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Abstract: The geostationary meteorological satellite Fengyun-4A (FY-4A) has rapidly
advanced, generating abundant high spatiotemporal resolution atmospheric precipitable
water vapor (PWV) products. However, remote sensing satellites are vulnerable to weather
conditions, and these latest operational PWV products still require systematic validation.
This study presents a comprehensive evaluation of FY-4A PWV products by separately
using PWV data retrieved from radiosondes (RS) and the Global Navigation Satellite
System (GNSS) from 2019 to 2022 in China and the surrounding regions. The overall results
indicate a significant consistency between FY-4A PWV and RS PWV as well as GNSS PWV,
with mean biases of 7.21 mm and −8.85 mm, and root mean square errors (RMSEs) of
7.03 mm and 3.76 mm, respectively. In terms of spatial variability, the significant differences
in mean bias and RMSE were 6.50 mm and 2.60 mm between FY-4A PWV and RS PWV in
the northern and southern subregions, respectively, and 5.36 mm and 1.73 mm between
FY-4A PWV and GNSS PWV in the northwestern and southern subregions, respectively.
The RMSE of FY-4A PWV generally increases with decreasing latitude, and the bias is
predominantly negative, indicating an underestimation of water vapor. Regarding temporal
differences, both the monthly and daily biases and RMSEs of FY-4A PWV are significantly
higher in summer than in winter, with daily precision metrics in summer displaying
pronounced peaks and irregular fluctuations. The classic seasonal, regional adjustment
model effectively reduced FY-4A PWV deviations across all regions, especially in the NWC
subregion with low water vapor distribution. In summary, the accuracy metrics of FY-4A
PWV show distinct spatiotemporal variations compared to RS PWV and GNSS PWV, and
these variations should be considered to fully realize the potential of multi-source water
vapor applications.

Keywords: GNSS; radiosonde; FY-4A; PWV

1. Introduction
Water vapor plays a critical multifaceted role in the atmosphere, with its behavior and

distribution significantly influencing Earth’s meteorological and climatic systems. Cooling
and condensation of water vapor in the atmosphere result in cloud formation and precip-
itation, modulating the spatial distribution of atmospheric humidity and impacting the
development and evolution of meteorological phenomena across various spatiotemporal
scales. Additionally, water vapor is a major error source in space geodetic systems, causing
a typical path delay of up to 25 cm in the zenith direction for the Global Navigation Satellite
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System (GNSS) [1–4]. Therefore, the accurate retrieval and precision assessment of different
atmospheric water vapor datasets constitute a long-term essential task across various fields.

Precipitable Water Vapor (PWV), defined as the integral of water vapor within a
vertical atmospheric column, quantifies the dynamically varying water vapor and is a
crucial parameter for investigating various atmospheric processes [5,6]. However, early
effective technologies for obtaining PWV data, such as microwave radiometers [7], ground-
based hygrometers, and sun photometers, are limited by weather conditions and the spatial
configuration of measurement sites [8]. The radiosonde (RS), with an inversion uncertainty
for PWV ranging from 0 to 1.5 mm, is typically considered the benchmark for validating the
accuracy of PWV datasets obtained from other technologies. GNSS water vapor detection
technology, with its high temporal resolution and all-weather observation capabilities, can
achieve PWV retrieval accuracy within 1–2 mm [9], thereby demonstrating its potential as
an effective complement to radiosondes and its utility in monitoring atmospheric water
vapor [10,11].

High-precision measurements of atmospheric water vapor require dense, high-
resolution observational data due to its considerable spatial and temporal variability.
However, in remote and complex terrains, such as marine regions and high plateaus, the
sparse distribution of observational sites impairs the timeliness and quality of the data.
Reanalysis datasets, e.g., the 5th generation European Centre for Medium-Range Weather
Forecasts (ECMWF) Atmospheric Reanalysis (ERA5) [12], Modern-Era Retrospective analy-
sis for Research and Applications, Version 2 (MERRA-2) [13], and China Reanalysis and
Analysis Assimilation (CRAA) [14] can provide grid-based PWV data by integrating atmo-
spheric parameters at different height layers, exhibiting advantages such as global coverage,
spatial completeness, and consistent records. However, the accuracy of water vapor prod-
ucts in reanalysis models may be unreliable due to the lack of or limited observational
data being assimilated in certain regions [15]. Currently, multiple satellites have deployed
radiometers to sense water vapor content, providing numerous datasets for assimilation
into numerical weather prediction (NWP) models, effectively mitigating the deficiency of
in situ sites over the ocean and becoming the primary method for retrieving water vapor
in these regions [16,17]. Meteorological remote sensing satellites, e.g., Moderate Reso-
lution Imaging Spectroradiometer (MODIS) and Fengyun, can provide large-scale PWV
data [18–20], but they are constrained by cloud contamination and the limitation of data
collection only during satellite overpasses, leading to temporal continuity and accuracy
that are significantly inferior to those of ground-based techniques [21]. Therefore, it is
essential to comprehensively validate the water vapor products from satellite observations
before applying them to various analyses.

