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Abstract: Temperate glaciers in the Kangri Karpo region of the southeastern Qinghai–Tibet
Plateau (QTP) have experienced significant ablation in recent decades, increasing the risk
of glacier-related hazards and impacting regional water resources. However, the spatial
and temporal pattern of mass loss in these glaciers remains inadequately quantified. In
this study, we used ASTER L1A stereo images to construct a high-resolution elevation
time series and provide a comprehensive spatial–temporal assessment of glacier elevation
change from 2000 to 2024. The results indicate that almost all glaciers have experienced
rapid ablation, with an average surface elevation decrease of −18.35 ± 5.13 m, correspond-
ing to a rate of −0.76 ± 0.21 m yr−1. Glaciers in the region were divided into the northern
and southern basins, with average rates of −0.79 ± 0.17 m yr−1 and −0.72 ± 0.13 m yr−1,
respectively. A notable difference in acceleration trends between the two basins was ob-
served, with the elevation rate increasing from −0.78 ± 0.17m yr−1 to −1.04 ± 0.17 m yr−1

and from −0.52 ± 0.13 m yr−1 to −0.92 ± 0.13 m yr−1, respectively. The seasonal cycle was
identified in glacier surface elevation change, with an accumulation period from November
to March followed by a prolonged ablation period. The seasonal amplitude decreased
with elevation, with higher elevations exhibiting longer accumulation periods and less
ablation. Correlation analysis with meteorological data indicated that higher summer
temperatures and increased summer rainfall intensify elevation loss, while increased spring
snowfall may reduce ablation. Our analysis highlights distinct variations in glacier eleva-
tion changes across different locations, elevations, and climatic conditions in the Kangri
Karpo region, providing valuable insights into glacier responses to environmental changes
on the Tibetan Plateau.

Keywords: remote sensing; ASTER; Kangri Karpo; glacier change

1. Introduction
According to the IPCC’s sixth assessment report, the global air temperature was 1.1 ◦C

higher in 2011–2020 than in 1850–1900, leading to irreversible hydrological changes driven
by glacier melting [1]. The Qinghai–Tibet Plateau (QTP), often referred to as the “Water
Tower of Asia”, holds the largest collection of glaciers outside the polar regions, supplying
essential freshwater to some of the most densely populated areas on Earth [2–4]. Over the
last half-century, temperatures on the QTP have increased at a rate of 0.3–0.4 ◦C (10 yr)−1,
approximately twice the global rate. Under global warming, it is shown that glaciers in the
QTP experience continuous and accelerating mass loss but with distinct spatial–temporal

Atmosphere 2025, 16, 110 https://doi.org/10.3390/atmos16010110

https://doi.org/10.3390/atmos16010110
https://doi.org/10.3390/atmos16010110
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/atmosphere
https://www.mdpi.com
https://orcid.org/0009-0000-0437-514X
https://doi.org/10.3390/atmos16010110
https://www.mdpi.com/article/10.3390/atmos16010110?type=check_update&version=2


Atmosphere 2025, 16, 110 2 of 19

variability across its subregions. In particular, the glaciers in the southeastern QTP have
suffered from severe retreat [5–9].

Glaciers in the southeastern QTP are temperate, with annual rainfall ranging between
1000 and 3000 mm, primarily from the Indian monsoon [10–13]. It is reported that the
summer air temperature around the equilibrium line ranges from 1 to 5 ◦C, while that of the
glacier surface varies between 0 and 4 ◦C. This leads to the relatively large glacier ablation
in summer [10,14]. In recent decades, the observed mass loss rate in the southeastern QTP
has surpassed the global average, about three times the average of the QTP [6]. The Kangri
Karpo region in the southeastern QTP is one of the most humid areas in the plateau and
hosts a dense concentration of temperate glaciers [15]. Studies have shown that many
glaciers in this region have been retreating since the early 20th century, raising concerns
about long-term water availability and increasing the risk of glacier-related disasters [16,17].
Notably, two catastrophic glacier collapse events have been recorded in the vicinity of the
Kangri Karpo [18]. Furthermore, a recent study highlights the increasing outburst flood risk
of Guangxieco Proglacial Lake due to rapid glacier changes in the region [19]. However,
due to the high altitude and complex terrain, it is challenging to conduct fieldwork, and
there are limited reports from in situ observations in this region.

With the development of remote sensing technology, remote sensing data have been
applied to estimate the mass balance of glaciers. Three main approaches were used: satellite
altimetry, satellite gravimetry, and digital elevation model (DEM) differencing. Satellite
altimetry usually has a higher accuracy and was originally designed to measure sea levels
and ice sheets. But due to the sparse data and complex terrain, it is challenging to use
repeat along-track and crossover analysis methods for alpine glaciers. It is often more
suitable to select relatively flat glacier tongue areas or use the bin cluster and other statistical
approaches to estimate elevation changes [9,20–24]. Satellite gravimetry measurements or
Gravity Recovery and Climate Experiment (GRACE) measurements have better temporal
continuity but typically very coarse spatial resolution. Moreover, it can be leaked by other
signals, such as groundwater, lakes, and other water storage [25,26]. DEM differencing,
which usually derives elevation changes from the difference of two DEMs at different time
epochs, provides high-spatial-resolution results [27–31]. However, its temporal resolution
is limited. To overcome this problem, Hugonnet et al. [32] developed a method to construct
continuous elevation time series by filtering outliers and interpolating from all available
DEMs. Some recent studies also aimed to achieve better spatial–temporal results by
combining multiple approaches [26,33–35].

