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Abstract: Breathing in fine particulate matter of diameter less than 2.5 µm (PM2.5) greatly
increases an individual’s risk of cardiovascular and respiratory diseases. As climate change
progresses, extreme weather events, including wildfires, are expected to increase, exacer-
bating air pollution. However, models often struggle to capture extreme pollution events
due to the rarity of high PM2.5 levels in training datasets. To address this, we imple-
mented cluster-based undersampling and trained Transformer models to improve extreme
event prediction using various cutoff thresholds (12.1 µg/m3 and 35.5 µg/m3) and partial
sampling ratios (10/90, 20/80, 30/70, 40/60, 50/50). Our results demonstrate that the
35.5 µg/m3 threshold, paired with a 20/80 partial sampling ratio, achieved the best per-
formance, with an RMSE of 2.080, MAE of 1.386, and R2 of 0.914, particularly excelling in
forecasting high PM2.5 events. Overall, models trained on augmented data significantly
outperformed those trained on original data, highlighting the importance of resampling
techniques in improving air quality forecasting accuracy, especially for high-pollution
scenarios. These findings provide critical insights into optimizing air quality forecasting
models, enabling more reliable predictions of extreme pollution events. By advancing the
ability to forecast high PM2.5 levels, this study contributes to the development of more
informed public health and environmental policies to mitigate the impacts of air pollution,
and advanced the technology for building better air quality digital twins.

Keywords: air quality; PM2.5 forecasting; data augmentation; cluster-based undersampling;
Transformer model; digital twin; 2023 Canadian wildfires

1. Introduction
Air pollution remains one of the most pressing global health challenges, identified as

the second leading risk factor for premature death worldwide. In 2021 alone, air pollution
was responsible for approximately 8.1 million deaths globally, underscoring its profound
impact on human health [1]. Fine particulate matter refers to particles with an aerodynamic
diameter of 2.5 µm or less (PM2.5). PM2.5 particles are particularly concerning because they
are small enough to penetrate deep into the lungs and even enter the bloodstream, posing
significant risks to human health. The Global Burden of Disease (GBD) study estimated that
ambient PM2.5 exposure was responsible for approximately 4.14 million deaths globally in
2019 [2]. These particles are associated with a wide range of health outcomes, including
stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD), and lung
cancer [3–8]. The respiratory system, especially the lungs, is vulnerable to PM2.5-induced
toxicity, leading to inflammation and impaired immune responses, increasing susceptibility
to respiratory infections [9]. Growing evidence suggests that PM2.5 exposure is also linked
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to neurodegenerative diseases. The small size of the particles enables them to penetrate
the brain via the olfactory nerve [10]. Recent trends have shown an alarming increase in
PM2.5 emissions due to wildfires, exacerbated by climate change and land management
practices. Wildfire-related PM2.5 pollution has been observed to travel long distances,
affecting regions far beyond the initial fire location [11]. Wildfires in the western United
States have increased in frequency and intensity since the mid-1980s, primarily driven by
rising temperatures and earlier spring snowmelt [12]. Climate projections suggest that
the area affected by wildfires in the western U.S. could expand by 54% between 2046 and
2055 compared to 1996–2005 [13]. During severe wildfire events, PM2.5 levels can spike to
hazardous levels, exceeding the Environmental Protection Agency’s (EPA) threshold of
225.5 µg/m3 for hazardous air quality [14]. Given the severe health impacts and increasing
frequency of extreme PM2.5 pollution events, it is critical to implement proactive measures
such as improved air quality monitoring, stricter emission control policies, and enhanced
public health advisories.

PM2.5 forecasting is critical for protecting public health by enabling timely interven-
tions, reducing exposure to hazardous air pollution, and supporting broader pollution
management efforts. However, PM2.5 forecasting is challenging due to the complex inter-
actions between atmospheric chemistry, meteorological variability, and human activities,
which cause rapid fluctuations in pollutant levels [15,16]. Additionally, capturing temporal
variations and spatial distributions is crucial for effective exposure assessment and health
impact evaluation. Various modeling approaches have been used for PM2.5 forecasting,
ranging from traditional statistical methods, such as Autoregressive Integrated Moving
Average (ARIMA), to Artificial Intelligence and Machine Learning (AI/ML) models. These
AI/ML techniques include nonlinear models like Support Vector Regression (SVR) and
Artificial Neural Networks (ANNs), which have shown promise in capturing complex
relationships in air quality data [17,18]. While ANNs have been widely applied for PM2.5

forecasting, their shallow structures often limit feature learning in complex datasets [19].
Recent Deep Learning (DL)-based approaches, including Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) models, have significantly improved both
spatial and temporal pattern modeling [20]. Hybrid models combining CNNs and LSTMs
have further enhanced forecasting accuracy, particularly for datasets with spatiotemporal
complexity [21,22]. However, DL models still face challenges such as vanishing gradi-
ents and limited long-term dependency modeling, as noted by [21]. Transformer models,
initially designed for Natural Language Processing (NLP) [23], have shown promise for
long-term PM2.5 forecasting due to their ability to capture long-range dependencies [24].
Unlike recurrent models, Transformers rely on self-attention mechanisms that allow more
efficient information flow across sequences [23]. In [25] introduced the Informer model,
which improves temporal embeddings to learn non-stationary and long-range temporal
dependencies. However, it focuses solely on “temporal attention” and overlooks spatial
relationships between variables. In [26] tackled this by developing a graph Transformer
that captures dynamic spatial dependencies, using sparse attention to trim less relevant
nodes. In [27] further advanced this with the Spacetimeformer, which flattens multivari-
ate time series to handle spatial and temporal influences. Recent models like the Sparse
Attention-based Transformer (STN) by [28] effectively reduce time complexity while cap-
turing long-term dependencies in PM2.5 data. Similarly, [29] proposed the SpatioTemporal
(ST)-Transformer, designed to improve spatiotemporal predictions of PM2.5 concentrations
in wildfire-prone areas.