The Fengyun-4A (FY-4A) satellite, equipped with the Advanced Geostationary Radia-
tion Imager (AGRI), represents the latest generation of Chinese geostationary meteorologi-
cal satellites designed for weather monitoring, early warning and forecasting [22–24]. AGRI
is capable of rapid minute-level scanning across the Asia-Pacific region [25], providing high
spectral and temporal resolution atmospheric parameters essential for accurate climate and
weather applications [26]. Wang et al. [27] utilized RS PWV data to evaluate FY-4A PWV
products from 18 January 2019, to 18 January 2020, demonstrating that the FY-4A PWV
products exhibit good consistency with radiosonde data. Tan et al. [28] evaluated one year
of Fengyun PWV data from January 2019 to January 2020 using RS PWV, GNSS PWV, and
ERA5 PWV, demonstrating good consistency and accuracy with RS PWV and GNSS PWV
but significant discrepancies with ERA5 PWV. Zhou et al. [29] statistically evaluated the
overall performance of FY-4A PWV products using PWV data from 23 GNSS stations in
mainland China in 2021. Liu et al. [30] used GNSS PWV data from March 2019 to February
2020 to verify FY-4A PWV in mainland China on a regional basis.
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To the best of our knowledge, few studies have examined the accuracy and appli-
cability of FY-4A PWV products, especially comprehensive accuracy assessments over
China using long-term time series and numerous diverse datasets. Therefore, the primary
objective of this study is to evaluate the accuracy of FY-4A PWV using multi-source water
vapor datasets from 2019 to 2022 in order to assess its performance across various temporal
and spatial scales by dividing China and its surrounding regions into multiple subregions.
The paper is structured as follows: Section 2 describes the datasets and methodology after
this Introduction. The evaluation and analysis of FY-4A PWV between RS PWV and GNSS
PWV are in Section 3. Finally, the Conclusions are in Section 4.

2. Datasets and Methods
The research area of this study encompasses China and the surrounding regions,

which feature a variable geographical setting and a complex climate system, thereby
influencing the distribution and movement of water vapor [31]. To facilitate the discussion
on spatiotemporal PWV variability, the research area was divided into four subregions, i.e.,
North China (NC), Northwest China (NWC), Tibet Plateau (TP), and South China (SC). To
examine PWV variability across different time scales, we categorize the months as follows:
March to May for spring, June to August for summer, September to November for autumn,
and December to February for winter.

2.1. RS PWV

The RS-inverted PWV is one of the most common references for measuring various
high-quality water vapor data [32]. The RS profiles contain the meteorological parameters
in vertical direction collected by radiosonde balloons at UTC 00:00 and UTC 12:00 every
day, including surface temperature Ts, pressure P, relative humidity (RH) and geopotential
height (H), etc. In this study, the meteorological parameters of RS will be used to integrate
RS PWV as a reference value for evaluating the FY-4A PWV.

PWV =− 1
g

∫ Pi+1

Pi

q dP = − 1
g

Pi+1

∑
Pi

q · P, (1)

e =
RH · es

100
, (2)

es = 6.112 × 10(
7.5×Td

Td+237.3 ), (3)

where g is the acceleration due to gravity, q represents specific humidity (g/kg), and Pi+1

and Pi are the pressures of the upper and lower layers (hPa), respectively. es is the saturated
vapor pressure (hPa), RH is the relative humidity, and Td is the atmospheric temperature
in Celsius (Td = T + 273.15).

2.2. GNSS PWV

The GNSS observations are collected from CMONOC using the GAMIT high-precision
data processing software (ver 10.71). The zenith tropospheric delay (ZTD) [33] consists
of the zenith hydrostatic delay (ZHD) and zenith wet delay (ZWD), and the ZHD can be
obtained from the following formula [34]:

ZTD = ZHD + ZWD, (4)

ZHD =
2.2767 × Ps

1 − 0.00266 cos φ − 0.00028 × h0
, (5)
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where φ is the latitude of the GNSS site (radians), h0 is the height of the GNSS site above sea
level (km), and PS is the surface pressure (hPa) interpolated from the nearest meteorological
site (MET) to the GNSS site.

The basic formula for inverting PWV from GNSS observations is as follows [35]:

PWV = Π · ZWD, (6)

Π =
106

ρWRv

[
k3
Tm

+ k′
2

] , (7)

where ρW is the density of liquid water of 1× 103 kg/m3, Rv is the water vapor gas constant
of 461.495 J · kg−1 · K−1, and k′

2 and k3 are the empirical values of atmospheric physical
parameters of 22.13 ± 2.20 K/hPa and (3.739 ± 0.012)×105 K2/hPa, respectively.

Tm is the atmospheric weighted mean temperature [36–38] calculated from surface
temperature (K) Ts, site elevation h, latitude φ (radian), days of the year DOY, and model
coefficients ai(i = 1, 2 . . . 7). And the specific Tm regional model in this study refers to
Huang et al. [39].

Tm(Ts, h, φ, DOY) = a0 + a1Ts + a2h + a3 φ + a4 cos
(

2π·DOY
365.25

)
+ a5 sin

(
2π·DOY

365.25

)
+a6 cos

(
4π·DOY

365.25

)
+ a7 sin

(
4π·DOY

365.25

) , (8)

Given the limited number of GNSS sites equipped with meteorological instruments
and the spatiotemporal resolution constraints of the RS dataset, the dataset from MET
sites was utilized to derive Tm values for GNSS PWV inversion. The aforementioned
meteorological parameters are provided by the China Meteorological Administration
(CMA). The GNSS and MET sites are not collocated; hence, we utilize observations from
the nearest MET sites to compute corresponding values at GNSS sites for GNSS PWV
inversion [40].

Ts = T0 − β(h − h0), (9)

Ps = P0

[
1 − β

T0
(h − h0)

] g·M
R·β

, (10)

g = 9.8063 ·
{

1 − 10−7 h + h0

2

[
1 − 0.0026373 · cos(2φ) + 5.9 · 10−6 · cos2(2φ)

]}
, (11)

β(φ, θ, DOY) = δ1 + δ2 φ + δ3θ + δ4 cos
(

2π DOY
365.25

)
+ δ5 sin

(
2π DOY

365.25

)
+δ6 cos

(
4π DOY

365.25

)
+ δ7 sin

(
4π DOY

365.25

) , (12)

where Ts and T0 are the temperature (K) at the GNSS site and MET site, Ps and P0 are the
pressure (hPa) at the GNSS site and MET site, and h and h0 are the elevation (m) at the GNSS
site and MET site, respectively. M is the molar mass of dry air, which is 0.02896444 kg/m3,
and R is the ideal gas constant, which is 8.31432 J/K · mol. g is the gravitational coefficient
and β is the lapse rate parameter. φ, θ, and DOY are the latitude, longitude (radian), and
days of the year, respectively. δ1, δ2, δ3, δ4, δ5, δ6 and δ7 are the model coefficients.

