflow 
values can explain this situation due to droughts in the basin. 

  

Figure 7. Time series estimation of the CNN-RNN model in the testing phase at (a) Sidi AEK Djillali 
and (b) Kef Mehboula stations.  

Figure 8 shows the scatter diagrams of the CNN-RNN model during the testing 
phase. Accordingly, although the data at Sidi AEK Djillali station are far from the 
regression line, the data at Kef Mehboula station approach the regression line a little. In 
addition, the correlation coefficients of the models are 0.54 at Sidi AEK Djillali station, 
while it is around 0.60 at Kef Mehboula station. When the actual and estimation data are 
examined, the flow values above 1 cannot be estimated well. However, other values have 
been estimated quite successfully. 

 

  

Figure 8. Scatter plot of test data set of the CNN-RNN model at (a) Sidi AEK Djillali and (b) Kef 
Mehboula stations. 

3.2. GMDH Results 

During the training of the GMDH model, Maximum Number of Neurons in a Layer: 
25, Maximum Number of Layers: 5, and Selection Pressure: 0 were used. Figures 9 (a) and 
(b) show the scattering diagram of the test results obtained at Sidi AEK Djillali and Kef 
Mehboula stations, respectively. Accordingly, although the dead are generally gathered 
around the regulation line, it is noteworthy that the deviations increase as the data values 
increase.  

Figure 8. Scatter plot of test data set of the CNN-RNN model at (a) Sidi AEK Djillali and (b) Kef
Mehboula stations.

3.2. GMDH Results

During the training of the GMDH model, Maximum Number of Neurons in a Layer:
25, Maximum Number of Layers: 5, and Selection Pressure: 0 were used. Figure 9a,b show
the scattering diagram of the test results obtained at Sidi AEK Djillali and Kef Mehboula
stations, respectively. Accordingly, although the dead are generally gathered around the
regulation line, it is noteworthy that the deviations increase as the data values increase.
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Figure 9. Scatter plot of test data set of the GMHD model at (a) Sidi AEK Djillali and (b) Kef Mehboula
stations.

In Figure 10, streamflow time series in the testing phase are presented to evaluate the
performance of the GMDH algorithm in stream estimation. Accordingly, it is seen that the
streamflow values at Sidi AEK Djillali station are quite close to reality. At Kef Mehboula
station, it is seen that it cannot predict the maximum and minimum values. However, it is
seen that it predicts the current values close to the mean quite satisfactorily. In addition,
when the error intakes are examined, it has been determined that the models generally
perform poorly in the pih values. In addition, as can be seen from the histogram graphs of
the errors, the errors conform to the normal distribution.
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Figure 10. Time series estimation of the GMDH model in the testing phase at (a) Sidi AEK Djillali
and (b) Kef Mehboula stations.

3.3. LSTM Model Results

The LSTM network is a network that processes input data and updates the RNN state.
The RNN state is able to use the information remembered at all previous time steps. In this
study, the previous streamflow data time steps are presented to the LSTM model, and the
time series’ next values are estimated.

Figure 11 shows the training phase of the LSTM model at the Sidi AEK Djillali station.
Accordingly, it is seen that the prediction error of the model decreases as the number of
iterations increases. A total of 200 iterations were used in the model setup. In addition, it
was emphasized that the training phase was carried out effectively since the errors became
quite horizontal after the 160th iteration. In Figure 11b, the training phase of the LSTM
model at the Kef Mehboula station is presented. In streamflow time series estimation with
the LSTM network, at each time step of the input sequence, it tries to predict the value
of the next time step. It predicts steps one by one by updating the state of the network
and using the predictAndUpdateState function on each prediction. When the training
error propagation is evaluated, it is seen that the error values continue to move in a fairly
horizontal state after the 180th iteration. This indicates the adequacy of training.
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The state of the network is updated according to the predicted and observed values.
The network is reset with the resetState command to evaluate the current estimation
accuracy. Thus, the predictive success of the network is tested. In Figure 12, the accuracy of
the LSTM algorithm is evaluated in estimating flow stream time series in the test phase.
Accordingly, both stations generally showed poor prediction performance, except for the
minimum values. In addition, significant deviations from the actual current values were
observed in both stations, especially at the maximum current values.
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3.4. Evaluation of the Performance of Models

Various statistical values were examined to compare the performances of DL and
ML models. Accordingly, the lowest error values (MSE, MAE, and MBE) and the closest
correlation (R) values to 1 indicate the optimum model. The performance outputs of the DL
and ML models established in Table 4 are presented. Accordingly, while the most accurate
results were obtained according to the GMDH model at Sidi AEK Djillali station, high
errors were observed in the LSTM model. In addition, while the most accurate current
estimation was made with the CNN-RNN model at Kef Mehboula station, the weakest
estimation performance was obtained with the LSTM model.