An often-overlooked challenge in PM2.5 forecasting is data imbalance, particularly in
predicting high pollution levels. AI/ML models have demonstrated strong performance
in forecasting PM2.5 under lower concentrations but often struggle to accurately capture
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extreme pollution events where PM2.5 levels exceed 60 µg/m3 [30]. Studies have consis-
tently shown that PM2.5 concentrations tend to be underestimated during severe pollution
episodes, as high-value events are underrepresented in the training data [31,32]. This im-
balance results from the rarity of extreme pollution spikes, making it difficult for models to
generalize and predict these critical conditions effectively [33–35]. Although this challenge
is well-known, relatively few studies have focused on solutions for improving predictions
of extreme PM2.5 levels [36–38]. An effective strategy to address this imbalance is data aug-
mentation, which expands the training dataset by introducing varied and informative sam-
ples, improving data diversity and quality. This approach enhances the representation of
underrepresented patterns, leading to better model robustness and generalization [39–41].
Undersampling and oversampling are data augmentation techniques developed to address
the challenges of imbalanced datasets, each employing distinct strategies to adjust data
distribution and improve model performance. Oversampling techniques aim to increase
the representation of the minority class by generating or duplicating data points to improve
data diversity and representation. Random oversampling, a simpler approach, duplicates
minority class instances but can lead to overfitting issues in conventional models [42].
Synthetic Minority Oversampling Technique (SMOTE) and Adaptive Synthetic Sampling
(ADASYN) are widely used oversampling methods to mitigate the effects of imbalanced
datasets [43], with variants like SMOTE with k-means also being prominent ([44,45]. Con-
versely, undersampling techniques reduce the dominance of the majority class by removing
data points, aiming to create a more balanced representation. Random undersampling
deletes the majority of class instances randomly but risks information loss [42]. Under-
sampling methods are combined with clustering approaches to balance datasets while
preserving data structure. This involves clustering the data into several clusters using
methods such as k-means clustering and then selecting representative points from each
cluster to minimize information loss [46,47]. Several studies have applied oversampling
and undersampling techniques to address data imbalance and improve model performance
in the context of PM2.5 modeling. In [48] aimed to improve the estimation accuracy of
high PM2.5 concentrations by using an AugResNet model with random oversampling and
SMOTE. While their approach improved performance on high-value PM2.5 datasets, a
limitation of the study was its focus on a single cutoff threshold and PM2.5 retrieval rather
than forecasting, which limits its broader applicability. In [49] employed LSTM, GRU, and
hybrid GRU + LSTM models with linear interpolation for data augmentation, expanding
the dataset without addressing the imbalance between high and low PM2.5 concentrations.
Their approach did not specifically target data imbalance, focusing on general dataset
expansion, which can lead to overfitting, as synthetically increasing the dataset size does
not introduce new variability. In [50] tackled the dataset shift problem between urban and
rural PM2.5 data, addressing differences in predictor variable density using multiple impu-
tations by chained equations; however, this study focused on correcting biases caused by
variable density disparities rather than general PM2.5 forecasting, which limits its relevance
to broader PM2.5 prediction challenges.

The current research on PM2.5 forecasting reveals critical gaps that need further investigation.

1. One major challenge is data imbalance, where high PM2.5 concentration events, par-
ticularly during extreme pollution episodes such as wildfires, are significantly under-
represented in datasets. This imbalance often leads to poor model performance in
forecasting these critical pollution levels, as models struggle to generalize effectively
under such conditions [31–33].

2. Another gap is the limited application of augmentation techniques tailored to address
this imbalance. While methods like SMOTE and ADASYN have shown promise in
balancing datasets [48,49], their use in PM2.5 forecasting, particularly for extreme
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pollution events, remains limited. Most studies have focused on general dataset
expansion without targeting rare, high-concentration events, which can result in
overfitting rather than improved generalization [42].

3. Lastly, the underexplored potential of Transformer models presents another crit-
ical gap. Despite their success in long-term sequence modeling across various
domains [22–24], Transformers have been insufficiently investigated for PM2.5 fore-
casting, especially in urban environments where pollution poses significant health
risks. Their ability to capture long-term dependencies and complex spatiotemporal
patterns remains underutilized in extreme PM2.5 event forecasting [25,29].

This study addresses the identified research gaps by applying data augmentation
techniques, specifically cluster-based undersampling with varying majority-to-minority
class ratios, to improve the representation of high PM2.5 concentrations in the training data.
The majority-minority cutoff thresholds are selected based on two EPA-defined criteria,
emphasizing the importance of robust models capable of accurately forecasting elevated
PM2.5 levels in real-world scenarios. The study leverages a Transformer-based architecture
with multi-head sparse attention to tackle the challenge of long-term dependency modeling
inspired by models like Informer and Spacetimeformer. The specific research objectives are
listed below:

1. Augment imbalanced PM2.5 dataset with cluster-based undersampling with different
combinations of majority-to-minority class ratios.

2. Investigate the impact of two minority–majority cutoff thresholds based on limits set
by the EPA on model performance.

3. Build and train a Transformer model to leverage the capabilities of multi-head atten-
tion in the context of PM2.5 forecasting.

4. Develop a robust forecasting model that accurately predicts PM2.5 concentrations,
particularly during extreme pollution spikes caused by events like wildfires in New
York City, Philadelphia, and Washington, D.C.

The remainder of this paper is organized as follows: Section 2 details the data, includ-
ing the study area and data description. Section 3 outlines the methodology, covering data
preprocessing, collocation, cutoff thresholds, cluster-based undersampling, the Transformer
model architecture, and the model training and evaluation process. Section 4 presents
experimental results, including accuracy assessment, partial sampling ratios, cutoff thresh-
olds, and time series analysis. Section 5 discusses the findings, while Section 6 concludes
the study with a summary of key insights and potential directions for future research.

2. Data
2.1. Study Area

The study focuses on major urban areas in the northeastern United States, specifically
New York City, Philadelphia, and Washington, D.C. Figure 1 depicts the locations of
AirNow sensors in three areas: New York City (11 stations), Philadelphia (five stations),
and Washington, D.C. (four stations). The area, population, and geographical locations of
these three cities are listed in Table 1. These cities are characterized by high population
densities, significant traffic volumes, and industrial activities, all of which contribute to
elevated levels of air pollution. Urban areas are often hotspots for PM2.5 due to vehicle
emissions, industrial processes, and residential heating, making them critical regions for
air quality monitoring and forecasting [51,52]. These urban environments also present
challenges for air quality forecasting due to the complex interplay between local emissions
and regional atmospheric transport processes.
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Table 1. Area, population, and geographical location of the three cities under consideration.