The elevation difference, arising from the use of the geopotential height system for
RS observations and the geodetic height system for GNSS observations, is a critical factor
influencing the comparison results of different PWV datasets. The method proposed
by Wang et al. [41] was adopted to standardize the height of the PWV dataset to the
geodetic height. We combined GNSS sites with nearest MET observations and screened
site groups where the time series matched by over 80%, ensuring the inverted PWV has
high spatiotemporal resolution and accuracy. Therefore, the PWV data from 245 GNSS sites
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in China and surrounding regions were finally selected, ensuring coverage across diverse
geographic regions with varying climatic conditions. The distribution of RS sites and GNSS
sites in the research area is shown in Figure 1.
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Figure 1. Distribution of RS sites and GNSS sites from 2019–2022 in the research area.

2.3. FY-4A PWV

The AGRI on the FY-4A can provide PWV retrieved from clear-sky atmospheric
humidity profiles based on single pixels or M × M regions, and additional water vapor
absorption channels enable it to monitor a richer range of water vapor content [26]. The
spatial resolutions of the FY-4A PWV are 4 km, and the three flexible scanning modes of
AGRI are shown in Figure 2: full disk (15 min), regional scan (3–55◦ N, 70–140◦ E, 5 min),
and static scan (1000 km × 1000 km, 1 min). This study uses full disk FY-4A PWV data
from 2019–2022, and the PWV product is available free of charge in near real-time from the
official website. The most significant deviations in the FY-4A PWV data are primarily due
to the challenges of satellite-based observations in accurately capturing atmospheric water
vapor in regions with complex topography or dense cloud cover [42]. The preliminary data
quality control of FY-4A PWV was conducted in accordance with official standards, with
cloud regions (value: 65,534.0) and space view (value: 65,535.0) excluded.

The row-column matrix coordinates (x, y) of the FY-4A PWV product are converted to
sub-satellite point latitude and longitude coordinates (Lat, Lon), then PWV gridded data
closest to each site were extracted. To reduce the impact of random errors in FY-4A PWV,
the average of the 3 × 3 gridded data centered around the nearest site grid point is used as
the PWV value at the central grid point for PWV assessment [43,44].

η =
π × (col − COFF)

180 × 2−16 × CFAC
, (13)

ζ =
π × (1ine − LOFF)
180 × 2−16 × LFAC

, (14)

where η and ζ are the scaling factors, col is the nominal row number, and line is the nominal
column number. COFF is the column offset, CFAC is the column scaling factor, LOFF is the
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row offset, and LFAC is the row scaling factor. The spatial resolution of the FY-4A PWV
is 4 km; hence, the values of COFF, CFAC, LOFF, and LFAC are 1373.5, 10,233,137, 1373.5,
and 10,233,137, respectively.

Sd =

√
(h × cos(η)× cos(ζ))2 −

(
cos2(ζ) + ea2

eb2 × sin2(ζ)
)
×

(
h2 − ea2

)
Sn = h×cos(η)×cos(ζ)−Sd

cos2(ζ)+ ea2

eb2 ×sin2(ζ)

S1 = h − Sn × cos(η)× cos(ζ)
S2 = Sn × sin(η)× cos(ζ)
S3 = −Sn × sin(ζ)

Sxy =
√

S1
2 + S2

2

, (15)

where h is the distance from the Earth’s center to the satellite center of mass, ea is Earth’s
equatorial radius, ea = 6378.137 km and eb is Earth’s polar radius, eb = 6356.7523 km.

Lon =
180
π

× arctan
(

S2

S1

)
+ λD, (16)

Lat =
180
π

× arctan
(

ea2

eb2 × S3

Sxy

)
, (17)

where Lon, Lat, and λD are the longitude, latitude, and longitude of the satellite subpoint,
respectively.
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Figure 2. Observation mode of the AGRI on FY-4A satellite. The vertical axis represents UTC time in
hours, while the horizontal axis represents the minutes within each hour.

2.4. Statistical Indicators

To analyze the discrepancies among various PWV datasets, the correlation coefficient
(R), bias, RMSE, and MAE are calculated. Additionally, the PWV differences with their
biases from the mean value larger than three times the standard deviation (STD) are
removed as gross errors.
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R =

N
∑

i=1

(
XOi − XO

)(
XRi − XR

)
√

N
∑

i=1

(
XOi − XO

) N
∑

i=1

(
XRi− − XR

) , (18)

Bias =
1
N

N

∑
i=1

(
XOi − XRi

)
, (19)

RMSE =

√√√√ 1
N

N

∑
i=1

(
XOi − XRi

)2, (20)

MAE =
1
N

N

∑
i=1

∣∣XOi − XRi

∣∣, (21)

where XO represents the evaluated value, and XR is the reference value.

3. Results and Discussion
After spatially and temporally matching FY-4A PWV with RS PWV and GNSS PWV,

the RS PWV is initially considered as the reference value to assess the accuracy of FY-4A
PWV products. Additionally, current research has confirmed that GNSS PWV and RS PWV
exhibit comparable accuracy [45–47], with mean bias and RMSE values of 0.12 mm and
2.39 mm, respectively. Therefore, given the poorer spatiotemporal resolution of RS PWV,
this study comprehensively evaluated FY-4A PWV using GNSS PWV as another reference.

