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Abstract: The purpose of this paper is to discuss the effect of earthquake (EQ) preparation
on changes in meteorological parameters. The two physical quantities of temperature
(T)/relative humidity (Hum) and atmospheric chemical potential (ACP) have been investi-
gated with the use of the Japanese meteorological “open” data of AMeDAS (Automated
Meteorological Data Acquisition System), which is a very dense “ground-based” network
of meteorological stations with higher temporal and spatial resolutions than the satellite
remote sensing open data. In order to obtain a clearer identification of any seismogenic
effect, we have used the AMeDAS station data at local midnight (LT = 01 h) and our initial
target EQ was chosen to be the famous 1995 Kobe EQ of 17 January 1995 (M = 7.3). Initially,
we performed conventional statistical analysis with confidence bounds and it was found
that the Kobe station (very close to the EQ epicenter) exhibited conspicuous anomalies
in both physical parameters on 10 January 1995, just one week before the EQ, exceeding
m (mean) + 3σ (standard deviation) in T/Hum and well above m + 2σ in ACP within
the short-term window of one month before and two weeks after an EQ. When looking
at the whole period of over one year including the day of the EQ, in the case of T/Hum
only we detected three additional extreme anomalies, except in winter, but with unknown
origins. On the other hand, the anomalous peak on 10 January 1995 was the largest for ACP.
Further, the spatial distributions of the anomaly intensity of the two quantities have been
presented using about 40 stations to provide a further support to the close relationship of
this peak with the EQ. The above statistical analysis has been compared with an analysis
with recent machine/deep learning methods. We have utilized a combinational use of
NARX (Nonlinear Autoregressive model with eXogenous inputs) and Long Short-Term
Memory (LSTM) models, which was successful in objectively re-confirming the anomalies
in both parameters on the same day prior to the EQ. The combination of these analysis
results elucidates that the meteorological anomalies on 10 January 1995 are considered to
be a notable precursor to the EQ. Finally, we suggest a joint examination of our two meteo-
rological quantities for their potential use in real short-term EQ prediction, as well as in
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the future lithosphere–atmosphere–ionosphere coupling (LAIC) studies as the information
from the bottom part of LAIC.

Keywords: meteorological parameters; temperature/Hum; ACP (atmospheric chemical
potential); the 1995 Kobe EQ; AMeDAS (Automated Meteorological Data Acquisition
System); machine learning/deep learning; NARX (Nonlinear Autoregressive model with
eXogeneous inputs); LSTM (long short-term memory)

1. Introduction
Earthquake (EQ) prediction can be classified into three different categories in terms of

the time scale: long-, medium-, and short-term prediction [1]. Among the three, short-term
prediction, with a lead time of about one week, is still a very challenging topic in geoscience
because there is a lot of demand from society to save human lives and prevent economical
losses (e.g., [1]). In order to predict an EQ, it is needless to say that we need to find any kind
of EQ precursor, and there has been achieved a huge amount of progress in EQ precursor
studies during the last few decades (e.g., [2–4]). After extensive studies, we have found that
various electromagnetic phenomena do take pace prior to an EQ [5,6]: (i) electromagnetic
radio emissions in a wide frequency range from DC (direct current)/ULF (ultra-low fre-
quency), ELF (extremely low frequency), and VLF (very low frequency)/LF (low frequency)
to VHF (very high frequency) and (ii) seismogenic perturbations taking place in the atmo-
sphere and ionosphere. The former category of seismogenic effects is obtained with passive
observations, while the latter is found from active observations with the use of existing
transmitter signals in the VLF/LF and MF (medium frequency)/VHF ranges and also
with the data of ionosondes, GPS TEC (total electron content), and satellite observations
(e.g., [2,4,7,8]). Based on the extensive investigation of different precursory phenomena, it
is becoming our recent consensus that the ionosphere (both upper F region and lower D/E
regions) is extremely sensitive to pre-EQ lithospheric activity (e.g., [9–11]), which led us to
discover the new and attractive concept of lithosphere–atmosphere–ionosphere coupling
(LAIC) because of the strong interactions among different layers [12–14]. As such, in recent
years there have been published a considerable number of papers strongly focused on the
elucidation of the mechanism of the LAIC process by making full use of multi-parameter
and multi-layer analysis based on satellite- and ground-based measurements [15–27].