City Area Population Coordinates

New York City 790 square km (302.6 square miles) 8.336 million 40.4774◦ N, −74.2591◦ W (southwest)
to 40.9176◦ N, −73.7004◦ W (northeast)

Philadelphia 347.52 square km (134.18 square miles) 1.567 million 39.8670◦ N, −75.2803◦ W (southwest)
to 40.1379◦ N, −74.9558◦ W (northeast)

Washington D.C. 76 square km (68 square miles) 671,803 38.7916◦ N, −77.1198◦ W (southwest)
to 38.9955◦ N, −76.9094◦ W (northeast)

A significant event that affected air quality in 2023 was the Canadian wildfires, which
profoundly impacted pollution levels across North America, particularly in urban areas
of the northeastern United States [53,54]. The wildfires, which burned large swathes of
forested areas in Canada, generated vast amounts of smoke and particulate matter that were
transported southward by atmospheric winds, leading to unprecedented spikes in PM2.5

concentrations in cities like New York, Philadelphia, and Washington, D.C. [55]. During
this event, air quality in these cities reached hazardous levels, reducing visibility severely
and prompting public health warnings [56]. PM2.5 forecasting is critical in these urban areas
because it helps predict and mitigate the health risks associated with high pollution levels,
especially during extreme events like the 2023 Canadian wildfires. Accurate forecasting
allows for timely public health warnings [57].

2.2. Data Description

Table 2 outlines the variables for forecasting PM2.5 concentrations, with PM2.5 from
AirNow serving as the target variable. The covariates include aerosol optical depth (AOD)
from the Moderate Resolution Imaging Spectroradiometer (MODIS) Multi-Angle Imple-
mentation of Atmospheric Correction (MAIAC) algorithm. The AOD is a proxy for atmo-
spheric particulate load linked to surface PM2.5 concentration [58,59]. Several studies have
demonstrated the strong relationship between meteorological factors and variations in
PM2.5 concentrations [58,60]. The meteorological variables include boundary layer height,
relative humidity, temperature at 2 m, surface pressure, and speed, all sourced from the
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 dataset. These
meteorological variables influence PM2.5 size, concentration, dispersion, chemical transfor-
mation, and the formation of secondary particles. Boundary layer height influences vertical
mixing and pollutant dispersion [61]. Relative humidity affects particle hygroscopic growth,
while temperature can drive secondary aerosol formation through chemical reactions [62].
Surface pressure influences pollutant dispersion by controlling vertical air movement, and
wind speed influences pollutant transport and dilution [60]. Additionally, elevation data
sourced from the United States Geological Survey (USGS) was used as a geographical
covariate. Elevation influences PM2.5 by affecting air mixing and pollutant dispersion, with
higher elevations typically experiencing stronger winds and lower atmospheric pressure,
leading to reduced pollutant accumulation [63].

Table 2. Sources and units of variables used to forecast PM2.5.

Variable Type Source Unit

PM2.5 Target AirNow µg/m3

AOD Covariate MODIS MAIAC (Terra and Aqua) Unitless

Boundary Layer Height Covariate ECMWF ERA5-hourly Meter

Relative Humidity Covariate ECMWF ERA5-hourly %

Temperature (at 2m) Covariate ECMWF ERA5-hourly K

Surface Pressure Covariate ECMWF ERA5-hourly Pa

Wind Speed Covariate ECMWF ERA5-hourly m/s

Elevation Covariate USGS Meter
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2.2.1. Ground-Level PM2.5 Measurements

Ground-level hourly PM2.5 measurements were obtained from the EPA’s AirNow
program, which provides near-real-time air quality data, including PM2.5 concentrations.
The AirNow data undergo a rigorous quality control process before becoming publicly
available. We downloaded PM2.5 data from AirNow sensors in three major cities, New York
City, Philadelphia, and Washington, D.C., through the AirNow API (http://airnowapi.org,
accessed on 23 January 2025). These data are contributed by over 120 local, state, tribal,
provincial, and federal government agencies participating in the AirNow program. It
operates as a collaborative effort among multiple federal, state, and local agencies, ensuring
quality control and consistency in air quality reporting. Given the need for timely analysis,
we prioritized using near-real-time data over the delayed Air Quality System (AQS) data.
These measurements were used to evaluate and compare model predictions of PM2.5

concentrations in the selected urban areas.

2.2.2. Satellite-Derived AOD

The AOD data used in this study were derived from the MODIS aboard the Terra and
Aqua satellites and processed using the MAIAC algorithm. Terra and Aqua provide daily
AOD products at a spatial resolution of 1 km × 1 km, captured at approximately 10:30 and
13:30 local time, respectively [64,65]. MAIAC is an advanced algorithm designed for aerosol
retrievals over dark vegetated surfaces and bright deserts, making it highly effective for
air quality assessments due to its high spatial resolution [66,67]. The Version 6 MAIAC
Land AOD product has been widely applied in air quality studies due to its superior
spatial resolution and temporal coverage [65]. For this study, we used the MAIAC AOD
product MCD19A2 at 550 nm and retained only high-quality AOD values, as indicated by
the quality assessment flag marked “best quality”. The data were sourced from the Level
1 and Atmosphere Archive and Distribution System Distributed Active Archive Center
website [68].

2.2.3. Meteorological Variables

For this study, we utilized meteorological data from the ERA5 dataset, developed by
the ECMWF. ERA5 is a comprehensive reanalysis product that estimates various atmo-
spheric, land, and oceanic climate variables hourly. It offers continuous data from 1940 to
the present with hourly temporal resolution, making it suitable for historical analysis and
near-real-time applications. The dataset offers global coverage at a spatial resolution of
0.25◦ × 0.25◦ on a regular latitude–longitude grid [69,70]. The data were sourced through
the Copernicus Climate Data Store (C3S) in GRIB format, ensuring high detail and consis-
tency for climate research. The meteorological variables selected for this study included
boundary layer height (BLH), relative humidity, surface pressure (SP), 2 m temperature
(T2M), and wind speed at 10 m (U10/V10). Wind speed was calculated from the eastward
(U) and northward (V) wind components in mathematical terms as the square root of the
sum of their squares.