The mass balance of glaciers was estimated in the Kangri Karpo region using different
approaches, covering varying time spans. Through in situ investigation, Yang et al. [36]
assessed the mass balance of the six glaciers in the Kangri Karpo and its surround-
ings, and negative mass balance was observed in all six glaciers between 2005/2006 and
2007/2008. Based on topographic maps, Shuttle Radar Topography Mission (SRTM), and
TerraSAR-X/TanDEM-X data, Wu et al. [27] found thinning rates of −0.27 ± 0.18 and
−0.79 ± 0.11 m yr−1 from 1980 to 2000 and from 2000 to 2014, indicating an acceleration
in glacier mass loss. Using ZY-3 satellite images and SRTM data, Ren et al. [28,37] de-
termined the thinning rate of −0.66 ± 0.24 m yr−1 between 2000 and 2017. Integrating
satellite altimetry, satellite gravimetry, and DEMs, Zhao et al. [35] found a thinning rate of
−1.16 ± 0.29 m yr−1 from 2000 to 2019 in the Eastern Bomi area.

In this study, we utilize updated ASTER L1A data and the method developed by
Hugonnet et al. [32] to provide better spatial–temporal results of mass balance in the Kangri
Karpo region from 2000 to 2024. We first constructed a continuous DEM time series and
then derived the elevation change rates, seasonal patterns, and acceleration trends of glacier
surface elevation across the region. We further showed the spatial–temporal variation of
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glacier elevation change in this region and analyzed its relationship with climate factors.
This study provides us with more details on the characteristics of glacier elevation change
in the Kangri Karpo region and also shows the response of glaciers to topography and
climate change.

2. Study Area and Data
2.1. Study Area

The Kangri Karpo mountain range is located in the southeastern QTP, approximately
280 km long in a northwest–southeast direction. It is bounded to the north by the Purlung
Tsangpo River and to the south by the Gongri-Gabo River. The Purlung Tsangpo River
separates the range from the towering Nyainqentanglha Mountains, while to the south of
the Gongri-Gabo River, the elevation decreases to 2000–3000 m This unique topography
forms a critical corridor into the QTP for the warm and humid southwest Indian monsoon,
which travels northward through the Yarlung Tsangpo and Chayu River valleys and deliv-
ers substantial precipitation to the Kangri Karpo region. The annual average precipitation
in the region is about 2500–3000 mm. It is reported that summer temperatures near the
glacier equilibrium line vary around 1 ◦C, and many glaciers are at the pressure melting
point, resulting in significant surface melting and rapid glacier velocity [15].

The study area is shown in Figure 1, between 29.0◦ N and 29.5◦ N in latitude and
between 96.3◦ E and 97.1◦ E in longitude. According to the Randolph Glacier Inventory
6.0 (RGI 6.0) [38], the region contains 127 glaciers, covering a total area of 719.01 km2, and
17 of them are larger than 10 km2. Of these, the largest is the Yalung Glacier, labeled as
RGI60-15.11909 in RGI 6.0, with an area of 179.59 km2 and situated on the northern slope.
The Azha Glacier, labeled as RGI60-15.12613, on the southern slope, has a long history of
scientific investigation [15,17,39], with the lowest terminus elevation around 2450 m. The
Midui Glacier, or Gongzo Glacier, labeled as RGI60-15.11888 and situated on the north, is
also known as one of the most renowned glacier tourism destinations in the QTP [40,41].
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Figure 1. Location of the Kangri Karpo glaciers; the green points are ICESat-2 data.

Significant topographical differences exist between the northern and southern slopes
of the Kangri Karpo region. Based on the second Chinese glacier inventory (CGI-2), we
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divided the glaciers of this region into two parts: the northern and the southern, as shown
in Figure 1. Glaciers in the northern basin labeled 5O282B have an area of 430.912 km2 with
an average elevation of 5131.76 m, while the southern counterpart 5O291B has a smaller
area of 288.102 km2 with an average elevation of 4880.50 m.

2.2. Data
2.2.1. ASTER L1A V003

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
is a multispectral imaging sensor launched aboard NASA’s Terra satellite in December
1999 [42]. The primary science objective of the mission is to improve the understanding of
surface–atmosphere interaction processes occurring on or near the earth’s surface and lower
atmosphere at the local and regional scale [43]. It has three separate optical subsystems:
the visible and near-infrared (VNIR), shortwave-infrared (SWIR), and thermal infrared
(TIR) radiometer. The VNIR obtains the data with the 3N band in nadir and the 3B band
in backward and provides the along-track stereo coverage at a spatial resolution of 15 m.
This stereo coverage was further used to generate digital elevation models (DEMs) [44,45].
Up to now, the ASTER has provided continuous observations over two decades and is
still ongoing. In this study, ASTER L1A V003 data, openly accessible on NASA Earthdata
Search (https://search.earthdata.nasa.gov/search, accessed on 19 September 2024), were
used to generate DEMs and build elevation time series.

2.2.2. TanDEM-X DEM

The TerraSAR-X add-on for Digital Elevation Measurements (TanDEM-X) mission
produces high-precision and high-resolution DEMs globally [46]. The TanDEM-X DEM
product has a typical absolute vertical accuracy of 3.5 m and few void pixels, even in
complex terrain [46,47]. In this study, the 90 m TanDEM-X DEM was used as a reference
DEM to co-register, remove along-track jitter, and filter outliers from the DEMs generated
from ASTER images.

2.2.3. Sentinel-2

The Sentinel-2 mission comprises two identical satellites, Sentinel-2A and Sentinel-2B,
equipped with multispectral imagers of 13 spectral bands, ranging from visible to short-
wave infrared wavelengths. Its spatial resolution varies from 10 to 60 m, depending on the
spectral band [48]. In addition, the 5-day repeat cycle makes it ideal for land monitoring
applications. In this study, we used it to derive the Normalized Difference Snow Index
(NDSI) for mapping snow cover areas.