Table 4. Model performance evaluation.

MSE MAE MBE R

Sidi AEK Djillali station
LSTM 0.339 0.317 0.053 0.102

CNN-RNN 0.166 0.217 −0.017 0.542
GMDH 0.132 0.185 −0.008 0.636

Kef Mehboula station
LSTM 0.685 0.489 −0.041 0.039

CNN-RNN 0.298 0.335 −0.018 0.597
GMDH 0.285 0.349 0.038 0.581

Note: Bold terms indicate the optimum model.

The superior performance of the GMDH model may be due to its ability to establish
relationships in data sets with complex characteristics. This model works on the principle
of iteratively deriving polynomials that explain the relationship with the data. The low
MSE (0.132) and MAE (0.185) values at Sidi AEK Djillali station may have enabled the
model to produce results that are compatible with the observations. In the learning process
of GMDH, model complexity is optimized by selecting appropriate polynomials. Data
density and distribution at Sidi AEK Djillali and Kef Mehboula stations may affect the
model performance. It can be thought that the data at Sidi AEK Djillali station have a more
balanced distribution and, therefore, GMDH provides superior performance. The low error
values at Sidi AEK Djillali station indicate that the hydrological data structure of this station
can be highly compatible with the mathematical approach of GMDH. GMDH provides
effective results on missing data or non-linear relationships between variables. The higher
correlation coefficient (R = 0.636) at this station supports that the model establishes a correct
relationship with the station data.
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4. Discussion
This study aims to predict the monthly streamflow time series using LSTM, CNN-

RNN, and GMDH algorithms. For this purpose, the effect of AI and DL algorithms on
monthly streamflow forecasting performance was analyzed.

Dehghani et al. [39] used convolutional LSTM (ConvLSTM), LSTM, and convolutional
neural network (CNN) models to predict short-term current. They found that these models
predicted short-term flow with high accuracy; the LSTM model performed better in small
basins with well-spatially distributed precipitation stations, while ConvLSTM and CNN
models were more effective in medium to high flows and large river basins. The findings
obtained from the study by Dehghani et al. [39] overlap in terms of the fact that the CNN
and LSTM models used are the same, and the CNN model provides good results. However,
these findings do not overlap because the short-term flow estimation was used in the study.

Forghanparast and Mohammadi [9] used LSTM, CNN, and Self-Attention LSTM
(SA-LSTM) algorithms to predict monthly flows and compared them to the basic extreme
learning machine (ELM) model. As a result, they determined that LSTM-based models
from DL algorithms showed higher accuracy and better stability than ELM. The results of
this study coincide with Forghanparast and Mohammadi’s [9] monthly flow estimation
study in establishing models such as CNN and LSTM algorithm, but not in terms of LSTM-
based models giving better results. This may be due to the arid climate of the study area.
Khodakhah et al. [40] investigated ANFIS, seasonal autoregressive integrated moving
average (SARIMA), least squares support vector machine (LSSVM), and GMDH algorithms
to forecast the monthly streamflow, and they determined that the GMDH algorithm gave
the best results among the ML algorithms. The findings obtained from the study overlap
with the study of Khodakhah et al. [40] in that the GMDH algorithm produces one of the
most effective results in monthly flow estimation.

Ghimire et al. [41] used the CNN-LSTM hybrid model derived from LSTM and CNN
models to predict short-term hourly streamflow. Their results showed that the proposed
hybrid CNN-LSTM model achieved highly accurate short-term predictions with significant
practical value. This study overlaps with the analysis of the use of CNN and LSTM models
in flow forecasting in the study of Ghimire et al. [41] but differs fundamentally due to the
use of short-term hourly flow forecasting. Additionally, the reliable results of the CNN-
RNN hybrid model in this study align with the robust performance of the CNN-LSTM
hybrid model.