2.2.4. Geographical Variables

This study used elevation data from the Global Multi-resolution Terrain Elevation Data
2010 (GMTED2010) [71], a globally available dataset providing multi-scale topographic
data. The GMTED2010 dataset offers three spatial resolutions: 30 arc-s (~1 km), 15 arc-s
(~500 m), and 7.5 arc-s (~250 m) and elevation data are provided in raster format. It is
generated by aggregating multiple global elevation sources using systematic subsampling
to ensure comprehensive terrain representation. For this study, we used the 30 arc-s (~1 km)
resolution data obtained from the USGS website [71].

http://airnowapi.org
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3. Methodology
Figure 2 illustrates the workflow for the methodology used in this study to forecast

PM2.5 levels. Starting with data acquisition, the data undergo processing before selection
of cutoff thresholds. Two cutoff thresholds are employed: 12.1 µg/m3 and 35.5 µg/m3,
followed by applying various partial sampling ratios ranging from 10/90 to 50/50. Each
threshold and sampling ratio combination is fed into a Transformer model for model
training. The accuracy of each model is assessed, and the best-performing model is selected
to produce PM2.5 forecasts. This process allows for identifying the most effective threshold
and sampling ratio, optimizing model performance for PM2.5 prediction.
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3.1. Data Preprocessing and Collocation

The spatiotemporal collocation was conducted by aligning the datasets with the
MAIAC AOD data from MODIS to ensure consistency in time and space for seamless
integration into the PM2.5 forecasting model. This process involved matching all datasets
to a common temporal observation window and a unified spatial resolution and projection.
For temporal collocation, meteorological variables from the ERA5 ECMWF and the AirNow
PM2.5 datasets were matched to the Terra and Aqua MODIS satellite overpass times,
approximately 10:30 and 13:30 local time. Daily averages of the hourly data were calculated
within these overpass windows to ensure temporal consistency.

For spatial matching, the meteorological variables from ERA5 ECMWF, originally
at a spatial resolution of 0.25◦ × 0.25◦, were resampled to 1 km × 1 km using spatial
interpolation and reprojected to the USA Contiguous Lambert Conformal Conic projection.
Similarly, the point-based AirNow PM2.5 sensor data were interpolated using kriging to
create a continuous gridded surface, resampled to a 1 km × 1 km resolution, and reprojected
to the same projection. The spatial matching was performed using ArcGIS Pro 3.2.1.

Data normalization is a crucial preprocessing step for many machine learning models,
especially in deep learning applications, as features with a wide range can cause instability
during model training. Therefore, we used the min-max scaler method to linearly transform
the raw data to a value between 0 and 1 to eliminate dimensional effects. The formula is
specified in Equation (1).

x
′
=

x − µ

max(x)− min(x)
(1)
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where x and x
′

refer to the values before and after normalization, and min(x) and max(x)
refer to the minimum and maximum values before normalization, respectively.

3.2. Cutoff Threshold

In their study, [48] defined 75 µg/m3 as the cutoff threshold to distinguish low-value
from high-value PM2.5 points, aligning with China’s air quality standard, which classifies
75 µg/m3 as the lower limit for light PM2.5 pollution. The selection of a cutoff value for
distinguishing between majority and minority classes plays a crucial role in determining
class distribution and, consequently, the model’s performance in forecasting high-pollution
periods. In the context of air quality in the United States, we used PM2.5 classifications
by the EPA to determine cutoff threshold values [14]. To evaluate the sensitivity of model
performance to different cutoff values, this study compares two thresholds aligned with EPA
standards: 12.1 µg/m3 (Moderate) and 35.5 µg/m3 (Unhealthy for Sensitive Groups). This
approach represents a novel contribution to the field, as no prior research has investigated
the interaction between data augmentation and cutoff threshold in the context of PM2.5

forecasting. Existing studies typically rely on a single threshold value without examining its
suitability for capturing the dynamics of air quality in their specific geographic region [48].

The total dataset in this study consisted of 4,026,240 valid points. With a cutoff
threshold of 12.1 µg/m3, 3,472,689 points were classified as “low-value”, and 553,551
points were classified as “high-value”. The ratio of high-value points to low-value ones
was approximately 4:25 in the whole dataset. Ratios by city and the specific number of low-
and high-value points are listed in Table 3.

Table 3. Breakdown of low- and high-value points with 12.1 µg/m3 cutoff threshold.

City Total Points Low-Value High-Value Ratio of High- to
Low-Value

New York City 2,284,200 2,038,105 246,095 0.1207
Washington DC 456,840 406,716 50,124 0.1232

Philadelphia 1,285,200 1,027,868 257,332 0.2503
Total 4,026,240 3,472,689 553,551 0.1594

With a cutoff threshold of 35.5 µg/m3, 4,004,433 points were classified as “low-value”,
and 21,807 points were classified as “high-value”. The ratio of high-value points to low-
value ones was approximately 5:1000 in the whole dataset. Ratios by city are listed in
Table 4 alongside the specific number of low- and high-value points.

Table 4. Breakdown of low- and high-value points with 35.5 µg/m3 cutoff threshold.

City Total Points Low-Value High-Value Ratio of High- to
Low-Value

New York City 2,284,200 2,272,914 11,286 0.00496
Washington DC 456,840 454,649 2191 0.00481

Philadelphia 1,285,200 1,276,870 8330 0.00652
Total 4,026,240 4,004,433 21,807 0.00544

3.3. Cluster-Based Undersampling

In this study, we implemented cluster-based undersampling to address class imbalance
in the training data. The first step involved grouping data points into clusters using the
k-means algorithm, which organized the data based on feature similarities. This clustering
approach preserved the inherent structure of the dataset by ensuring that similar data points
were grouped together, which is crucial for maintaining data integrity when performing
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undersampling. By applying the undersampling strategy within each cluster, we selected
a subset of instances, effectively reducing the majority class without losing the diversity
within the data. This method allowed for a more representative sample, ensuring that both
majority and minority classes were evenly distributed. This represents a novel approach
because, unlike past research that predominantly relied on oversampling techniques such as
random oversampling or linear interpolation—methods prone to overfitting—we focused
on reducing the majority class to address class imbalance [42]. By integrating clustering
into the undersampling process, we ensured that the selected subset retained the diversity
and representativeness of the original dataset, providing a balanced yet structurally faithful
training sample [46].

Before applying data augmentation, 20% of the original dataset was set aside for
testing. The remaining 80% was used for model training, with points selected randomly
based on the data augmentation technique. This approach ensured that each model was
trained on datasets with unique sampling strategies, but all models were evaluated against
a consistent testing dataset. The testing dataset was intentionally designed to mirror the
original data distribution, ensuring fair comparisons across models trained on different
augmented datasets.

Many studies aim to achieve a perfect 50/50 balance between minority and majority
class points. However, this idealized ratio is not always the most effective for model
training, especially when dealing with environmental data like PM2.5, where the natural
distribution is often skewed. Partial sampling, as discussed by [72], involves adjusting the
class ratio to values between the original class distribution and an equal 50/50 split. This
technique provides a more nuanced approach, reflecting real-world distributions more
accurately while improving model generalizability.