2.2.4. Auxiliary Data

The Ice, Cloud and Land Elevation Satellite-2 (ICESat-2) mission was launched in 2018.
It employed laser altimetry to measure Earth’s surface elevation with a narrow footprint of
14.5 m and a vertical precision of 3.0 cm [49,50]. In this study, Land Ice Height data labeled
as ATLAS/ICESat-2 L3A ATL08 were used to validate our elevation time series. RGI 6.0
was also used to identify glacier and non-glacier areas [38].

3. Method
To derive the monthly DEM time series and further analyze each glacier in the Kangri

Karpo region, we developed a workflow as shown in Figure 2. The workflow mainly
includes the generation and co-registration of ASTER DEMs, followed by the establishment
of the elevation time series with ASTER DEMs.

https://search.earthdata.nasa.gov/search
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3.1. Generation and Co-Registration of ASTER DEMs

We first retrieved all available 1119 ASTER L1A V003 scenes with cloud coverage
below 99% over the Kangri Karpo region (28.6◦ N–29.9◦ N, 95.9◦ E–97.3◦ E) from 2000 to
March 2024. Before generating the ASTER DEMs, we deleted the data with no stereo bands,
the Band 3N and the Band 3B, and 757 stereo pairs were kept

In this study, we employed an algorithm called MicMac ASTER (MMASTER) [51] to
generate ASTER DEMs from 757 stereo pairs. Compared to NASA’s standard AST14DMO
product, the DEMs generated by this method have fewer mismatched areas, less over-
all noise and higher accuracy. To increase the range of off-glacier terrain available for
the co-registration, consecutive images from the same track were mosaicked into longer
strip DEMs with a maximum of three images per strip, and 334 striped ASTER DEMs
were generated.

To correct residual along-track jitter and align all DEMs to the same elevation system,
it is necessary to co-register all striped DEMs to the TanDEM-X DEM. To exclude the
unstable areas such as glaciers, snow cover and other areas for co-registration, Sentinel-2
images from January 2023 were selected with less than 10% cloud cover, and the NDSI was
calculated to distinguish snow-covered areas. The NDSI is the Normalized Difference Index
(NDI) between the green and shortwave (SWIR) infrared bands, calculated as follows [52]:

NDSI =
(Green − SWIR)
(Green + SWIR)

(1)

Sentinel-2 images have 13 spectral bands, and the green and SWIR infrared bands
are those of B3 and B11 [48]. The NDSI threshold value was selected as 0.4 to extract the
snow-covered area [53], and RGI 6.0 was combined to create the mask for unstable terrain.

After the co-registration, the root-mean-square error (RMSE) of the elevation difference
between co-registered DEMs and TanDEM-X DEM on stable terrain was calculated, and
it was kept when it was less than 20 m. As a result, 257 co-registered ASTER DEMs
were selected.

3.2. Establishment of the Elevation Time Series

The method of Hugonnet et al. was used to derive a continuous DEM time se-
ries [32]. Firstly, we stacked all 257 co-registered DEMs in temporal order, yielding a
three-dimensional array h (t, x, y) of elevations for a pixel (x, y) as the function of time t and
spatial x and y. As array h (t, x, y) may contain outliers due to clouds, photogrammetric
blunders, and other reasons, we first used TanDEM-X DEM as a reference to remove ex-
treme outliers with a spatial filter and a temporal filter defined by Hugonnet et al. [32]. To
further filter outliers of each pixel, we used weighted least squares (WLS) to fit a linear ele-
vation trend and remove outliers outside the 99% confidence interval. Then, we used WLS
fit again and applied an adaptive local percentile filter to remove the remaining outliers.
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To further filter and interpolate array h (t, x, y), a non-parametric and empirically
based Gaussian process (GP) method was applied to elevation time series, and the kernel
function was expressed as [32]

σh(x, y, ∆t)2 = PL(x, y, ∆t) + ESS
(
ϕp,σp

2, ∆t
)
+ RBF

(
∆tl ,σl

2, ∆t
)
+

RQ
(
∆tnl ,σ2

nl ,αnl , ∆t
)
·PL(x, y, ∆t) + σh(t, x, y)2 (2)

where σh is the elevation error and ∆t is the time lag between observations. The pairwise
linear (PL) kernel shows the long-term trend, the exponential sine-squared (ESS) kernel
shows seasonal variation, the local radial basis function (RBF) kernel shows the temporal
correlation between observations, and the rational quadratic (RQ) kernel shows a nonlinear
elevation change trend. The process was shown in Hugonnet et al. [32], where ESS, RBF,
and RQ parameters were set the same for all pixels, but PL varied with each pixel. RGI 6.0
was used to identify glacier and non-glacier areas and apply the complete set of kernels to
glacier areas, while only the PL and ESS kernels were applied to non-glacier areas.

For each pixel, GP regressions were iteratively applied five times, and the threshold
value was set as 20σ, 12σ, 9σ, 6σ, and 4σ, respectively. Finally, the GP regression was applied
to interpolate the remaining time series for each pixel, and we derived the interpolated
monthly elevation time series from January 2000 to January 2024.