The mechanism of the LAIC process has been investigated extensively during the last
10 years and a few review papers on the LAIC process have been published in recent years
(e.g., Conti et al. [28], Picozza et al. [29], and Chen et al. [30]). A few hypotheses of LAIC pro-
cess have already been proposed in Hayakawa et al. [2,6]; the first is the so-called chemical
hypothesis, in which the emanation of radioactive radon, charged aerosols, and/or gases
plays the main role, leading to the modification of atmospheric conductivity and the genera-
tion of an electric field, thereby driving the variation in ionospheric plasma density [7,31,32].
Additionally, air ionization in this hypothesis leads to the generation of thermal anomalies
near the Earth’s surface as the consequence of different physical/chemical processes which
seem to be closely related with this paper. The second is the acoustic hypothesis, in which
atmospheric oscillations, including atmospheric gravity waves (AGWs) and acoustic waves,
are excited by the precursory deformation of ground motion and/or gas emanation or
thermal irregularities propagating upwards to the lower and upper ionosphere and leading
to perturbations in the ionosphere [33–36]. The third is the electromagnetic hypothesis, in
which electromagnetic waves generated in any frequency range (either in the lithosphere
or in the atmosphere) propagate upwards into the ionosphere and magnetosphere, induc-



Atmosphere 2025, 16, 88 3 of 21

ing particle precipitation into the upper atmosphere due to wave–particle interactions in
the magnetosphere (e.g., [2]). Finally, a fourth electrostatic channel is proposed, based
on laboratory experiments, in which positive holes are generated when the ground of
interest is stressed by accumulated pressure [37]. These processes have been discussed
extensively based on multidisciplinary measurements by different authors (e.g., Ouzounov
et al. (Eds), 2018 [3]), but none of the above hypotheses have been evidenced by any
definite observational data, necessitating further studies until the process of LAIC is well
understood [25].

In this paper we will focus on the simplest meteorological parameters on the Earth’s
surface with an emphasis on the use of “open” data. After we recognize that the information
on the Earth’s surface and the near-Earth plays a vital role as an essential bottom part
of the LAIC, let us review the history of the Earth’s surface remote sensing in the aspect
of the use of meteorological parameters in predicting an EQ. Following early works on
the application of satellite imaging of the Earth’s surface in the visible and near infra-red
(IR) part of spectrum with high resolution, these images were found to be useful to study
the lineaments, morphological structures, and tectonic movements in seismically active
regions. In comparison to near-IR and visible images, Earth’s surface images as obtained
in the thermal IR part of the spectrum are generated due to surface temperature [38–40].
Then, paying particular attention to EQ prediction, Tronin et al. (2002) [41] indicated
clearly the presence of positive thermal anomalies as based on NOAA/AVHRR satellite
thermal images that are associated with the large linear structures and fault systems of
the Earth’s crust. Based on long-term (7-year) data, they have indicated temperature
anomalies associated with EQs in China and Japan, and the temperature increases range
from 3–6 ◦C about one week before the EQ. This paper provided a potential impact on
possible EQ prediction from satellite remote sensing, resulting in the subsequent intensive
remote sensing from satellites on various anomalies of mainly meteorological parameters
on Earth’s surface, such as air temperature, humidity, OLR (outgoing longwave radiation),
and SLHF (surface latent heat flux). As such, many papers have been published with these
openly available satellite remote sensing data [42–58].

These meteorological parameters are quite simple to treat, so we want to explore the
possibility that such simple and familiar meteorological parameters, such as temperature,
humidity, etc., can be effectively utilized for real short-term EQ prediction, preferably using
open “ground-based” data with higher temporal and spatial resolutions than the satellite
remote sensing data. Those meteorological (thermal) parameters are much easier to treat
than the complicated phenomena such as ionospheric perturbations, because they require
sophisticated observations and analysis techniques even though they are the main player
of LAIC studies [2,4,6,8,15–27].

Therefore, the present paper aims at proposing the use of simple meteorological pa-
rameters and related quantities, as given in Hayakawa et al. (2022) [22] and Schekotov et al.
(2023) [59], employing openly available data from a dense network of meteorological obser-
vations by Japan Meteorological Agency (JMA). We will check whether such meteorological
parameters can be powerful or not for real short-term EQ prediction, first on the basis of the
conventional statistical confidence bounds with the use of mean and standard deviations
and spatial distributions of the anomaly intensity with more than 40 stations, secondly with
the use of machine/deep learning techniques, within the framework of AI (artificial intelli-
gence), and finally by comparing those results. The organization of this paper is as follows.
Section 2 deals with the target 1995 Kobe EQ and we discuss again the solar-terrestrial
environment around the EQ. In Section 3 we introduce the ground-based meteorological
data from AMeDAS (Automated Meteorological Data Acquisition System) of JMA and the
two meteorological parameters used in this paper. Section 4 presents the analysis results;
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initially, those of the conventional statistical analysis, based on the confidence bounds and
spatial distributions of both quantities, and secondly, the results of machine/deep learning
with a hybrid use of NARX and LSTM, followed by their comparison. Sections 5 and 6 are
the discussion and conclusion, respectively.