In [73] found that a minority-to-majority class ratio of approximately 0.75 was optimal
in many scenarios, based on a systematic review of datasets and resampling techniques.
Following this insight, the present study applied various partial sampling ratios to explore
whether these findings hold for PM2.5 forecasting models. The aim was to determine
whether a similar class balance could yield improved prediction accuracy in this context.

Initially, the training dataset contained around 3 million points. However, after
data augmentation and resampling, each training dataset was reduced to approximately
35,000 points. Although all training datasets had the same number of observations, the
distribution of PM2.5 values varied according to the selected threshold and resampling
ratio, reflecting the impact of these parameters on the dataset’s composition. Table 5 shows
the exact number of high-value and low-value points for each partial sampling ratio dataset.
Although the two cutoff thresholds result in the same number of high-value and low-value
points at each partial sampling ratio, their classification of high and low values differ,
leading to distinct distributions across the datasets.

Table 5. Number of high- and low-value points in the training dataset at each partial sampling ratio.

Partial Sampling Ratio High-Value Points Low-Value Points

10/90 3498 31,482
20/80 6996 27,984
30/70 10,494 24,486
40/60 13,992 20,988
50/50 17,490 17,490

Figure 3 presents the distributions of training datasets across partial sampling ratios
using a 12.1 µg/m3 threshold, with different partial sampling ratios of 10/90, 20/80, 30/70,
40/60, and 50/50. These sampling ratios represent the proportion of minority (high PM2.5)
to majority (low PM2.5) points included in the dataset.
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The graphs in Figure 4 present the distributions of training datasets across partial
sampling ratios using a 35.5 µg/m3 threshold, with different partial sampling ratios of
10/90, 20/80, 30/70, 40/60, and 50/50.
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3.4. Transformer Model Architecture

The Transformer model has revolutionized various domains of ML, including NLP and
time series forecasting [23]. In the context of PM2.5 forecasting, the Transformer model’s
ability to capture long-range dependencies and complex temporal patterns makes it a
powerful tool for forecasting air pollution levels [28,73]. Traditional methods often struggle
with the non-linear and dynamic nature of PM2.5 data, but the Transformer’s self-attention
mechanism allows it to weigh the importance of different time steps effectively, leading to
more accurate and robust forecasts. While the Transformer model has shown great promise
in PM2.5 forecasting, this study is the first to explore the impact of data augmentation
techniques on Transformer-based models in this domain, introducing a novel approach
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to enhance performance and robustness. A simplified diagram of the architecture of the
Transformer model is displayed in Figure 5.
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3.4.1. Positional Encoding

A Transformer model differentiates itself from traditional convolutional and recurrent
neural networks by employing a novel positional encoding mechanism to preserve tem-
poral relationships. This is achieved by embedding sine and cosine functions of varying
frequencies into the normalized input sequences as illustrated by Equations (2) and (3),
respectively.

PE(pos,2i) = sin

(
pos

10000
2i

dmodel

)
(2)

PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)
(3)

Here, pos represents the position of a data point within the sliding window, and i
indicates the i-th dimension in the feature space. This approach allows the Transformer to
retain the order of the sequence data, ensuring that the temporal dynamics are preserved
and effectively leveraged during training and inference [23].

3.4.2. Multi-Head Attention

To make the model focus on assigning different weights to the input time series
information during the encoding phase, an attention mechanism is often used to quantify
the dependencies between them. The attention score determines the extent to which the
information corresponding to a time slice in the time series should be focused on in future
forecasts, and it can be calculated using Equation (4).

Attention(Q, K, V) = so f tmαx
(

QKT
√

dk

)V

(4)

where Q, K, and V are the matrices of the queries, keys, and values, respectively, and dk is
the dimension of the key (K).

The multi-head attention mechanism enhances the model’s ability to capture long-
range dependencies by allowing it to focus on both sequence positions and multiple heads
simultaneously. Each pollution factor’s position, feature, and value are treated as separate
heads, with multiple matrices applied to repeat the self-attention process across parallel
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layers. This approach enables the model to consider various relationships between pollution
factors and meteorological conditions.

3.4.3. Encoder

In this study, the encoder consists of a stack of n = 6 identical layers. In each layer,
the input goes through multi-head self-attention, where the same input is used for queries,
keys, and values, and attention weights are computed based on the provided mask. The
output from self-attention is added to the original input, normalized using LayerNorm,
and passed through a feed-forward network. After the feed-forward computation, the
result is again added to the input, followed by another layer normalization and dropout.

3.4.4. Decoder

Each decoder also consists of a stack of n = 6 layers. In each decoder layer, the first step
applies self-attention, where the target sequence attends to itself, with a mask to control
the attention. Next, cross-attention is applied, where the output from the self-attention
step attends to the encoder output, allowing the decoder to incorporate information from
the encoder while applying a source mask. Finally, the result passes through a feed-
forward network, and after each attention and feed-forward step, residual connections,
normalization, and dropout are applied to maintain stability.

3.5. Model Training and Evaluation
3.5.1. Model Training and Hyperparameter Tuning

The data splitting method allowed models to be trained on varied datasets while being
tested on a consistent, representative test set for fair comparison. More detailed dataset
creation procedures can be found in Section 3.3.

We opted not to perform extensive hyperparameter tuning given that the hyperpa-
rameters specified in our experiments, as outlined in Table 6, already yielded satisfactory
results. Adam was chosen due to its widespread use and proven effectiveness in training
deep learning models, as highlighted in previous studies [23,74]. The parameters used in
this study were determined through trial and error, like the approach by [73]. It is also
important to note that the original authors of the Transformer did not perform extensive hy-
perparameter tuning, and many subsequent studies employing Transformers have followed
a similar approach due to the high computational expense of such tuning [23,29,73–76].

Table 6. Hyperparameters used for model training.

Training Parameter Values

Model training data 2021, 2022, 2023

Data split Training (80%) and testing (20%)

Optimizer Adam

Learning Rate 0.001

Epochs 20

Number of encoder and decoder layers 6

Model Dimension 8

Batch Size 256

Input length 8

Output length 8

Dropout Rate 0.1
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To maintain the validity of comparisons across different models and experiments,
we kept the hyperparameters constant throughout all tests. This decision ensured that
performance differences could be attributed to model adjustments rather than variations
in tuning.