4. Results
4.1. Accuracy Analysis with ICESat-2

The vertical accuracy of ASTER DEM standard data products ranges from 10 to
25 m [54]. Here, ICESat-2 ATL08 data shown in Figure 1 were employed to assess the
accuracy of the elevation time series, covering the glacier and non-glacier regions during
the summer (JJA) between 2019 and 2023. Each ICESat-2 ATL08 dataset we selected
contains more than 1000 valid observation points within the study area. The elevation
time series were linearly interpolated according to the time epoch of the ICESat-2 data.
As shown in Figure 3a, the ICESat-2 data and corresponding elevation time series were
consistent. We further calculated the root-mean-square error (RMSE) between them, and
the overall RMSE was 17.45 m, matching the ASTER DEM performance. However, our
result is larger than 11.47 m observed between ICESat-2 ATL08 and ASTER GDEM V3
in the Qinghai–Tibet Plateau [55]. Hence, the comparisons including extra glacier area
may induce extra error. We further the point–point comparison for all data, as shown in
Figure 3b, and the coefficient of determination (R2) between them was 1.00 with p < 0.0001.
Based on the analysis, the accuracy of our elevation time series is sufficient for further
glacier mass balance calculation.
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4.2. Temporal Change of Glacier Elevation from 2000 to 2024

Based on the monthly elevation time series derived from ASTER, we extracted the sur-
face elevation change of each glacier in the Kangri Karpo region, as shown in Appendix A.
Almost all glaciers in the Kangri Karpo region experienced a notable elevation decrease
between 2000 and 2024. Using the area weight, we derived the elevation time series from
2000 to 2024, as shown in Figure 4a. Obvious seasonality and elevation decreases were
observed. Moreover, the average glacier surface elevation decrease during 24 years was
−18.35 ± 5.10 m, corresponding to an average rate of −0.76 ± 0.21 m yr−1.
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Fitting a quadratic trend of the elevation change, we found the acceleration was
statistically significant. To further show this acceleration, we calculated the elevation
change rate, which was derived from 12-month samples of each year, and the time series
is shown in Figure 4b. The time series shows the rate increased from −0.68 m yr−1 to
−0.99 m yr−1, showing the acceleration. Moreover, there exist three distinct phases in the
Kangri Karpo region from the figure. Before 2008, the elevation change rate was relatively
stable, even with a slight deceleration trend. Between 2008 and 2018, the elevation change
rate became more negative, showing the acceleration. Furthermore, it fluctuated with
relatively minimal values in 2008, 2009, and 2014 and a maximum in 2016. After 2018, the
elevation change rate became more negative.

We further investigate the elevation change of the northern 5O282B basin and the
southern 5O291B basin. Similar to the whole region, obvious elevation decrease and sea-
sonal variation were also observed for the two parts, as shown in Figure 4a. Compared with
that of Kangri Karpo, 5O282B had a larger elevation decrease rate of −0.79 ± 0.16 m yr−1,
while 5O291B showed a smaller −0.72 ± 0.13 m yr−1. The acceleration was also statistically
significant for the two parts. We also derived the elevation change rate shown in Figure 4b.
Despite the larger elevation decrease rate, a slower acceleration was observed in 5O282B,
which increased from −0.78 m yr−1 in 2000 to −1.04 m yr−1 in 2023. Similar to Kangri
Karpo, there also exist three distinct phases in 5O282B from the figure. From 2008 to 2018,
it fluctuated with relative minimum values in 2008, 2009, and 2014 and with a maximum in
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2016. However, there is no obvious fluctuation in 24 years for 5O291B. 5O291B has experi-
enced continuous acceleration since 2000, with a larger acceleration from −0.52 m yr−1 in
2000 to −0.92 m yr−1 in 2023. This demonstrates that the variation of Kangri Karpo mainly
depends on 5O282B, which has a larger area.

We also investigated the seasonal variation of the Kangri Karpo region and its two
parts, 5O282B and 5O291B.To capture the absolute elevation changes of this seasonal
variation, the mean elevation changes for each month, compared to the beginning of the
year, are shown in Figure 5a. Distinct seasonal variation was observed in the Kangri
Karpo region and 5O282B, but not very obvious in 5O291B. The accumulation starts in
about November and reaches the peak in about next March for the former two. Then,
the elevation decreases until next November with the minimum elevation. For 5O291B, a
shorter accumulation period was observed from December to next January, and a longer
ablation from next February to next November. This seasonal pattern is similar to those
reported in previous studies on southeastern Tibet [21,22]. Overall, the Kangri Karpo
region has a gain of 0.17 ± 0.21 m during the accumulation period, while a decrease
of −0.93 ± 0.21 m during the ablation. Notably, our analysis revealed some changes in
seasonal variation patterns, characterized by a delayed onset of the accumulation period
from October to November and an earlier termination from March to February. Additionally,
the magnitude of elevation loss during the ablation period showed an increasing trend,
while the elevation gains during the accumulation period showed a slight decreasing trend.
Again, the seasonal variation of Kangri Karpo mainly depended on 5O282B.
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There exist different seasonal variations between 5O282B and 5O291B, implying the
elevation change may depend on the altitude. To further investigate this relationship, we
further analyzed the seasonal elevation change variation with altitude. We divided the
region by 500 m spaced elevation bins and extracted the seasonal change of each bin, as
shown in Figure 5b. From the figure, it can be seen that the seasonal amplitude decreases
with the increasing altitude. Moreover, the accumulation period and the ablation period
vary with the altitude. The seasonal variation below 3500 m is similar to that of 5O291B,
only with the 2-month accumulation period from December to next January. Furthermore,
the seasonal variation between 3500 and 6500 m is similar to that of the Kangri Karpo
region and 5O282B, with a longer accumulation period from October or November to next
March or April. For the regions with an altitude between 6500 and 7000 m, there is no
obvious seasonal variation.