Cheng et al. [42] researched the LSTM and ANN algorithms to predict daily and
monthly flow over a long preparation period. It has been determined that the LSTM
algorithm gives better results than the ANN algorithm in daily flow prediction, while it
gives bad results in monthly flow forecasting. This study coincides with the poor results
obtained from the LSTM model in the study of Cheng et al. [42] used in monthly flow
estimation. Sahoo et al. [43] used the LSTM-recurrent neural network (LSTM-RNN) hybrid
model to forecast the low-streamflow time series. They found that LSTM-RNN is a reliable
algorithm for low-current estimation. The findings obtained from the study of Sahoo
et al. [43] overlap in terms of the estimation of long-term low currents and the reliable
results of the hybrid models used. However, different hybrid models based on RNN were
used in both studies.

As a result of the estimation analysis of the algorithms used in the study, although the
researched region is an arid region, it has been concluded that AI and DL algorithms allow
the monthly streamflow time series forecasts to be used effectively and reliably. The results
of Dehghani et al. [39], Khodakhah et al. [40], Forghanparast and Mohammadi [9], Ghimire
et al. [41], Cheng et al. [42], and Sahoo et al. [43] in the literature are compatible with the
presented research. Furthermore, Tian et al. [44,45] suggested that an ensemble method
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utilizing multiple deep learning (DL) algorithms exhibits greater robustness than individual
DL algorithms in forecasting atmospheric rivers; this hypothesis will be evaluated in our
subsequent research on streamflow prediction.

5. Conclusions
In this study, the accuracy of three AI algorithms is compared while predicting monthly

streamflow time series at the Sidi AEK Djillali and Kef Mehboula stations: the LSTM, CNN-
RNN, and GMDH. Mean square error (MSE), mean absolute error (MAE), mean bias
error (MBE), and the correlation coefficient (R) are the four metrics used to evaluate the
performance of the models. The results of the research are expressed as follows:

• At the Sidi AEK Djillali station, the GMDH model outperformed both the LSTM and
CNN-RNN models across all four evaluation metrics.

• The GMDH model registered MSE and MAE values of 0.132 and 0.185, respectively,
highlighting its enhanced predictive accuracy. Its R value of 0.636 demonstrates strong
alignment with observed data, and its minimal MBE of −0.008 indicates reduced bias.

• At the Kef Mehboula station, the GMDH and CNN-RNN models outperformed the
LSTM model. The CNN-RNN model had the most favorable MSE value of 0.285,
while the GMDH model performed best in MAE, scoring 0.335. Both models exhibited
strong correlation coefficients with observed data, with R values of 0.581 and 0.597,
respectively.

• The GMDH model showed a modest overestimation with a positive MBE (0.038).
Overall, the GMDH model performed best at both stations, but all three models
demonstrated promise for predicting monthly streamflow time series.

Future research could incorporate additional climate variables into the models to
enhance the precision and comprehensiveness of predictions. Additionally, assessing
these models in diverse geographical settings may provide insights into their broader
applicability across hydrological conditions. Moreover, extending model inputs to include
high-resolution remote sensing data (e.g., radar rainfall estimates or satellite-derived soil
moisture) could further enhance the fidelity of the simulations. Evaluating the performance
of the models under extreme hydro-climatic scenarios (e.g., flash floods or prolonged
droughts) may also uncover critical thresholds and guide risk-based water resource man-
agement. In addition, implementing advanced hyperparameter optimization methods (e.g.,
genetic algorithms or adaptive learning rates) could lead to faster convergence and more
stable prediction outcomes, particularly in large-scale applications.
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Abbreviations

ConvLSTM Convolutional LSTM
CNN Convolutional neural networks
LSTM Long short-term memory
RNN Recurrent neural network
MLR Multiple linear regression
PSO Particle swarm optimization
ANFIS Adaptive neuro-fuzzy inference system
GMDH Group method of data handling
MSE Mean square error
MBE Mean bias error
MAE Mean absolute error
R Correlation coefficient
ML Machine learning
BN Bayesian networks
GEP Gene expression programming
AR Autoregressive
ARMA Autoregressive moving average
RT Random tree
KNN K-nearest neighbor
GP Gaussian process
ANN Artificial neural network
ELM Extreme learning machine
MLP Multilayer perceptron
RF Random forest
DWT Discrete wavelet transform
ABC Artificial bee colony
LMD Local mean decomposition
LWLR Locally weighted linear regression
SARIMA Seasonal autoregressive integrated moving average
LSSVM Least squares support vector machine
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11. Katipoğlu, O.M. Monthly streamflow prediction in Amasya, Türkiye, using an integrated approach of a feedforward backpropa-
gation neural network and discrete wavelet transform. Model. Earth Syst. Environ. 2023, 9, 2463–2475. [CrossRef]
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