2. EQ Studied in This Paper and Solar and Geomagnetic Activity
2.1. Target EQ and AMeDAS Stations

The target EQ of this paper is the famous 1995 Kobe EQ that happened at 5 h 46 m
on January (JST) 1995 at the epicenter (geographical coordinates of 34◦35.9′ N, 135◦02.1′ E)
as shown in Figure 1 (red star with notation of EQ) with a M (magnitude) = 7.3 and with
a depth of 16 km (e.g., [60]). For this EQ, we discovered the first convincing evidence of
ionospheric perturbations four days to one day before the EQ with the subionospheric VLF
propagation data from the Omega transmitter at Tsushima to the observatory at Inubo
(Hayakawa et al., 1996 [60]); Nagao et al. (2002) [61] also summarized different kinds
of electromagnetic EQ precursors for this EQ. Further, we have plotted some AMeDAS
meteorological stations close to the EQ epicenter (such Kobe, Himeji, etc.) together with
the fault regions possibly related with this EQ.
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AMeDAS stations (by black boxes) close to the EQ epicenter. Additionally, the fault regions possibly
related with the EQ are plotted.

2.2. Solar-Terrestrial Environment

Figure 2 illustrates the temporal evolutions of geomagnetic activity (Dst and Kp index)
and solar radiation flux at the wavelength of 10.7 cm (f10.7) during the whole period of
1 May 1994 through 31 May 1995 (over one year) including the day of the EQ, although we
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think that, unlike ionospheric parameters, the meteorological parameters in this paper are
likely to be much less influenced by solar-terrestrial conditions and perturbations. It is seen
from the plot of Dst that we notice some geomagnetic disturbances with Dst below −50 nT
only in October and November, 1994, but the geomagnetic activity after the beginning
of December 1994 till the day of the EQ was extremely quiet, because |Dst| was less
than 20 nT. Further, the solar radiation flux (f10.7), as an indicator of overall solar activity
levels, was also found to be less than 100. Taking into account the quiet conditions of the
solar-terrestrial conditions just before the EQ, we are ready to investigate short-term EQ
precursors within the short-term EQ prediction span of one month before and two weeks
after the EQ.
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Figure 2. Temporal evolutions of solar-terrestrial conditions. From the top, Dst index, Kp index, and
solar radiation flux at the wavelength of 10.7 cam (f10.7).

3. Meteorological Parameters from the Japanese AMeDAS Data
In this paper, we want to show the usefulness and importance of the openly available

data from ground-based observations of meteorological parameters, even though there have
been recently published many papers on the study of these meteorological parameters,
such as temperature, humidity, etc., from the “open” data of satellite remote sensing
observations [42–58].

3.1. AMeDAS Data Analysis

In Japan, the JMA has established the so-called AMeDAS since 1975 and it has been in
operation very regularly. Four meteorological parameters are being measured at each sta-
tion: (1) precipitation (or rainfall) (in units of 0.5 mm), (2) air temperature (in units of 0.1 ◦C)
and air relative humidity (in %), (3) sunshine duration, and (4) wind direction/speed, and
this AMeDAS network includes as many as 1300 stations all over Japan, so those stations are
displaced, on average, with an interval of 17 km. These meteorological data are available
from the following site of https://www.data.jma.go.jp/risk/obsdl/index.php (accessed on
1 April 2023).

3.2. Meteorological Parameters Used in This Paper

Next, we will study the following two meteorological quantities proposed in
Hayakawa et al. (2022) [22] and Schekotov et al. (2023) [59]. The fundamental idea is
based on the following supposition. During the EQ preparation phase, radon, Rn may rise
to the Earth’s surface more intensely along seismic faults or volcanic fumaroles [62–65] and
the subsequent air ionization leads to a decrease in the air humidity and an increase in its
temperature [4]. As such, the first quantity of interest is the simple ratio of temperature (T
(in ◦C) and humidity (relative humidity) (in %)), i.e., T/Hum, because of our expectation of

https://www.data.jma.go.jp/risk/obsdl/index.php
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an enhanced seismogenic effect of increasing T and decreasing Hum. The second quantity
is ACP (atmospheric chemical potential), which is expressed by the following equation
using thermodynamic parameters (Pulinets and Boyarchuk, 2004 [7]):

ACP (in eV) = 5.8 × 10−10 (20 T + 5463)2 ln (100/Hum) (1)

Here, we indicate the reason why we call this the chemical potential: because at the
moment of water molecule condensation/evaporation or attachment/detachment to the
ions, the latent heat release/absorption is equal to the chemical potential [22]. This ACP
value is supposed to show an increase during the process of air ionization by any agents,
including galactic rays, etc., and one of them is the increased radon (Rn) release during the
pre-EQ seismic activity, as reported by several researchers (e.g., [62–66]).

As mentioned in the Introduction, we have plotted 4 AMeDAS stations near the EQ
epicenter in the western part of Japan, Kobe (34◦42′ N, 135◦13′ E), Osaka (34◦41′ N, 135◦31′

E), Sumoto (34◦19′ N, 134◦51′ E), and Himeji (34◦54′ N, 134◦40′ E), as representative stations
close to the EQ epicenter.

4. Analysis Results
4.1. Statistical Analysis Based on the Mean and Standard Deviation

The two meteorological quantities of T/Hum and ACP have been examined for a
particular Tokyo EQ with a magnitude of 5.9 (Hayakawa et al., 2022 [22]) and also for
Kamchatka EQs (Schekotov et al., 2023 [59]). The first quantity was our proposal, but the
second parameter of APC was initially proposed by Pulinets and Boyarchuk (2004) [7]
(detailed discussion in [4]) as an integrated parameter of Earth’s surface meteorological
changes associated with pre-EQ activity, but there have been very few extensive studies
based on ACP.