3.1. Evaluation with RS PWV

Take RS PWV at UTC 0:00 and UTC 0:00 from 2019 to 2022 as the reference, the overall
correlation (R), annual mean bias, and RMSE for FY-4A PWV in the CN, NC, NWC, SC,
and TP regions are shown in Figure 3. The correlation between FY-4A PWV and RS PWV
across the entire CN region is 0.80, with the annual mean bias ranging from 5.92 to 8.43 mm
and the hourly mean bias varying from −7.71 to 12.43 mm each year. The annual mean
biases for each year between FY-4A PWV and RS PWV are consistently positive, indicating
that FY-4A PWV tends to overestimate water vapor values compared to RS PWV. The
correlations between FY-4A PWV and RS PWV in the NC, NWC, SC, and TP subregions
are 0.52, 0.72, 0.78, and 0.83, respectively. The annual mean biases of FY-4A PWV in the
four subregions each year range from 5.21 to 7.73 mm, 5.79 to 7.04 mm, 6.41 to 10.02 mm,
and 5.80 to 11.28 mm, with fluctuations of 2.41 mm, 1.25 mm, 3.61 mm, and 5.48 mm,
respectively. The FY-4A PWV bias fluctuates significantly in the NC and NWC subregions
with lower water vapor distribution, primarily due to the impact of sporadic extreme
weather and abnormal rainfall on data accuracy [48].

For RMSE, FY-4A PWV in the CN region exhibits annual mean RMSE ranging from
7.88 to 9.64 mm and hourly mean RMSE ranging from 7.14 × 10−5 to 9.64 mm each
year. The annual mean RMSE of FY-4A PWV each year in the NC, NWC, SC, and TP
subregions ranges from 7.29 to 9.13 mm, 7.60 to 8.40 mm, 8.65 to 10.71 mm, and 7.36 to
11.36 mm, respectively, with fluctuations of 1.84 mm, 0.80 mm, 2.06 mm, and 4.00 mm.
The minimum and maximum annual mean RMSE of FY-4A PWV are observed in the NC
and TP subregions, respectively, with the lowest annual mean RMSE occurring in the TP
subregion in 2019.

In Figure 3, the overall annual mean bias between FY-4A PWV and RS PWV in the CN,
NC, NWC, SC, and TP regions were 7.21 mm, 6.25 mm, 6.29 mm, 7.98 mm, and 7.94 mm,
with corresponding annual mean RMSE values of 7.03 mm, 7.07 mm, 6.93 mm, 7.05 mm,
and 6.16 mm, respectively. FY-4A PWV significantly overestimates the actual PWV values
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in the SC and TP regions, indicating that its detection capabilities remain inadequate in
geographically complex areas, particularly in the rain-abundant southern regions and the
climatically variable Tibetan Plateau, thus impacting the evaluation accuracy between
different PWV datasets.
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The intended trajectory of radiosonde balloons can be disrupted by mountainous
terrain, affecting measurement accuracy, and artificial surfaces and buildings in urban areas
can interfere with signal reception by remote sensing satellites. To investigate the accuracy
performance of FY-4A PWV across different spatial scales, the distributions of annual
mean bias and annual mean RMSE at various regional sites are presented in Figure 4 and
summarized in Table 1. The annual mean bias and RMSE between FY-4A PWV and RS PWV
at sites in the CN, NC, NWC, SC, and TP regions are 3.28 mm/7.31 mm, −0.08 mm/6.17 mm,
6.42 mm/6.83 mm, 2.46 mm/8.77 mm, and 7.31 mm/8.77 mm, respectively. The NC
and NWC subregions exhibit smaller bias and RMSE values compared to the SC and TP
subregions, with the FY-4A PWV bias in the NC subregion being negative, indicating higher
overall accuracy in the NC and NWC subregions and an underestimation of water vapor
values in the NC subregion. The high humidity and frequent rainfall in the SC subregion,
coupled with the extreme climatic conditions and high altitude of the TP subregion, both
contribute to significant challenges in achieving accurate water vapor detection across the
entire study area.
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Table 1. Annual mean bias and annual mean RMSE of FY-4A PWV at sites across different regions
compared to RS PWV.

Regions
Bias (mm) RMSE (mm)

Min Max Mean Min Max Mean

CN −2.92 12.79 3.28 2.93 12.95 7.31
NC −2.92 7.39 −0.08 3.34 10.04 6.17

NWC −1.79 9.29 2.84 3.18 11.51 6.83
SC 0.91 12.36 6.42 4.91 12.47 8.77
TP −2.91 12.79 2.46 2.93 12.95 6.82

In Figure 4, the NC subregion has the highest proportion of negative bias among the
four subregions, while the SC region has the highest proportion of positive bias and no
negative bias. The NC subregion exhibits the highest proportion of negative bias among
the four subregions, whereas the SC region has the highest proportion of positive bias
and no negative bias. The FY-4A PWV exhibits significant bias values at the TP subregion
sites ‘56,172’, ‘56,187’, and ‘56,444’ with biases of 12.79 mm, 12.62 mm and 11.08 mm,
and at the SC subregion sites ‘56,964’, ‘57,816’, and ‘59,211’, which are below 180 mm in
altitude and situated dense urban building clusters, with biases of 9.80 mm, 9.49 mm and
12.36 mm, respectively. The urban heat island effect can lead to discrepancies between RS
site measurements and those in suburban areas, while satellite remote sensing, due to its
limited spatial resolution, may not capture localized microclimate effects, thus impacting
the accuracy of PWV assessments. FY-4A PWV shows relatively high RMSE values widely
distributed in the SC and TP subregions, with the highest RMSE of 12.47 mm at site ‘59,211’
in the SC subregion and the highest RMSE of 12.95 mm at site ‘56,173’ in the TP subregion.