3.5.2. Accuracy Measures

This paper employs Root Mean Square Error (RMSE), mean absolute error (MAE),
and the coefficient of determination (R2) as metrics for assessing model accuracy. RMSE
evaluates the extent to which the predicted value curve aligns with the observed value
curve. MAE measures the average absolute difference between the predicted and actual
values. R2 indicates the proportion of the variance in the dependent variable (y) that can be
explained by the independent variable (x). The respective formulas for these calculations
are shown in Equations (5)–(7).

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

MAE =
1
n

n

∑
i=1

|yi − ŷi| (6)

R2 = 1 − ∑n
i=1(ŷi − yi)

2

∑n
i=1(yi − yi)

2 (7)

where n refers to the number of data, yi refers to the ith observed value, ŷi refers to the ith

predicted value, and yi refers to the average of all observed values.

4. Experiments and Results
4.1. Accuracy Assessment

The optimal partial sampling ratios were selected by comparing model performance
metrics across augmented datasets and the original, unaugmented dataset at each cutoff
threshold.

For experiments performed with a cutoff threshold of 12.1 µg/m3, accuracy metrics
are displayed in Table 7. As the resampling ratio becomes more balanced, ranging from
10/90 to 50/50, both RMSE and MAE metrics generally decrease, indicating improved
model performance. The best overall performance is observed at the 50/50 ratio, where
the RMSE reaches 2.757, the MAE is 1.044, and R2 achieves a value of 0.850. This R2 value
suggests that the 50/50 ratio offers the strongest correlation between forecasted and true
PM2.5 values, making it the most effective configuration for balanced data.

Table 7. Accuracy measurements of models trained on data augmented with cutoff threshold
12.1 µg/m3 and different partial sampling ratios tested on the whole and high-value testing dataset.

Resampling
Ratio

Whole High-Value

RMSE MAE R2 RMSE MAE R2

Original 3.174 0.661 0.801 32.013 26.705 0.036
10/90 3.217 0.726 0.796 29.366 20.284 0.188
20/80 3.090 1.145 0.812 25.948 19.044 0.366
30/70 2.823 1.535 0.843 25.243 18.827 0.400
40/60 2.816 1.325 0.845 23.284 17.383 0.490
50/50 2.757 1.044 0.850 21.287 14.114 0.574

Accuracy metrics for experiments performed with a cutoff threshold of 35.5 µg/m3

are shown in Table 8. Interestingly, the 20/80 resampling ratio emerges as the optimal
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configuration overall, achieving the lowest RMSE (2.080) and MAE (1.386), alongside the
highest R2 value of 0.914. This strong performance suggests that a 20/80 ratio balances
the trade-off between capturing minority and majority points while minimizing error. The
same ratio also delivers the best results for high-value PM2.5 points, with an RMSE of 15.353,
MAE of 10.077, and an R2 value of 0.778, demonstrating that it is particularly effective for
extreme pollution levels.

Table 8. Accuracy measurements of models trained on data augmented with cutoff threshold
35.5 µg/m3 and different partial sampling ratios tested on the whole and high-value testing dataset.

Resampling
Ratio

Whole High-Value

RMSE MAE R2 RMSE MAE R2

Original 3.174 0.661 0.801 41.34 28.269 0.607
10/90 2.282 1.592 0.897 19.747 13.81 0.633
20/80 2.080 1.386 0.914 15.353 10.077 0.778
30/70 2.306 1.671 0.895 16.095 12.204 0.756
40/60 2.423 1.726 0.884 16.556 12.917 0.741
50/50 2.677 1.875 0.858 19.116 14.321 0.656

When comparing the performance of models trained on the original dataset to those
trained on resampled datasets, the original data consistently underperforms, particularly in
terms of error metrics like RMSE and R2. This pattern emphasizes the value of resampling
techniques for improving model accuracy.

4.2. Partial Sampling Ratio Comparison

At a cutoff threshold of 12.1 µg/m3, in evaluating model performance across varying
partial sampling ratios, tests on both the full dataset and high-value points demonstrate a
clear trend: the 50/50 partial sampling ratio consistently yields optimal results, as displayed
in Figure 6. For the full dataset, RMSE decreases as the sampling ratio becomes more
balanced, reaching its lowest point at the 50/50 ratio. This indicates that more balanced
data distribution significantly enhances forecast accuracy. Similarly, the R2 value steadily
increases, peaking at the 50/50 ratio, signaling the model’s improved ability to capture
long-range dependencies at this balanced ratio.
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For high-value points, the results further underscore the importance of balanced resam-
pling. RMSE shows a marked decline, and MAE gradually reduces as the ratio approaches
50/50. The model’s highest R2 value at this ratio confirms its strongest performance in
predicting high-value points with greater accuracy. Overall, the 50/50 sampling ratio
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emerges as the optimal configuration, demonstrating that more evenly distributed data
enhances the model’s performance, particularly in forecasting high-value events.

Patterns of model performance across varying partial sampling ratios change for the
cutoff threshold of 35.5 µg/m3, as presented in Figure 7. For the whole dataset, RMSE
decreases as the partial sampling ratio becomes more balanced, reaching its minimum at
20/80. However, as the ratio becomes more balanced at 30/70, 40/60, and 50/50, RMSE
slightly increases, indicating that the most balanced ratios do not necessarily lead to the
best performance. Also, the R2 value peaks at 20/80 but declines for more balanced ratios,
suggesting that more even data distribution does not always improve model performance.
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For high-value points, RMSE shows a sharp decline from its value based on the
original data, continuing to decrease at the 20/80 ratio, with further stabilization beyond
this point. MAE follows a similar trend, with a steep drop at 20/80 and stabilization
thereafter. This indicates that the 20/80 partial sampling ratio effectively minimizes errors
for high-value points. Similarly, R2 improves significantly with slightly more balanced
resampling, reaching its peak at 20/80, and begins to drop afterward, highlighting the
model’s best performance at this ratio.

Overall, the 20/80 ratio provides the best performance for both the full dataset and
high-value points, delivering the lowest RMSE and highest R2. Models trained on the
original data perform the worst in terms of RMSE and R2, underscoring the value of
resampling for improving forecast accuracy, particularly for high-value points.