The basic data of T and Hum are utilized only around midnight, and we choose LT
= 01 h, because we have confirmed that daytime is strongly influenced by strong solar
radiation and we think that the time period around midnight is considered to be most
suitable for our analysis by excluding this solar effect.

First, we will examine the general behavior of these parameters. Figure 3a (upper
panel) illustrates the analysis results (or raw data) for T/Hum during our whole period
from 1 May 1994 through 31 May 1995, or 6.5 months before and 5.5 months after the EQ
(for a total of more than one year). Each vertical black line indicates the current value
for each day and the abscissa indicates the date. The day of the EQ (17 January 1995) is
indicated by a vertical red line. There are plotted a few colored curves in the figure; the
bottom blue curve refers to the mean value (m), green, m + σ (standard deviation), orange,
m + 2σ, and red, m + 3σ. Here, the values of m and σ are estimated during 30 days before
the current day as in [22]. The same notations are adopted in the upper panel of Figure 4
for the raw data of ACP. The peak on 10 January 1995 is marked with a red circle on its top.
Further, we have included the time periods of geomagnetic storms (though not so strong)
(light-red boxes) and a typhoon (blue vertical dotted line) for reference.

Because we have a period of more than one year, we can explore the general behavior
of the changes of T/Hum (Figure 3a) and ACP (Figure 4a). First, we look at the original data
(a) of the two quantities to understand the fundamental characteristics of those quantities.
Figure 3a indicates that there exists a strong seasonal dependence, such as enhancements
mainly during the summer time of July, August, and September due to the stronger
sunshine. Correspondingly, we notice a lot of variability during this period of enhanced
values of T/Hum in summer, while, vice versa, less variability during the wintertime.
Further, we notice some anomalous and irregular days with enhanced T/Hum, especially
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in summer (e.g., on 9 September 1994), whose origins are uncertain, such as irregular
and nonlinear behavior or a local effect. In sharp contrast to this, Figure 4a suggests that
there seems to exist no seasonal variation and this quantity of ACP looks much more
stable for the whole-year analysis than the above parameter of T/Hum. Considering the
characteristics of these two parameters, it is very desirable for us to use the bottom panel,
i.e., detrended values of δ(T/Hum), for the first quantity, by extracting the monthly mean
values. However, in the case of ACP, we notice no significant difference in finding statistical
anomalies in Figure 4a,b, in which the largest peak is observed on 10 January 1995.
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Figure 4. (a) Temporal evolution of daily ACP values, with confidence bounds, and (b) detrended
δ(ACP). A few colored curves are plotted in (a); the bottom blue curve refers to the mean value (m),
green, m + σ (standard deviation), orange, m + 2σ, and red, m + 3σ. Here, the values of m and σ are
estimated during 30 days before the current day, and in (b), we have plotted the mean, ±σ, ±2σ, and
±3σ curves. The day of the EQ is indicated by a vertical red line. Further, the periods of geomagnetic
storms (light-red boxes) and a typhoon (blue vertical dotted line) are indicated for reference.

Now we will try to identify any anomalous variations by using the confidence bounds
with m and σ. In our previous works it has been natural to take a criterion of m + 2σ
when dealing with different physical parameters (e.g., [2,10]), but in this paper we adopt
a much stricter criterion of m + 3σ as used conventionally in the field of astrophysics.
The use of m and σ is fundamentally based on the assumption that the fluctuation of the
relevant parameter follows a Gaussian distribution, so we have checked the distribution of
fluctuations of both quantities of T/Hum and ACP for summer (June, July, and August
1994) and winter (December 1994 and January and February 1995) separately because of
the presence of a strong seasonal effect only for T/Hum. Figure 5 illustrates the fluctuation
distributions of δ(T/Hum) in (a) summer and (b) winter, while the corresponding plots for
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δ(ACP) are given in Figure 6 for (a) summer and (b) winter. We will explain the simpler
case (ACP) of Figure 6a, which illustrates the probability density (ordinate) of fluctuations
in blue boxes and the purple thick curve refers to the best-fitted Gaussian distribution.
The degree of fitness of the data by Gaussian distribution is estimated by an index of
kurtosis (k), and in this case k = 3.25, which means a good Gaussian approximation because
a perfect fit can be characterized by k = 3. Figure 6b refers to the same δ(ACP) but for
winter and we have again a rather good fit with Gaussian distribution. Therefore, we can
conclude that the use of m and σ is very acceptable and reasonable when discussing the
behavior of ACP. On the other hand, the situation is considerably different for δ(T/Hum),
as seen from Figure 5a,b. Both figures for δ(T/Hum) in summer and winter suggest that
the distributions seem to somehow deviate from a Gaussian distribution, as judged from
their kurtosis values and some related information on the degree of fitting, and in this case
it is preferable to use the median and interquartile. Nevertheless, we have used above and
also will continue to still use the m and σ in what follows to keep consistency with the case
of ACP, but we have to be cautious with considering the nature of slight deviations from a
Gaussian distribution of the fluctuations while discussing T/Hum.
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Figure 5. Statistics of δ(T/Hum) data (histogram of values and corresponding Gaussian fitting) over
(a) the summer period 1/6/1994–31/08/1994, when the data present a kurtosis k = 3.7757 and were
fitted by a Gaussian distribution with a fitting log likelihood of 135.999, and (b) the winter period 1
December 1994–28 February 1995, when the data present a kurtosis k = 4.2870 and were fitted by a
Gaussian distribution with a fitting log likelihood of 150.724.