To assess the contribution rates of various accuracy metrics for FY-4A PWV, histograms
and statistical summaries of bias and RMSE across different regions are presented in
Figure 5. Using RS PWV as the reference value, the mode of the bias and RMSE for
FY-4A PWV in the CN region and their associated probability densities are −0.6 mm
(16.80%) and 5.9 mm (17.6%). For the NC subregions, the mode of the bias and RMSE
and their probability densities in the CN region are −2.5 mm/−0.2 mm (both 24.14%) and
5.5 mm/6.9 mm (both 17.24%), whereas, for the NWC subregions, the metrics are 2.2 mm
(22.22%) and 5.9 mm (22.22%). Considering the accuracy distribution at the sites shown
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in Figure 4, FY-4A PWV exhibits relatively stable accuracy across the entire study area in
both the NC and NWC subregions, with the NC subregion showing a significantly more
negative bias mode and a larger RMSE mode compared to the NWC subregion. For the
SC subregions, the corresponding aforementioned accuracy metrics are 5.8 mm (21.95%)
and 9.1 mm (29.27%), whereas for the TP subregions, they are −2.2 mm (31.58%) and
4.8 mm/12.4 mm (both 21.05%). This suggests that areas with high moisture levels and
active water vapor movement tend to exhibit unstable water vapor detection accuracy.
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regions.

3.2. Evaluation and Adjustment with GNSS PWV
3.2.1. Annual and Spatial PWV Variability

Given that RS sites only provide PWV data at UTC 0:00 and UTC 12:00, limiting the
assessment of FY-4A PWV accuracy at higher temporal resolutions, this section will use
GNSS PWV as the reference to evaluate the accuracy of FY-4A PWV over short to medium
time scales. We employed seasonal average PWV data from FY-4A satellites and GNSS
sites for 2022, as depicted in Figure 6, to effectively illustrate the spatial characteristics of
water vapor distribution across diverse geographical regions. As shown in Figure 6, the
overall distribution trends of FY-4A PWV and GNSS PWV across different seasons are
consistent. However, the relatively sparse distribution of GNSS stations in some remote
and coastal areas may explain the significant discrepancies between the two datasets. The
differences in the measurement systems (e.g., GNSS versus satellite-based sensors) may,
additionally, account for some of these deviations, as they rely on distinct retrieval methods
and make varying assumptions about the atmospheric profile. The fitted correlation (R),
mean bias, and mean RMSE between FY-4A PWV and GNSS PWV with an hourly temporal
resolution (UTC 0:00 to UTC 23:00) from 2019 to 2022 across different regions are presented
in Figure 7.
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Taking GNSS PWV as the reference value, the annual mean bias and RMSE of FY-4A
PWV at 245 sites are listed in Table 2, and the spatial distribution is shown in Figure 8.
In Table 2, the ranges of the annual mean bias and RMSE between FY-4A PWV and
GNSS PWV at sites in the CN region, as well as the corresponding averages, are from
−5.80 mm to 10.14 mm (1.39 mm) and from 4.23 mm to 15.28 mm (8.22 mm), respec-
tively. Additionally, the mean bias and RMSE in NC, NWC, SC, and TP subregions are
2.36 mm/3.85 mm/−1.51 mm/2.12 mm, and 7.97 mm/9.52 mm/7.79 mm/7.37 mm, re-
spectively. In Figure 8, the proportions of sites with negative annual mean bias in the CN,
NC, NWC, SC, and TP regions are 37%, 18%, 6%, 79%, and 28%, respectively, indicating
that most sites in the SC subregions tend to underestimate the annual water vapor values.
Moreover, large absolute negative bias values are predominantly found along the coastline
and in the Guangxi and Yunnan regions of China, while substantial positive bias values
are primarily observed at sites ‘QHGE’ and ‘XZGE’ in the TP subregion, as well as at
sites ‘CHUN’, ‘XLHG’ and ‘NMER’ in the NWC subregion. For RMSE, smaller values are
predominantly distributed at the TP region sites ‘QHYS’, ‘SCGZ’, and ‘QHDL’, while larger
values are mostly found at the NC region sites ‘HECC’ and ‘BJYQ’.

Table 2. Annual mean bias and annual mean RMSE of FY-4A PWV at sites across different regions
compared to GNSS PWV.

Regions
Bias (mm) RMSE (mm)

Min Max Mean Min Max Mean

CN −5.80 10.14 1.39 4.23 15.28 8.22
NC −2.38 10.14 2.36 4.81 15.28 7.97

NWC −3.86 8.35 3.85 6.01 12.80 9.52
SC −5.80 4.92 −1.51 5.06 11.05 7.79
TP −3.90 8.49 2.12 4.23 11.12 7.37
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PWV from 2019 to 2022.

The discrepancies are driven by factors such as signal attenuation from cloud lay-
ers [49], the scattering effects of precipitation, and variations in satellite sensor sensitivity
under different atmospheric conditions. As shown in Figure 7, the correlation in the TP
subregion is the lowest, further suggesting that extreme climatic conditions and terrain
interference in this area may adversely affect the performance of satellite sensor infrared
channels and the accuracy of water vapor detection. The range of overall annual mean bias
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and RMSE between FY-4A PWV and GNSS PWV across different regions, along with their
corresponding variability, is from −11.19 mm to −4 mm (with a fluctuation of 5.57 mm)
and from 2.67 mm to 3.98 mm (1.26 mm), respectively. Although the correlation between
FY-4A PWV and GNSS PWV is lower in the TP subregion compared with the SC subregion,
the highest mean bias and mean RMSE are found in the SC subregion. This indicates that
seasonal water vapor variability is more pronounced in the SC subregion, which is more
influenced by monsoons compared to the TP subregion, and the higher water vapor content
in the SC subregion results in a greater range of PWV variations, posing a challenge to the
sensitivity of water vapor detection equipment.