The discrepancy between RMSE and MAE in the original dataset arises from the nature
of these metrics. RMSE amplifies the impact of large errors due to its squaring mechanism,
making it highly sensitive to outliers, whereas MAE treats all errors equally, offering a more
robust reflection of average performance (Chai and Draxler, 2014; Willmott and Matsuura,
2005). This suggests that the original dataset likely contains a few large outliers that inflate
RMSE without significantly affecting MAE. As the partial sampling ratio becomes more
balanced, the model improves accuracy when predicting high-value outliers (leading to
lower RMSE) but loses some accuracy in predicting low-value events (causing a slight
increase in MAE).

4.3. Cutoff Threshold Comparison

Models trained on the 35.5 µg/m3 threshold consistently outperformed those trained
on the 12.1 µg/m3 threshold in terms of RMSE and R2, as demonstrated in Figure 8. The
resampling ratio plays a crucial role in model performance, with the 20/80 ratio emerging as
optimal for the 35.5 µg/m3 threshold, while the 50/50 ratio works best for the 12.1 µg/m3

threshold. This disparity is largely driven by the nature of the data captured at each
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threshold. The higher 35.5 µg/m3 threshold likely includes a more concentrated set of
high-value points, making a less balanced ratio like 20/80 more effective since the distinct
minority points do not require as much balancing. In contrast, the 12.1 µg/m3 threshold
includes more low-value points, necessitating a 50/50 ratio to adequately represent both
minority and majority groups.
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RMSE, which squares the differences before averaging, amplifies larger errors, making
it more sensitive to a few large deviations from actual values. This explains why models
trained on the 12.1 µg/m3 threshold performed worse in terms of RMSE, as the larger
prediction errors had a greater impact. However, MAE, which treats all errors equally,
performed better for the 12.1 µg/m3 threshold, indicating that while the errors were
frequent, they were smaller in magnitude.

For the 12.1 µg/m3 threshold, RMSE consistently decreases as the sampling ratio
becomes more balanced, reaching its minimum at the 50/50 ratio. This trend highlights the
importance of equal representation of minority and majority classes in improving overall
accuracy for a lower threshold value. Conversely, MAE initially increases from 10/90
to 30/70 but significantly improves at 50/50. R2 also shows steady improvement with
increasing balance, reaching its peak at 50/50, where the model captures the strongest
correlation between predicted and actual values.

For the 35.5 µg/m3 threshold, RMSE shows a sharp decrease as the resampling ratio
shifts from 10/90 to 20/80, indicating improved model performance by reducing large
prediction errors. However, as the ratio becomes more balanced beyond 20/80, RMSE
starts to increase slightly, suggesting that the model begins to overfit to the minority class
while losing accuracy for low-value points. R2 follows a similar trend, increasing to a peak
at 20/80, where it achieves the highest variance explanation. Beyond this optimal ratio, R2

declines, reflecting the reduced ability to accurately capture the distribution of both high-
and low-value points.

The chosen thresholds, 12.1 µg/m3 and 35.5 µg/m3, while aligned with EPA air quality
standards, have inherent limitations that may impact the generalizability of the findings.
First, these thresholds are specific to U.S. regulatory definitions and may not capture the
nuances of air quality classifications used in other regions, such as Europe or Asia, limiting
the global applicability of the model. Additionally, these fixed thresholds may oversimplify
the dynamic and continuous nature of PM2.5 pollution levels, potentially misclassifying
borderline cases and reducing sensitivity in capturing real-world fluctuations. The reliance
on static thresholds also fails to account for seasonal or geographic variations in PM2.5

concentrations, which could alter the distribution of high- and low-value points and affect
model training. Furthermore, by focusing only on two thresholds, the study may overlook
potential insights that could arise from exploring a wider range of cutoff values, especially
for datasets with different pollutant distributions. These limitations highlight the need for
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future work to explore adaptive or region-specific thresholds and assess their impact on
model performance.

4.4. Time Series Analysis

Figure 9 presents the time series comparison of observed and forecasted PM2.5 between
the models trained on the original versus augmented dataset with cutoff threshold of
35.5 µg/m3 and partial sampling ratio of 20/80. For all three cities, the model trained on
the original dataset shows strong accuracy for lower PM2.5 concentrations, particularly for
values below 30 µg/m3. This is reflected in the high similarity between forecasted and
observed values at these low levels. However, the model struggles to predict higher PM2.5

concentrations, reaching a ceiling in magnitude when faced with extreme pollution events,
as evidenced in the red-boxed regions. This limitation arises from the imbalanced dataset,
where the majority of points consist of lower values, leading the model to prioritize these
over the rarer high-value points. As a result, the model is unable to fully capture extreme
PM2.5 events, which shows that forecast accuracy tends to decline as PM2.5 levels increase.
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In contrast, models trained on the augmented dataset, using a 35.5 µg/m3 cutoff
threshold and a 20/80 partial sampling ratio, demonstrate improved performance in
capturing high-value PM2.5 events. Although there is a trade-off, where the model’s
accuracy for lower PM2.5 levels is slightly reduced, this adjustment leads to significantly
better RMSE and R2 measures. The forecasted values in the red-boxed regions are much
closer to the observed peaks, demonstrating that the model trained on augmented data
is better equipped to handle rare and extreme pollution levels. The trade-off is seen in
the slightly worse MAE, as the augmented dataset introduces more diversity and some
smaller errors that MAE treats equally, while RMSE emphasizes the larger improvements in
extreme cases. The model built on the augmented data is better suited to handle high-value
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points, which is particularly beneficial in scenarios where predicting extreme pollution is
more critical than maintaining perfect accuracy at lower concentrations.

The key contrast between the two trained models lies in the distributional focus:
the original dataset performs better on low-level PM2.5 concentrations but struggles with
extreme values. In comparison, the augmented dataset sacrifices some accuracy at lower
concentrations to better capture the high-value events, which are crucial for understanding
and managing pollution spikes. This trade-off is especially visible in the improvements in
terms of RMSE, which penalizes large errors more severely. These results show that the
model trained on augmented data is significantly better at predicting higher PM2.5 values.