We are interested in short-term EQ prediction, so we pay attention to our time period
from about one month before the EQ and two weeks after the EQ. Figure 3b indicates that
we can notice a single and a very significant peak exceeding m + 3σ only on 10 January
1995, just one week before the EQ. The value on this anomalous day is indicated by a red
circle on the top of the vertical bar. Similarly, we can identify the same anomaly on the same
day in Figure 4a,b for ACP, but its value is not exceeding this criterion of m + 3σ, but is well
above m + 2σ. As seen from Figure 3a, there are four days exceeding + 3σ; (i) 9 September
1994, (ii) 10 January 1995, (iii) 16 March 1995, and (iv) 24 May 1995, but the origins of
those peaks, except for our target of 10 January 1995, are very uncertain, such as temporary
climate effects, a local effect, or the effect of non-Gaussian distribution, etc. Nonetheless,
the use of this parameter is not so useful as an EQ precursor during summertime, but it
will be very powerful during the wintertime (from autumn to spring).
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Gaussian distribution with a fitting log likelihood of 393.356.

Finally, we can conclude that a significant peak appears in both studied parameters on
10 January 1995, just one week before the EQ, which is marked by the peaks with their tops
covered by red circles in Figures 3 and 4. Further, we have checked the meteorological maps
around the Kobe area during a few days around 10 January 1995 to try to study whether
there existed any meteorological disturbances or not and we have found that there was fair
weather without any rainfall not only on 10 January, but also during a few days around
the EQ day. Furthermore, the three other anomalous days were also examined regarding
δ(T/Hum) and were found to have had fair weather without any significant meteorological
disturbances. Finally, it is highly likely that an anomaly on 10 January 1995 is a possible
precursor to the EQ. Further, we will apply AI (machine/deep learning) to our data in the
following Section, the results of which will be compared with the present statistical results.

4.2. Spatial Distributions of Anomaly Intensities on 10 January 1995

In order to obtain further support to the close relationship of the anomaly on 10 January
1995 to the EQ, we have investigated the spatial distributions of anomaly intensity of both
quantities. The anomaly intensity is estimated by the peak value normalized by the standard
deviation (σ) at each station and we have used about 40 AMeDAS stations, including the
four stations in Figure 1. Figure 7a refers to the spatial distribution of T/Hum, while
Figure 7b refers to ACP, in which the studied area is wider than that of Figure 1. The small
black dots in the figures represent the locations of AMeDAS stations. The numerical values
of 3, 2, etc., are the peak values normalized by the standard deviation (σ), so 3 means 3σ in
the figures. It is seen from both figures that the distributions of both quantities are different
from each other, and we will describe them one by one. Figure 7a indicates that the area
of anomaly intensities exceeding 3σ (3 in the figure) is widely distributed, just encircling
the EQ epicenter, and the anomaly intensity decreases at farther distances from the EQ
epicenter. For example, the anomaly intensity is very much depleted in the western part
of Shikoku Island. As for the case of ACP in Figure 7b, the anomaly intensity exhibits a
maximum a little west of the EQ epicenter, but with the same tendency of decreasing in the
anomaly intensity at farther distances from the EQ epicenter. As the common feature, the
western part of Shikoku island area is weakly perturbed as in both of Figure 7a,b. Probably,
this difference might be related with the physical nature of those two quantities, which will
be a target of our future work as related to the positions of fault regions.
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4.3. Detection of EQ-Related Anomalies Using AI (A Combination of NARX and LSTM Models)