3.2.2. Seasonal and Spatial PWV Variability

To investigate the monthly-scale accuracy and seasonal variation characteristics of
FY-4A PWV, the monthly mean bias and RMSE between FY-4A PWV and GNSS PWV are
illustrated in Figure 9 and summarized in Table 3. Taking GNSS PWV as the reference
value, the monthly mean bias range of FY-4A PWV across the entire study area is −11.9
to 12.2 mm, −12.37 to 24.96 mm, −12.72 to 17.8 mm, and −13.09 to 10.26 mm for the four
seasons, with a corresponding mean bias of 2.82 mm, 7.22 mm, 5.55 mm, and 1.73 mm,
respectively. FY-4A PWV exhibits a positive mean bias in all four seasons, indicating that it
is generally higher than GNSS PWV throughout the year, with the absolute value of the
mean bias being largest in summer, reaching 8.42 mm in July and 8.74 mm in August.
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In Figure 9 and Table 3, the monthly mean RMSE between FY-4A PWV and GNSS
PWV for four different seasons are 7.42 mm, 9.73 mm, 8.42 mm, and 6.29 mm, respectively.
Analysis of the monthly mean RMSE trends reveals that the RMSE for FY-4A PWV rose
from 6.32 mm in March to 8.3 mm in May, indicating a gradual increase in error throughout
the spring. In summer, the RMSE peaked at 8.74 mm in June and further increased to
10.29 mm in July before slightly decreasing to 10.17 mm in August, reflecting higher
and more variable RMSE. It then decreased from 8.75 mm in September to 7.89 mm in
November, suggesting improved accuracy with the arrival of autumn. During winter, the
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RMSE continued to decline, dropping from 6.92 mm in December to 5.59 mm in February,
indicating that FY-4A PWV achieves relatively higher accuracy in the winter months.

Table 3. Statistics of monthly mean bias and RMSE between FY-4A PWV and GNSS PWV in Spring,
Summer, Fall, and Winter from 2019 to 2022.

Season\Month
Bias (mm) RMSE (mm)

Min Max Mean Min Max Mean

Spring
3 −11.90 11.82 2.29 2.05 15.38 6.32
4 −11.15 11.26 2.87 3.89 15.07 7.64
5 −10.97 12.28 3.30 1.90 13.60 8.30

Summer
6 −9.03 14.91 4.50 4.43 16.59 8.74
7 −10.13 20.90 8.42 5.26 17.95 10.29
8 −12.37 24.96 8.74 4.43 18.26 10.17

Autumn
9 −3.08 17.73 6.66 4.23 15.92 8.75

10 −12.72 15.73 5.88 1.43 15.54 8.62
11 −12.51 17.80 4.11 0.69 20.72 7.89

Winter
12 −11.17 10.26 2.50 1.57 19.78 6.92
1 −13.09 6.26 0.59 1.05 19.52 6.37
2 −10.24 9.96 2.10 1.84 17.78 5.59

To investigate the seasonal accuracy variability of FY-4A PWV across different re-
gions, the monthly mean bias and RMSE between FY-4A PWV and GNSS PWV in each
subregion are presented in Figure 10. As shown in Figure 10, the monthly mean bias
and RMSE between FY-4A PWV and GNSS PWV in different subregions for spring,
summer, autumn, and winter are as follows: in the NC subregion, the metrics are
6.25 mm/13.37 mm/5.30 mm/4.17 mm and 4.98 mm/8.16 mm/10.50 mm/6.03 mm, re-
spectively; in the NWC subregion, they are 6.25 mm/13.37 mm/5.30 mm/4.17 mm
and 8.58 mm/10.43 mm/8.50 mm/11.08 mm, respectively; in the SC subregion, they
are 3.90 mm/11.40 mm/4.36 mm/5.00 mm and 5.83 mm/8.45 mm/8.26 mm/7.91 mm,
respectively; in the TP subregion, they are 3.62 mm/5.27 mm/8.46 mm/1.69 mm and
3.98 mm/10.24 mm/7.69 mm/4.51 mm, respectively.

The monthly mean bias and RMSE of FY-4A PWV exhibit distinct seasonal and ge-
ographical characteristics, with longer boxes in July and August across most regions,
indicating that the differences between FY-4A PWV and GNSS PWV are more dispersed
and exhibit greater variability during the summer. Moreover, FY-4A PWV exhibits the
highest absolute bias and RMSE during the summer across all subregions, except for the
highest RMSE observed in the NC subregion during autumn and the NWC subregion
during winter. This suggests that higher summer temperatures increase the atmosphere’s
capacity for water vapor, and frequent convective activities lead to intense localized precip-
itation, making it more challenging to capture seasonal water vapor variations. Moreover,
residual summer convective activity, along with decreasing temperatures in autumn and
winter and reduced vegetation cover, can affect the data quality of meteorological satellites
in the NC and NWC subregions.
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Figure 10. Box plots of monthly mean bias and RMSE between FY-4A PWV and GNSS PWV from
2019–2022 in different regions. Q1 and Q3 of the box are the first and third quartiles, respectively.
The distance between Q1 and Q3 reflects the degree of fluctuation of the data; Q2 is the median value,
which reflects the average level of the data; Q4 is the outlier.