5. Discussion
The underestimation of high pollutant levels has been an issue frequently discussed

in many studies [31]. This research addresses the challenge by applying data augmenta-
tion techniques before training the deep learning model. One of the key contributions of
this study is the exploration of cluster-based undersampling, implemented at different
cutoff thresholds and partial sampling ratios, which helped mitigate class imbalance and
improve model performance. Our findings indicate that the higher cutoff threshold of
35.5 µg/m3 resulted in superior model performance when compared to the lower threshold
of 12.1 µg/m3, as the 35.5 µg/m3 threshold more effectively differentiated between low-
and high-value points. The most optimal partial sampling ratio for the 35.5 µg/m3 cutoff
threshold was found to be 20/80. Previous studies, such as that of [49], explored data aug-
mentation through linear interpolation to generate synthetic data and increase dataset size.
Their approach significantly improved the performance of models like GRU and LSTM—
yielding up to a 31% improvement in MAPE. However, the study primarily focused on
increasing the overall volume of data without addressing class imbalance, which is a critical
challenge in the prediction of extreme air pollution events. In contrast, [48] directly tackled
dataset imbalance using random oversampling techniques to increase the representation of
high-value samples. While their approach helped increase the representation of high-value
samples, it led to overfitting on these samples and subsequently degraded the model’s
performance on the whole dataset. In contrast, our use of cluster-based undersampling
allowed the model to avoid overfitting to high-value samples, resulting in improved pre-
diction performance not only for the high-value samples but also for the dataset overall.
These findings, however, align with [48] in highlighting the importance of partial sampling
ratios, with their study identifying 30/70 as optimal for certain datasets and reinforcing the
idea that fully balanced datasets are not always the best approach. Other studies, including
that of [72], suggest that each dataset’s unique characteristics necessitate tailored sampling
strategies. In our case, the 20/80 ratio paired with the 35.5 µg/m3 cutoff provided the best
performance in capturing high-value points without over-suppressing the majority class,
underscoring the importance of strategic undersampling for achieving balanced model
generalization.

The results of this study not only highlight the effectiveness of cluster-based under-
sampling and tailored cutoff thresholds in improving PM2.5 forecasting but also carry
broader implications for air quality management. By addressing the frequent underestima-
tion of high pollutant levels, our methodology contributes to more accurate identification
of critical pollution episodes, which is essential for timely public health interventions.
The superior performance achieved using a 35.5 µg/m3 cutoff threshold underscores the
importance of selecting thresholds that align with the dataset’s characteristics and the tar-
geted application. This finding suggests that air quality models must adopt region-specific
or context-driven thresholds to ensure reliable predictions, especially when forecasting
extreme pollution levels. Moreover, the partial sampling ratio of 20/80 demonstrates
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that balancing the dataset does not necessarily mean achieving equal representation of
classes; rather, an optimal balance must consider the distribution and nature of the data to
maximize model performance.

Future work could enhance the model by incorporating additional data sources that
influence PM2.5 levels. Urban traffic data, which are crucial in accounting for emissions from
vehicles, and industrial activity data from factories and power plants would provide more
detailed insights into spikes in pollution. Including weather data such as wind patterns
and forecasts could improve the model’s accuracy in predicting pollutant dispersion across
regions. In addition to data augmentation through cluster-based undersampling, more
advanced techniques like Generative Adversarial Networks (GANs) could be explored to
generate realistic synthetic data for extreme pollution events, which are rare but critical
to forecast [77]. Another promising avenue would be extending the model to perform
multistep predictions, forecasting PM2.5 concentrations over multiple time steps rather
than just the next step, which would be particularly valuable for air quality forecasting
over longer periods like days or weeks. Moreover, extending the methodology to other
pollutants, such as nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3), would
allow for a comprehensive air quality forecasting framework, enabling cities to predict
and address multiple pollutants simultaneously. Given that many pollutants interact
synergistically to exacerbate health effects, multi-pollutant models would enhance the
precision of interventions. Additionally, applying this approach to different regions or
urban areas would help validate the model’s generalizability. Regional variations in
pollution sources, meteorological factors, and population density may require adaptive
strategies, such as incorporating localized data or adjusting the undersampling strategy to
align with regional conditions.

From a methodological perspective, future extensions include the integration of multi-
step forecasting, enabling predictions over longer time horizons. This would be particularly
valuable for planning city-level interventions, such as scheduling traffic restrictions or
industrial shutdowns during predicted high-pollution periods. The incorporation of addi-
tional data sources, such as traffic, industrial activity, and weather forecasts, could further
enhance the model’s robustness by capturing critical predictors of PM2.5 variations. Lastly,
advanced techniques like Generative Adversarial Networks (GANs) could be explored to
synthesize data for rare but impactful extreme pollution events, addressing a key limitation
of current datasets. These extensions would not only refine the methodology but also
position it as a cornerstone for developing next-generation air quality forecasting systems.

6. Conclusions
This study demonstrates that the 35.5 µg/m3 threshold consistently outperforms the

12.1 µg/m3 threshold across key metrics like RMSE and R2, likely due to its better represen-
tation of higher pollution values. The choice of partial sampling ratio proved crucial, with
50/50 optimal for the 12.1 µg/m3 threshold and 20/80 optimal for the 35.5 µg/m3 thresh-
old, effectively balancing the need to capture both frequent and extreme pollution events.
The model with the best performance (RMSE: 2.080, MAE: 1.386, R2: 0.914) utilized the
35.5 µg/m3 threshold and a 20/80 partial sampling ratio. Overall, models trained on resam-
pled data significantly outperformed those trained on the original dataset, demonstrating
the importance of data augmentation in handling imbalanced datasets and improving
forecast accuracy, especially for high-value pollution scenarios.

The findings of this study have important practical implications. Accurate PM2.5

forecasting is essential for timely public health interventions, particularly in urban areas
prone to extreme pollution levels. By tailoring threshold selection and resampling strategies
to the characteristics of the data, forecasting models can provide more reliable predictions,
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enabling policymakers and city planners to take targeted actions to mitigate health and
environmental risks.

Future research could build on these contributions by exploring additional thresholds
tailored to specific regional air quality standards, ensuring broader applicability of the
methodology. Incorporating supplementary data sources such as urban traffic patterns,
industrial activity, and meteorological variables could further enhance the model’s ability
to capture the complex factors driving PM2.5 fluctuations. Advanced techniques like Gener-
ative Adversarial Networks (GANs) could be employed to generate synthetic data for rare,
extreme pollution events, addressing data scarcity challenges. Expanding the geographic
scope of the model to include diverse regions and testing its performance with different
pollutants such as NO2, SO2, and O3 could create a comprehensive air quality forecasting
system. Lastly, extending the model to perform multistep predictions would provide
long-term forecasting capabilities, supporting more effective planning and intervention
strategies over extended periods. These directions offer promising opportunities to refine
and expand the impact of PM2.5 forecasting models on air quality management for public
health and disaster events such as wars and wildfires [78].
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