(a) Combination of NARX and LSTM

We performed basic preprocessing, such as missing value completion, normalization,
filtering, creation of delayed data, and data division. In this section, we have conducted a
machine/deep learning analysis using the Nonlinear Autoregressive model with eXoge-
nous inputs (NARX) (e.g., [49,67–70]) and Long Short-Term Memory (LSTM) [71–81] of
the same data of the two quantities in the previous subsection. So far, these two models
have been widely used, but they have been implemented independently (e.g., [49]), but this
paper proposes a combinational use of NARX and LSTM, which is becoming a well-known
approach in the AI field, providing a powerful tool for time series forecasting, and we
believe that this combination will enable more accurate forecasting by taking advantage
of the features of each model. That is, LSTM has an advantage of learning long-term
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dependencies, which is very effective for capturing the relationship between data that
are separated in time. For example, it works effectively when patterns in the distant past
have an impact on the future. On the other hand, NARX is a self-regressive model with
external inputs and it is good at capturing short-term changes and clear causal relationships
by taking advantage of the fact that the current output depends on the past output and
external inputs. As a synergy of the LSTM+NARX combination, by combining LSTM and
NARX, the strengths of each model can be used in a complementary way. While LSTM
learns long-term trends and temporal patterns, NARX can incorporate short-term changes
and external factors. NARX explicitly handles past data and external inputs, while LSTM
implicitly remembers features. This may improve feature selection and model interpretabil-
ity and this combination is expected to provide more robust predictions for data with a lot
of noise or data that are strongly influenced by external factors. This combination has seen
a lot of success in different fields. For example, Massaoudi et al. (2019) [82] have proposed
a hybrid model combining a NARX model with an LSTM to be applied to solar power
forecasting and they have reported that the proposed model has improved forecasting
accuracy compared to other models. Further, Cocianu et al. (2022) [83] have combined
a NARX model with an LSTM-based forecasting algorithm and optimized it using an
evolutionary algorithm, and they have found that the accuracy of the prediction of financial
time series data was improved compared to the standard LSTM model. We can cite some
other additional papers on the usefulness of the hybrid use of LSTM and NARX [84,85].

In this paper we obtain the difference between the measured values of T/Hum and
ACP and those predicted with the combined model of the NARX/LSTM model, as is
illustrated in Figure 8, and perform Bollinger band analysis [86] to evaluate the anomalies
related to EQs.
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Figure 8. Model architecture of a hybrid NARX and LSTM. LSTM is used as a core part of the NARX
model. Specifically, LSTM is responsible for combining past time series data and external inputs to
predict future values in the NARX model.

One of the advantages of NARX is that it can directly incorporate external inputs
(exogenous variables). As possible inputs, we consider the geomagnetic activity (Dst, Kp)
and solar radiation flux (f10.7) and thus we can consider external factors which may affect
the forecast target.

(b) Design of NARX model

We design the structure of NARX and use the past target variables and the lagged
exogenous inputs as the features; these are incorporated in the NARX architecture as an
input layer of the LSTM model using the NARX architecture. The NARX model is expressed
by the following equation.
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y(t) = f(y(t − 1), y(t − 2), . . ., y(t − n), u(t − 1), u(t − 2), . . ., . . ., u(t − m)) + ϵ(t) (2)

where y(t) is the output at a time t to be forecasted (objective variable), y(t − 1), y(t − 2), . . .,
and y(t − n) are the outputs for the past n days (autoregressive part), u(t − 1), u(t − 2), . . .,
and u(t − m) are exogenous variables (input variables) for the past m days, f is a nonlinear
function (often using neural networks or other nonlinear models), and ϵ(t) is the error term
(noise). The delay in the NARX model is also related to how the model makes use of past
information. The number of delays and their settings should be adjusted according to the
characteristics of the data and the purpose of the forecast. The selection of appropriate
delays is important because the range of information trained by the model and the accuracy
of the model change depending on the delay settings. In this analysis, we empirically set
the delay = 10 (days).

(c) Design of LSTM model

The behavior of the LSTM is described by the following Equation (3).

ft = σsigmoid(Wf·[ht−1, xt] + bf) (3)

where ft is the output of the forgetting gate at the current time, Wf is the weight matrix of
the forgetting gate, ht−1 is the hidden state at the previous time, xt is the current input data,
bf is the bias of the forgetting gate, and σsigmoid(.) is the sigmoid function (which limits
the gate output between 0 and 1). The forgetting gate determines which information from
the previous cell state Ct−1 is retained and which information is forgotten, as shown in
Equations (4) and (5).

it = σ(Wi · [ht−1,xt] + bi) (4)

C̃t = tanh(Wc·[ht−1, xt + bc]) (5)

where it is the output of the input gate at the current time, Wi is the weight matrix of the
input gate, bi is the the bias of the input gate, C̃t is the new candidate cell state, Wc is the
weight matrix of the candidate cell state, and tanh is the hyperbolic tangent function (limits
output from −1 to 1). The input gate controls which new information is added to the cell
state. It adjusts how much information to add and C̃t is a new candidate state. The new
cell state Ct is updated using the output of the forget gate and the input gate, as in the
following Equations.

ot = σsigmoid (Wo · [ht−1, xt] + bo) (6)

ht = ot · tanh (Ct) (7)

where ot is the output of the output gate at the current time, ht is the current hidden state
(the output transmitted at the next time), Wo is the weight matrix of the output gate, and bo

is the bias of the output gate. Note that the output gate decides which part of the cell state
to use as the output. The final hidden state ht is computed based on the output gate ot and
the cell state Ct. In the overall LSTM flow, the forgetting gate determines which information
is forgotten from the cell state and the input gate determines how much new information
is added to the cell state. Next, the cell state is updated and the output gate determines
which information is used as the next output. By repeating this sequence of operations
and learning long-term dependencies, LSTM becomes a model suitable for forecasting and
generating time-series data.