4.3. Spatial Variation of Glacier Surface Elevation

We further calculated the elevation change of each pixel between January 2024 and
January 2000, as shown in Figure 6a, with significant spatial variation across the Kangri
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Karpo region. The overall elevation decrease was −18.35 ± 5.10 m, and almost all glaciers
experienced elevation decreases. Large elevation decreases were observed at some terminal
zones, especially in Gongzo, Yalong, and Azha Glacier, exceeding −96 m in 24 years with a
corresponding rate of −4 m yr−1. Meanwhile, elevation increases were observed in some
areas, such as in areas above 5800 m and some glacier termini. To systematically analyze
these elevation changes, we further calculated the mean elevation change for each 200 m
elevation bin between January 2000 and January 2024, as shown in Figure 6b. The elevation
bins started from 2400 m and ended at 6800 m. The elevation change decreased quickly
from −24.18 m in the 2500 m bin to −120.14 m in the 2700 m bin. Then, it increased quickly
to −46.05 m in the 3300 m bin, decreased gradually to −59.43 m in the 4300 m bin, increased
quickly again to near 0 m in the 5900 m bin, and then remained stable.
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Figure 6. (a) Glacier surface elevation change in the Kangri Karpo from 2000 to 2024; (b) mean glacier
surface elevation changes and glacier area distribution by elevation bins in Kangri Karpo, 5O282B,
and 5O291B from 2000 to 2024.

Similar elevation decreases over 24 years were also found in 5O282B and 5O291B, with
−19.00 ± 3.98 m and −17.35 ± 3.23 m, respectively. The mean elevation changes of the
200 m bins for 5O282B and 5O291B are also shown in Figure 6b. Their minimum elevation
bin is different, where the former is 2500 m and the latter 3900 m. Hence, the elevation
change in 5O291B is the same as that of the Kangri Karpo region below 3900 m bin. From
3900 to 5900 m, the elevation change increased quickly to near 0 m for both 5O282B and
5O291B. Then, they remained stable. Moreover, the glaciers in 5O291B experienced less
ablation than those in 5O282B between 3900 and 5900 m, and this may be due to the higher
warming trend in the northern area [27].
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5. Discussion
5.1. Variations in Elevation Change Across Different Glaciers

To elucidate the spatiotemporal characteristics of glacier mass balance in the Kangri
Karpo region, we selected several typical glaciers, including Yalong Glacier and Gongzo
Glacier on the northern slope and Azha Glacier and RGI60-15.12587 Glacier on the southern
slope. As shown in Figure 6a, there exists spatial variation across the Yalong Glacier. We
specifically selected the upper region of Yalong Glacier with obvious mass gain labeled as
Area A to show the spatiotemporal variation across the glacier.

We further showed the elevation time series of selected glaciers in Figure 7a, showing
seasonal changes. For the northern 5O282B, Yalong Glacier and Gongzo Glacier have
an accumulation period from November to April and an ablation period from May to
October, which is consistent with the results shown in Figure 5a. For the southern 5O291B,
Azha Glacier and RGI60-15.12587 Glacier have a shorter accumulation period and a longer
ablation period, which is also shown in Figure 5a. Moreover, the amplitude is different for
the northern and southern parts. For example, it is 1.09 and 0.85 m for the northern Yalong
Glacier and Gongzo Glacier, and these values are much larger than those of 0.07 and 0.31 m
for the southern RGI60-15.12587 and Azha Glacier. Area A showed a large amplitude of
1.56 m. This may be due to different topography and climate conditions.
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As shown in Figure 7a, all selected glaciers experienced mass loss. During the last
24 years, the northern Yalong Glacier and Gongzo Glacier exhibited close elevation de-
creases, which were −17.84 m and −14.59 m, corresponding to average decrease rates of
−0.74 m yr−1 and −0.61 m yr−1, respectively. However, there exists an obvious difference
between the southern Azha Glacier and RGI60-15.12587 Glacier. During the last 24 years,
the Azha Glacier showed the largest elevation decrease in the region, −58.31 m, corre-
sponding to an average rate of −2.43 m yr−1. However, the latter only exhibited a very
small elevation decrease of −4.52 m. Different from the four glaciers, Area A showed an
elevation gain of 41.17m.

To better show the elevation change of RGI60-15.12587 Glacier, we selected its terminal
Area B with a slope less than 5◦, as shown in Figure 7b. The elevation time series of Area
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B exhibits a small fluctuation, as shown in Figure 7c. Moreover, there was an overall
elevation increase of 1.99 m during the 24 years, and this is consistent with Wu et al.’s
study using only the data from 1999 and 2014 [27]. Furthermore, the elevation trend change
was identified before and after 2008. Before 2008, the elevation continued to decrease for
−2.15 m, at a rate of −0.27 m yr−1, which is less than the other glaciers. Then, the elevation
increased by 4.14 m at a rate of 0.26 m yr−1. The underlying causes of these changes remain
to be investigated further.

5.2. Influences of Climate Factors in Kangri Karpo

To analyze the impact of climate factors on the mass balance of the Kangri Karpo
glaciers, we extracted monthly temperature, total precipitation (TP), and snowfall (SF)
data from the ERA5-Land monthly meteorological dataset, covering the area between
29.0◦ N and 29.5◦ N in latitude and between 96.3◦ E and 97.1◦ E in longitude. From 2000 to
2024, the mean temperature in the Kangri Karpo region was −3.98 ◦C, with annual mean
temperatures ranging between −4.89 ◦C and −2.96 ◦C. Warming was observed with a
rate of 0.39 ◦C (10 yr)−1 derived with simple linear fitting, which is about twice the global
warming rate of 0.2 ◦C (10 yr)−1 during recent decades [1]. We also estimate the annual
total TP and SF between 2000 and 2024. The former was 1809 mm, ranging between 877
and 2632 mm, while the latter was 1142 mm, varying between 475 and 1992 mm. Moreover,
a similar decreasing trend was observed for both TP and SF, with a rate of −127.80 and
−142.30 mm (10 yr)−1, respectively. The decline in SF was more significant, suggesting that
the reduction in TP is primarily driven by the decrease in SF. The pronounced warming
trend and decreasing precipitation/snowfall likely led to accelerated glacier ablation and
reduced accumulation in the Kangri Karpo region.