3.2.3. Diurnal and Spatial PWV Variability

To evaluate the accuracy of FY-4A PWV at a finer temporal scale, using GNSS
PWV as the reference, the daily bias and daily RMSE of FY-4A PWV across differ-
ent regions are summarized in Table 4. In Table 4, the daily bias and RMSE be-
tween FY-4A PWV and GNSS PWV across the entire study area and the four sub-
regions range from −4.45 mm to 9.47 mm and from 0 mm to 12.00 mm, respec-
tively. Furthermore, the daily mean bias and RMSE of FY-4A PWV in the CN, NC,
NWC, SC, and TP regions are 0.56 mm/0.52 mm/0.29 mm/−0.57 mm/2.01 mm and
2.59 mm/2.17 mm/1.51 mm/3.19 mm/3.51 mm, respectively. FY-4A PWV exhibits a pos-
itive daily mean bias in the three subregions except for the SC subregion, suggesting
significant regional differences in accuracy assessment and a tendency to overestimate
water vapor content.

Table 4. Statistics of daily bias and daily RMSE between FY-4A PWV and GNSS PWV in different
regions from 2019 to 2022.

Region
Bias (mm) RMSE (mm)

Min Max Mean Min Max Mean

CN −4.03 9.47 0.56 0.00 12.00 2.59
NC −1.84 3.84 0.52 0.44 7.30 2.17

NWC −3.12 5.33 0.29 0.00 6.59 1.51
SC −4.45 4.50 −0.57 0.63 7.91 3.19
TP −3.95 5.33 2.01 0.36 12.00 3.51

Taking GNSS PWV from 2019 to 2022 as the reference, the time series of daily mean
bias and daily mean RMSE of FY-4A PWV in different regions are shown in Figure 11. As
shown in Figure 11, FY-4A PWV exhibits distinct seasonal variations in daily mean bias and
RMSE across different regions, with smaller and more stable values in autumn and winter,
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as well as notable spikes and irregular fluctuations during the summer. Additionally, the
percentage of days with a negative daily mean bias for FY-4A PWV is 18%, 21%, 67%, and
31% of the annual time series in the NC, NWC, SC, and TP subregions, respectively. Com-
bining the metrics from Table 4, the tendency of FY-4A PWV to underestimate water vapor
on a daily scale shows notable regional differences, with more significant underestimation
observed in the SC and TP subregions compared to the NC and NWC subregions.
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3.2.4. FY-4A PWV Adjustment Model

The analysis of the evaluation results indicates that the biases between FY-4A PWV and
GNSS PWV exhibit seasonal variations across different subregions. This study constructed
an adjustment model for FY-4A PWV based on GNSS PWV using the linear correction
method commonly employed in previous research [50,51]. The adjustment model was de-
veloped using the PWV dataset from 2019 to 2021, with the 2022 PWV dataset subsequently
used to evaluate the model’s accuracy performance.

PWVADJ = a × PWVORI + b. (22)

where PWVORI represents FY-4A PWV, PWVADJ is the corrected FY-4A PWV, and a and b
are the model coefficients, with their specific values provided in Table 5.

Table 5. Statistics of model coefficients for the correction of FY-4A PWV using GNSS PWV across five
subregions and four seasons. (a, b) represent the coefficients of the model Equation (21).

Spring (a, b) Summer (a, b) Fall (a, b) Winter (a, b)

CN 0.56 9.71 0.63 12.37 0.67 9.54 0.53 7.50
NC 0.15 10.36 0.16 21.31 0.44 9.24 0.07 6.24

NWC 0.35 15.38 0.31 20.56 0.39 18.20 0.22 14.09
SC 0.62 8.68 0.65 15.74 0.75 7.50 0.53 8.08
TP 0.36 8.19 0.50 13.11 0.57 6.29 0.31 4.23
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Figure 12 illustrates the correction performance of the commonly used linear adjust-
ment model for FY-4A PWV, with GNSS PWV as the reference, by presenting the mean
MAE, RMSE, and their improvement rates before and after correction. The MAE and RMSE
between the corrected FY-4A PWV and GNSS PWV decreased to varying extents across
all regions and seasons. The correction model, notably, demonstrated the most significant
improvement during summer in the entire CN region compared to other seasons. The sea-
sonal adjustment models for the NWC subregion show the most significant improvement
among the four subregions throughout the year, with mean MAE and RMSE reduced by
4.05 mm (48.83%) and 4.93 mm (48.16%) in summer, respectively. The minimum mean
bias between the corrected FY-4A PWV and GNSS PWV is 0.40 mm, −0.12 mm, 0.14 mm,
0.10 mm, and −0.08 mm in the CN, NC, NWC, SC, and TP regions, respectively, with the
majority of these values occurring in winter. Additionally, the RMSE between the corrected
FY-4A PWV and GNSS PWV in spring and winter for each subregion is approximately
6 mm, indicating that the corrected FY-4A PWV meets the requirements for meteorological
applications [48,52], and the corresponding subregional adjustment model is practical.
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Figure 12. Bar charts of the mean MAE and RMSE between FY-4A PWV and GNSS PWV before and
after adjustment in different regions and seasons for 2022. The length of the arrows represents the
degree of improvement in mean MAE and RMSE.