(d) Model optimization and evaluation

We have attempted to improve the accuracy of the model by optimizing the hyper-
parameters of the model (e.g., number of LSTM units and number of delays in NARX)
by using a method of Optuna [87]. Optuna is fast compared to other methods such as



Atmosphere 2025, 16, 88 14 of 21

grid search because it efficiently searches for parameters using Bayesian optimization. The
accuracy of the model after training is evaluated in terms of Mean Absolute Error (MAE)
and Mean Squared Error (MSE).

(e) Bollinger Band Analysis

Bollinger band analysis is an analytical technique often used in the financial field [86],
but it is also applied in our field to detect anomalous values and fluctuations. By using
Bollinger band analysis for geophysical data, it is possible to detect anomalous fluctuations
and sudden events. First, some time series data are prepared and Bollinger bands are
calculated by moving average. Next, the standard deviation (σ) for the same period is
obtained and the upper and lower bands are constructed by adding or subtracting ±2σ
or ±3σ from or around the moving average. Finally, the data are plotted together with
the data to be analyzed. Applying this method to our data, anomalies can be detected by
monitoring periodic or non-periodic data for deviations from the band.

(f) Analysis Results

To examine short-term variations, we first focused on the period from May 1994 to
May 1995 including the data of the Kobe EQ (17 January 1995). Figure 9 illustrates the AI
analysis result, in which we plot the deviation of the actual (observed) values from the
NARX/LSTM-predicted values. The ordinate refers to the deviation of the observed value
from the predicted value and the grey and yellow areas indicate the Bollinger bands of ±2σ
and ±3σ. For the sake of comparison, possible time spans of geomagnetic disturbances
which might disturb our results are also indicated by light-red boxes. The date of the
typhoon that passed near Kobe is also indicated by a blue vertical dotted line. The model
was generated using data from the years of 1990 to 1993. As a result, there were four days
as mentioned before during the whole period of about one year when the predicted T/Hum
exceeded the +3σ Bollinger band, and one of these days (10 January 1995) with a red circle
on the top of the value is endorsed as a possible precursor (7 days before the EQ) to the EQ.
The abnormality on this day was greater than that on the other three days.
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Figure 9. Deviation of observed T/Hum values from NARX-LSTM-predicted values with Bollinger
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possible time spans of geomagnetic disturbances are indicated by light-red boxes, whereas a typhoon
day is also marked. Finally, the value exceeding the +3σ Bollinger band, indicated by the red circle
on the top of the peak on 10 January 1995, is highly likely to be an EQ precursor.
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Then, we move on to the corresponding analysis results for ACP in Figure 10, with
the same notations as in Figure 7 in the form of the deviation of real values from the AI-
predicted values. This figure suggests that an ACP anomaly was confirmed to be observed
on the same day of 10 January 1995 during our interest time window of short-term EQ
prediction of one month before and two weeks after an EQ. Even though the peak value
did not exceed +3σ, we have to emphasize that it was well above +2σ and is approaching
+3σ as seen in Figure 10. Another essential conclusion is that this parameter of ACP is an
extremely stable indicator of thermal anomalies on the Earth’s surface.
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Figure 10. Deviation of observed ACP values from NARX-LSTM-predicted values with Bollinger
band analysis of ±2σ and ±3σ. The day of the EQ is indicated by a thick vertical red line. Additionally,
possible time spans of geomagnetic disturbances are indicated by light-red boxes, whereas a typhoon
day is also marked. Finally, the value exceeding well above the +2σ Bollinger band, indicated by the
red circle on the top of the peak on 10 January 1995, is highly likely to be an EQ precursor.

5. Discussion
Two parameters (T/Hum and ACP) have been investigated to understand whether

these two meteorological quantities can be used for real short-term EQ prediction. Initially,
a combination of two parameters, i.e., the ratio of T over Hum, was suggested in [22,56]
in order to have an enhanced response of expected enhanced temperature and decreasing
relative humidity [7,22,56]. The anomaly on 10 January 1995 was commonly observed in
both quantities. We have to note that there were observed three additional peaks exceeding
m + 3σ only in the case of T/Hum, and we have tried to understand their origins, but they
are still unknown. However, in the case of ACP, ACP was a stable predictor, such that the
peak was the largest on 10 January 1995 during the whole period of over one year. Further
studies on the spatial distributions of both quantities have found that the anomaly intensity
is enhanced in the vicinity of the EQ epicenter and it decreases at farther distances from the
EQ epicenter, which provide further support to the close relationship of the anomaly with
the EQ.