To further analyze the influence of climate factors on elevation change, we remove
the linear trend, apply z-score normalization, and then calculate the Pearson correlation
coefficients between elevation and three parameters. Their correlation coefficients between
elevation and temperature, TP, and SF were estimated as −0.12, −0.11, and 0.26, respec-
tively. These results suggest no significant correlation at the annual scale. We further the
correlation analyses at a seasonal scale, and here we divide a year into four seasons labeled
as winter (DJF), spring (MAM), summer (JJA), and autumn (SON). Among the results,
significant correlation coefficients were observed between elevation and temperature in
JJA, TP in JJA, and SF in MAM, shown in Figure 8. Specifically, temperature in JJA showed
a significant negative correlation coefficient of −0.53 (p < 0.05) with elevation in JJA, in-
dicating that higher summer temperature is associated with more pronounced elevation
decreases. Moreover, TP in JJA also showed a negative correlation of −0.35 (p < 0.1), and
this also suggests that increasing summer rainfall may accelerate glacier ablation and is
consistent with previous results [56]. Apart from these results, SF in MAM exhibited a
positive correlation coefficient of 0.32 (p < 0.13), implying that higher snowfall during
spring may increase the elevation.

Similar to Figure 1, we divided the area into northeastern and southwestern parts.
The temperature increase rate in JJA was estimated as 0.25 ◦C (10 yr)−1 in the south, while
a higher rate of 0.30 ◦C (10 yr)−1 was observed in the north. This temperature pattern
corresponds with the smaller decrease in elevation observed in the south. In terms of TP
during JJA, a slightly decreasing trend was found in both regions: −20.07 mm (10 yr)−1 in
the north and −9.90 mm (10 yr)−1 in the south. With more summer rainfall in the south, this
could be related to the larger acceleration of elevation decrease in the south. Furthermore,
SF in MAM showed a decreasing trend of −67.49 mm (10 yr)−1 in the north, and a larger
−110.38 mm (10 yr)−1 in the south, indicating a greater reduction in accumulation in the
southern area. As shown in Figure 6a, there is an obvious spatial variation in elevation
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change across the Kangri Karpo region; further research is needed to analyze this difference
at the glacier or pixel scale, incorporating influencing factors such as topography, ice
lakes, and debris cover. Additionally, exploring the feedback mechanisms between glacier
dynamics and local climate systems could yield deeper insights into the cascading effects
of climate change on glaciers. Future studies should also focus on the development
of predictive models that integrate observed trends and underlying mechanisms with
projected climate scenarios, which would enable more accurate assessments of glacier
vulnerability and improve regional water resource management.
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5.3. Comparison with Previous Mass Balance Estimates in Kangri Karpo

Studies have shown that glaciers in the Kangri Karpo region and the surrounding
areas are experiencing significant mass loss primarily derived from remote sensing data.
However, the results vary due to differences in methods, data sources, and study periods
Here, we compare our results with previous studies shown in Table 1 [6–8,27,28,32,33,35,57].
At the regional scale, all studies reported the glaciers in the Kangri Karpo region and
southeastern QTP were experiencing mass loss, with the elevation change rate ranging
from −0.57 m yr−1 to −1.16 m yr−1. However, most studies calculated an average result
derived only over two epochs. In this study, we derive the elevation time series from 2000
to 2024 shown in Figure 4, and hence, we can derive the elevation change rate of any time
span. So, we derived the corresponding results from the time series as shown in Table 1.
Consistent results were observed, especially with better agreements for studies utilizing
similar data and analysis methods [6,27,28,35]. We also conducted compared the elevation
change rates of each year with the results reported by Hugonnet et al. [32]. Our results have
the same fluctuation patterns and trends, with only minor numerical differences. These
slight variations can be attributed to differences in data sources, temporal coverage, and
subtle methodological distinctions.
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Table 1. Comparison of our results with previous studies on Kangri Karpo and surrounding areas.

Study Region Period Elevation Change Rate
(m yr−1)

Elevation Change Rate
of This Study Mean

(m yr−1)

Wu et al. [27] Kangri Karpo 2000–2014 −0.79 ± 0.11 −0.71 ± 0.33
Ren et al. [28] Kangri Karpo 2000–2017 −0.66 ± 0.24 −0.71 ± 0.28

Zhao et al. [35] Eastern Bomi
2000–2019 −1.16 ± 0.29 −0.74 ± 0.25
2011–2020 −1.14 ± 0.28 −0.79 ± 0.50

Hugonnet et al. [32] Kangri Karpo 2000–2020 −0.88 ± 0.35 −0.73 ± 0.25
Kaab et al. [57] Eastern Nyainqentanglha range 2003–2008 −1.34 ± 0.29 −0.69 ± 0.84

Neckel et al. [33] Eastern Nyainqentanglha range
and Hengduan Mountains 2003–2009 −0.81 ± 0.32 −0.70 ± 0.84

Gardner et al. [8] Hengduan Shan 2003–2009 −0.40 ± 0.41 −0.70 ± 0.84
Brun et al. [6] Nyainqentanglha 2000–2016 −0.73 ± 0.27 −0.71 ± 0.32
Shean et al. [7] Nyainqentanglha 2000–2018 −0.59 ± 0.18 −0.72 ± 0.28