Figure 13 shows the site-level distribution of improvements in MAE and RMSE for
corrected FY-4A PWV, based on regional adjustment models for different seasons, using
GNSS PWV as the reference and compared to the uncorrected data. The improved MAE
across all regions reaches a maximum of 8.28 mm in spring, 12.77 mm in summer, 10.36 mm
in autumn, and 10.21 mm in winter, while the corresponding improved RMSE maximum
values are 8.28 mm, 12.90 mm, 10.02 mm, and 9.89 mm, respectively. The range of RMSE
improvements in spring is the widest in the NWC region, as shown in the statistics in
Table 6, while the range of MAE and RMSE improvements exhibits the widest distribution
in summer for all other subregions. The performance of the regional adjustment model in
summer shows a significant improvement at most sites across the subregions. The stations
exhibiting the most significant seasonal improvements are: ‘HRBN’, ‘SDCY’, and ‘SDRC’ in
the NC subregion; ‘GSGT’, ‘XJBL’, and ‘XJWQ’ in the NWC subregion;’ JSYC’, ‘ZJWZ’, and
‘GDZJ’ in the SC subregion; and ‘QHME’, ‘QHMY’, and ‘XZZB’ in the TP subregion. The
majority of these stations are situated along the eastern coastline of the study area, where
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water vapor distribution is characterized by complex variations, and in the western regions
at elevations exceeding 3000 m.
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Figure 13. Site-level distribution of seasonal average improvements in MAE and RMSE between
corrected and uncorrected FY-4A PWV and GNSS PWV for 2022. IMAE and IRMSE represent the
improved MAE and RMSE values, respectively.

Table 6. Statistics of the first quartile (Q1), third quartile (Q3), and interquartile range (IQR) for
site-level MAE and RMSE improvements across different seasons in the four subregions.

IMAE
(mm)

NC NWC SC TP

Q1 Q3 IQR Q1 Q3 IQR Q1 Q3 IQR Q1 Q3 IQR

Spring 0.67 2.61 1.94 1.77 5.09 3.32 0.48 2.08 1.59 0.5 2.26 1.76
Summer 0.87 3.52 2.65 2.02 5.72 3.7 0.21 3.38 3.16 1.99 5.02 3.03

Fall 0.68 1.94 1.26 4.47 7.34 2.87 0.29 1.45 1.16 0.38 1.99 1.61
Winter 0.34 2.05 1.71 3.47 7.02 3.54 0.62 2.24 1.62 0.48 1.7 1.22

IRMSE
(mm)

NC NWC SC TP

Q1 Q3 IQR Q1 Q3 IQR Q1 Q3 IQR Q1 Q3 IQR

Spring 1.75 3.39 1.64 1.72 5.73 4.01 0.58 2.5 1.93 0.67 3.18 2.51
Summer 0.88 4.14 3.26 2.95 6.68 3.73 0.29 3.41 3.11 1.71 4.94 3.23

Fall 0.73 2.5 1.77 4.72 8.39 3.67 0.44 1.7 1.26 0.33 2.32 1.98
Winter 1.44 3.35 1.91 3.92 7.36 3.44 0.88 2.56 1.68 0.9 3.13 2.22

4. Conclusions
The reasonable application of high-precision multi-source PWV products is essential

for numerical weather prediction [53,54], monitoring of extreme weather, and InSAR
atmospheric correction [55,56]. However, the accuracy performance and spatiotemporal
resolution of FY-4A PWV are significantly different from those of ground-based PWV, and
comprehensive evaluation and analysis of long-term FY-4A PWV products for the China
region are currently limited. This study evaluates the accuracy performance of FY-4A PWV
products using PWV retrieval data from 125 RS sites and 245 GNSS sites in China and
surrounding areas from 2019 to 2022, incorporating various time scales (such as annual,
monthly, and daily averages) and spatial scales.

In the overall performance analysis, FY-4A PWV products showed significant associa-
tions with the PWV values retrieved by RS and GNSS. Using RS PWV as a reference value,
the overall annual mean bias and RMSE of FY-4A PWV across the entire study area are



Atmosphere 2025, 16, 99 19 of 22

7.21 mm and 7.03 mm, respectively. To investigate the impact of geographic and climatic
factors on the accuracy assessment of FY-4A PWV products, the biases and RMSEs at RS
sites for the NC, NWC, SC, and TP subregions are −0.08 mm/6.42 mm/2.46 mm/7.31 mm
and 6.17 mm/6.83 mm/8.77 mm/8.77 mm, respectively. The NC and NWC subregions
show lower bias and RMSE, whereas high humidity, frequent rainfall in the SC subregion,
and extreme climate and altitude in the TP subregion pose significant challenges for accu-
rate water vapor detection across the study area. Given that differences in the distribution
density of RS sites across subregions can affect the representativeness and accuracy of
water vapor data, these variations should be considered in the analysis and evaluation of
the data.

Taking GNSS PWV as a reference value, the annual mean bias and RMSE of FY-4A
PWV across the entire study area are −8.85 mm and 3.76 mm, respectively. Moreover, the
assessment accuracy of FY-4A PWV exhibits obvious seasonal and regional distribution
characteristics across the entire study area. At a monthly scale across the four seasons,
the mean bias and RMSE are 2.82 mm/7.42 mm in spring, 7.22 mm/9.73 mm in summer,
5.55 mm/8.42 mm in autumn, and 1.73 mm/6.29 mm in winter. In addition, the daily mean
bias and RMSE in summer exhibit noticeable peaks and irregular fluctuations compared
to autumn and winter. For the accuracy metrics at GNSS sites across different subregions,
FY-4A PWV at sites in the SC subregion generally underestimates annual water vapor
compared to GNSS PWV, with many of these sites located in low-latitude regions and near
the coastline.

In summary, FY-4A PWV products, with the advantages of high spatiotemporal res-
olution and moderate accuracy, can serve as a valuable complement to site-based PWV
measurements and hold significant application potential. The commonly used linear adjust-
ment model significantly improved the accuracy of FY-4A PWV based on GNSS PWV across
the entire study area. Notably, the model showed the greatest improvement in the NWC
subregion from a regional perspective and in summer from a seasonal perspective. Future
research will aim to calibrate FY-4A PWV data, especially under cloudy and rainy condi-
tions, integrate FY-4A PWV with ground-based PWV data, conduct reanalyses of gridded
PWV data, as well as assess their application on short-term heavy rainfall forecasting.
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