We have confirmed by AI-based analyses the presence of the anomalous day of
10 January 1995, just one week before the EQ, within our short-term window of one month
before and two weeks after an EQ. The AI-based result has provided an endorsement to the
conventional statistical result that this anomaly on 10 January 1995 was a possible precursor
to the EQ.
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Despite that it was found that this new quantity of T/Hum is very powerful, especially
around wintertime (from autumn to spring), this quantity in summertime exhibits a high
variability, leading to unknown peaks (or statistical anomalies), probably due to unknown
reasons such as the slight deviation of fluctuation distributions from a Gaussian distribution,
abnormal natural climate changes, or local effect(s), and this parameter was not so useful in
predicting EQs during this period. In reality, the studied Kobe EQ happened in winter, so we
were lucky in obtaining a clear anomaly on 10 January 1995, just one week before the EQ. On
the other hand, another parameter, the ACP, was found to show a high stability during our
whole period of over one year and indicates the presence of a significant precursory peak
on the same day of 10 January 1995. Initially, this integrated parameter was proposed in [7],
but no thorough investigation of the usefulness of this parameter has been performed so
far. However, recently researchers have tried to use it extensively as a predictor of any EQs,
but unfortunately only qualitatively [88–90]. Principally, the surface latent heat flux (SLHF)
created during the abrupt phase transitions of water in the atmosphere can be monitored
with the help of the integrated parameter of ACP calculated using the air temperature and
humidity. This concept has appeared when considering the process of air ionization by
different sources: galactic cosmic rays in the upper atmosphere, thunderstorm discharges
in the troposphere, and radon emanating from the Earth’s crust in the near-ground layer
of the atmosphere [7]. The present paper might provide a quantitative estimation of the
usefulness of ACP for the study of pre-seismic signatures. Our machine/deep learning-
based model proved to be very successful in finding the same anomalous day of 10 January
1994 as a possible precursor to the EQ, which provides an endorsement to the result based
on the conventional statistical analysis.

Finally, we comment on recent works on different ideas to use meteorological per-
turbations with major EQs discussed by Freund et al. (2022) [91] and Daneshvar et al.
(2023) [92]. Freund et al. (2022) [91] have discussed connections between atmospheric
perturbations, e.g., thunderstorm activity and extreme weather conditions, and major EQs
along with the LAIC mechanism concerning EQ prediction models, and they have found
that a positive correlation exists within 30 days before six major EQs in 2017 in Japan.
Further, ref. [92] has provided a systematic assessment of the relationship between climatic
variables and major EQs in Iran (2011–2021). These variables include total cloud cover, low
cloud cover, total precipitation, SLHF, and total column rainwater, and the combination
of a cross-correlation and receiver operating characteristic (ROC) was used to develop the
spatial and temporal analytical relationship. They have revealed that an increase in climatic
parameters could provide valuable information about impending EQ activity within 8 to
20 days. Considering these recent works together with the present study, we can suggest
that different kinds of climatic disturbances can be possible precursors to EQs, despite the
mechanism of these anomalies on why and how they are coupled with pre-EQ activity
being quite uncertain, but we have to consider them in the context of the LAIC process.

6. Conclusions and Outlook
This paper aimed at suggesting the potential use of simple meteorological parameters

based on the Japanese “ground-based” AMeDAS meteorological observations which are
available “openly to the public”. The following have emerged from the present study.

(1) The two parameters of T/Hum and ACP at midnight have been suggested in order to
identify any possible precursors to EQs and a case study has been performed for the
famous 1995 Kobe EQ (M = 7.3) on 17 January 1995 as an example. The conventional
statistical analysis shows that clear precursors are detected on 10 January 1995, just
one week before the EQ in both quantities when we pay particular attention to the time
window of short-term EQ prediction (one month before and a few weeks after an EQ).
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However, when we look at a longer period of about one year including the day of the
EQ, three additional extreme anomalies appeared, except in winter, only in the case of
T/Hum and their origins are still uncertain. However, ACP is a very stable predictor
in such a way that the largest anomaly is detected on 10 January during the whole
period of over one year. Further studies of the spatial distributions of both quantities
(even though they are a little different from each other) have provided a further
support to the close relationship of the anomaly with the EQ. Because these quantities
may serve as a proxy of pre-EQ radon emanation, the openly available AMeDAS data
from JMA with higher temporal and spatial resolutions will be of potential importance
as a possible candidate for real short-term EQ prediction in future.

(2) The above anomaly in both parameters on the same day has been verified with the use
of AI machine/deep learning techniques: that is, a hybrid use of NARX and LSTM
models, which improves time series prediction accuracy. Further, the AI analysis
yielded that the abnormality on 10 January 1995 was greater than that on the other
three days. Of course, we recommend the application of these AI techniques to
different seismogenic phenomena.

(3) Further, we suggest a combined use of the above two meteorological quantities
(T/Hum and ACP) by taking advantage of each parameter for real short-term
EQ prediction.

(4) The information of meteorological perturbations on the Earth’s surface will, of course,
be of potential significance in elaborating future LAIC studies.

(5) Further statistical research such as more event studies is highly required based on
the long-term and multi-station AMeDAS data, leading to the study of the confusion
matrix, etc.
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