In situ measurements are the most reliable observation. We further the comparison
at the glacier scale using multi-year in situ measurement data for Parlung Glacier No. 10,
No. 12 of the Kangri Karpo region, and No. 94 next to the region, which were obtained from
the World Glacier Monitoring Service (WGMS), as shown in Figure 9 [58,59]. Among these
three glaciers, Parlung Glacier No. 94 has a longer dataset from 2005 to 2021, as shown
in Figure 9a. Field measurements may yield large variations in results due to the limited
density of measurement points. A moving 3-year average was applied to the time series.
The mean and standard deviation of their difference were −0.03 and 0.40 m, showing
consistency. However, our results did not capture the accelerated trend observed in the
latter period of the in situ measurements. This may be attributed to the lack of observational
data, since this glacier is located outside the Kangri Karpo region defined in this study,
at the edge of our data coverage. For Parlung Glacier No. 10 and No. 12, we directly
calculated the mean and standard deviation of their differences, as 0.02 m and 0.48 m for
the former, −0.52 m and 0.46 m for the latter. In these shorter periods, our results exhibited
slightly larger deviations, which may be attributed to the limitations of our method in
accuracy or capturing short-term abrupt events or fluctuations in the in situ measurements.
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6. Conclusions
This study provides a comprehensive analysis of glacier mass balance in the Kangri

Karpo region from 2000 to 2024, revealing significant and accelerating glacier mass loss. We
utilized ASTER images to construct a high-resolution elevation time series and validated
the results with ICESat-2 data, with an overall RMSE of 17.45 m. The results showed that
the mean glacier surface elevation has decreased at an average rate of −0.76 ± 0.15 m yr−1

over the past 24 years. The 5O282B basin has a higher surface elevation but experienced
a larger average ablation rate of −0.79 ± 0.17 m yr−1, showing an acceleration from
−0.78 ± 0.17 m yr−1 in 2000 to −1.04 ± 0.17 m yr−1 in 2023. In contrast, the 5O291B
basin had a lower average rate of −0.72 ± 0.13 m yr−1, with a larger acceleration from
−0.52 ± 0.13 m yr−1 in 2000 to −0.92 ± 0.13 m yr−1 in 2023. Distinct seasonal variations
were observed. On average, the region exhibited a gain of 0.17 ± 0.21 m during the
accumulation period of November to March and a loss of −0.93 ± 0.21 m during the
ablation period of April to October. A clear altitude-dependent pattern was found: as
elevation increased, the seasonal amplitude decreased, the accumulation period extended,
and ablation reduced.

The overall elevation decrease for the Kangri Karpo region was −18.35 ± 5.10 m, with
the 5O282B and 5O291B basins showing decreases of −19.00 ± 3.96 m and −17.35 ± 3.22 m,
respectively. Elevation bin analysis revealed a decrease in ablation with increasing elevation,
with the ELA around 5900 m. Notably, glaciers in 5O291B experienced less ablation at
the same elevation compared to those in 5O282B. We also selected four glaciers: Yalong
and Gongzo glaciers from 5O282B and Azha and RGI60-15.12587 glaciers from 5O291B.
Yalong and Gongzo glaciers exhibited elevation decreases of −17.84 m and −14.59 m,
respectively, and mass gain was observed in the upper area of Yalong Glacier. In contrast,
Azha Glacier showed the largest decrease of −58.31 m, while RGI60-15.12587 Glacier had a
slight decrease of −4.52 m but an increase of 1.99 m in its terminal area.

Meteorological data reveal significant trends of increasing temperature and decreasing
precipitation and snowfall. Correlation analysis suggests that higher temperature in JJA
and increased TP of JJA could accelerate elevation loss, while more SF during MAM could
reduce ablation. These climatic factors likely contribute to the spatial variations observed
between the northern and southern parts of the region. However, further research is needed
to fully understand the underlying causes of these spatial discrepancies in elevation change
across the Kangri Karpo region.
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Appendix A

Table A1. The average elevation change rates of each glacier in the Kangri Karpo region from 2000
to 2024.

RGI 6.0 ID Basin Area (km2) Elevation Change Rate (m yr−1)

RGI60-15.11886 5O282B 0.065 −0.50
RGI60-15.11888 5O282B 28.821 −0.61
RGI60-15.11897 5O282B 6.416 −0.59
RGI60-15.11899 5O282B 1.306 −0.53
RGI60-15.11901 5O282B 0.623 −0.91
RGI60-15.11904 5O282B 8.603 −0.66
RGI60-15.11906 5O282B 5.77 −0.66
RGI60-15.11907 5O282B 0.413 −0.99
RGI60-15.11908 5O282B 0.335 −0.43
RGI60-15.11909 5O282B 179.589 −0.74
RGI60-15.11910 5O282B 0.352 −0.99
RGI60-15.11911 5O282B 0.222 −0.83
RGI60-15.11923 5O282B 6.531 −1.02
RGI60-15.11926 5O282B 96.283 −0.75
RGI60-15.11929 5O282B 0.174 −0.55
RGI60-15.11930 5O282B 6.138 −1.08
RGI60-15.11932 5O282B 0.157 −0.94
RGI60-15.11936 5O282B 0.024 −0.17
RGI60-15.11937 5O282B 0.038 −0.01
RGI60-15.11938 5O282B 1.943 −0.30
RGI60-15.11939 5O282B 0.035 0.13
RGI60-15.11940 5O282B 1.055 −0.34
RGI60-15.11941 5O282B 1.05 −0.50
RGI60-15.11943 5O282B 2.503 −1.03
RGI60-15.11944 5O282B 1.942 −0.85
RGI60-15.11946 5O282B 0.129 −0.23
RGI60-15.11947 5O282B 0.155 −0.91
RGI60-15.11948 5O282B 0.021 −0.93
RGI60-15.11949 5O282B 4.324 −0.68
RGI60-15.11950 5O282B 0.329 −0.49
RGI60-15.11951 5O282B 0.044 −0.90
RGI60-15.11952 5O282B 0.028 −0.83
RGI60-15.11953 5O282B 0.29 −0.80
RGI60-15.11954 5O282B 2.016 −1.26
RGI60-15.11955 5O282B 3.087 −1.09
RGI60-15.11956 5O282B 6.597 −0.92
RGI60-15.11957 5O282B 25.376 −1.32
RGI60-15.11958 5O282B 0.751 −0.54
RGI60-15.11959 5O282B 0.101 −0.74
RGI60-15.11960 5O282B 0.099 −0.25
RGI60-15.11961 5O282B 1.108 −0.60
RGI60-15.11962 5O282B 0.23 −1.20
RGI60-15.11963 5O282B 4.433 −0.83
RGI60-15.11964 5O282B 0.354 −0.72
RGI60-15.11965 5O282B 0.311 −0.29
RGI60-15.11966 5O282B 0.073 −0.28
RGI60-15.11967 5O282B 0.374 −0.66
RGI60-15.11968 5O282B 0.119 −0.74
RGI60-15.11969 5O282B 0.427 −0.61
RGI60-15.11970 5O282B 0.79 −0.76
RGI60-15.11971 5O282B 1.053 −0.81
RGI60-15.11972 5O282B 0.305 −1.00
RGI60-15.11973 5O282B 11.858 −0.82
RGI60-15.11974 5O282B 0.211 −0.92
RGI60-15.11975 5O282B 15.236 −1.04
RGI60-15.11976 5O282B 0.295 −0.78
RGI60-15.12500 5O291B 28.131 −0.21
RGI60-15.12520 5O291B 5.952 0.34
RGI60-15.12522 5O291B 0.199 −0.36
RGI60-15.12526 5O291B 10.513 −0.03
RGI60-15.12529 5O291B 1.401 −0.08
RGI60-15.12539 5O291B 0.136 0.35
RGI60-15.12540 5O291B 13.448 −0.52
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Table A1. Cont.

RGI 6.0 ID Basin Area (km2) Elevation Change Rate (m yr−1)

RGI60-15.12550 5O291B 2.171 −0.33
RGI60-15.12553 5O291B 6.639 −0.15
RGI60-15.12554 5O291B 0.116 −0.06
RGI60-15.12555 5O291B 0.025 −0.88
RGI60-15.12556 5O291B 0.056 −0.80
RGI60-15.12557 5O291B 0.324 −0.18
RGI60-15.12558 5O291B 0.156 −0.59
RGI60-15.12559 5O291B 0.985 −0.72
RGI60-15.12560 5O291B 0.466 −0.80
RGI60-15.12561 5O291B 1.157 −0.78
RGI60-15.12562 5O291B 0.132 −0.11
RGI60-15.12563 5O291B 0.597 −0.67
RGI60-15.12564 5O291B 0.425 −0.39
RGI60-15.12566 5O291B 17.969 −0.52
RGI60-15.12567 5O291B 0.336 −0.34
RGI60-15.12575 5O291B 0.306 −0.46
RGI60-15.12579 5O291B 5.931 −0.15
RGI60-15.12582 5O291B 2.088 −0.87
RGI60-15.12585 5O291B 3.367 −0.36
RGI60-15.12586 5O291B 2.933 −0.81
RGI60-15.12587 5O291B 11.493 −0.19
RGI60-15.12588 5O291B 0.983 −0.68
RGI60-15.12589 5O291B 0.607 −0.55
RGI60-15.12590 5O291B 0.115 −0.64
RGI60-15.12591 5O291B 0.074 0.10
RGI60-15.12592 5O291B 0.188 −1.20
RGI60-15.12593 5O291B 2.271 −0.97
RGI60-15.12594 5O291B 18.802 −0.72
RGI60-15.12596 5O291B 1.175 −1.15
RGI60-15.12597 5O291B 0.047 0.44
RGI60-15.12599 5O291B 0.515 −0.08
RGI60-15.12603 5O291B 1.938 0.00
RGI60-15.12605 5O291B 20.811 −0.77
RGI60-15.12611 5O291B 1.091 −0.57
RGI60-15.12613 5O291B 12.417 −2.43
RGI60-15.12614 5O291B 1.181 −0.32
RGI60-15.12615 5O291B 1.329 −0.43
RGI60-15.12619 5O291B 0.263 −0.63
RGI60-15.12622 5O291B 5.189 −1.13
RGI60-15.12624 5O291B 5.012 −0.54
RGI60-15.12625 5O291B 0.33 −1.01
RGI60-15.12627 5O291B 6.846 −0.66
RGI60-15.12628 5O291B 0.876 −0.40
RGI60-15.12633 5O291B 0.535 −0.41
RGI60-15.12636 5O291B 1.48 −0.12
RGI60-15.12640 5O291B 0.466 −0.60
RGI60-15.12642 5O291B 0.013 −0.32
RGI60-15.12643 5O291B 0.108 −0.39
RGI60-15.12644 5O291B 55.105 −1.15
RGI60-15.12645 5O291B 0.516 −0.17
RGI60-15.12648 5O291B 0.272 −0.44
RGI60-15.12650 5O291B 0.139 −0.73
RGI60-15.12655 5O291B 0.928 −0.70
RGI60-15.12657 5O291B 0.326 −0.68
RGI60-15.12660 5O291B 0.385 −0.88
RGI60-15.12664 5O291B 0.919 −0.48
RGI60-15.12665 5O291B 0.108 −0.91
RGI60-15.12671 5O291B 0.629 −0.72
RGI60-15.12673 5O291B 0.207 −0.75
RGI60-15.12677 5O291B 1.186 −0.72
RGI60-15.12679 5O291B 0.44 −0.48
RGI60-15.12682 5O291B 0.115 −1.03
RGI60-15.12686 5O291B 10.256 −0.95
RGI60-15.12693 5O291B 14.457 −1.08
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