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Abstract: This work investigates the impact of C-class solar flare events (XRA) on iono-
spheric and low-frequency signal propagation by analyzing the maximum correlation lag
time, correlation, and Granger causality between low-frequency time-code signal strength
and XRA. The results show that within the lag interval of (−5, 5) minutes, XRA exhibits
the highest correlation and causality with signal strength, supporting the theory of a rapid
ionospheric response and early warning to XRA. The correlation coefficient increases signif-
icantly with flare intensity, indicating that XRA has both linear and nonlinear dual effects
on the disturbance of low-frequency signal propagation paths. Granger causality tests
further confirm that XRA events have an immediate and sustained direct impact on signal
strength. These findings provide a basis for understanding the disturbance mechanism of
solar activity on the Earth’s ionosphere and support the use of low-frequency signals in
space weather forecasting.

Keywords: C-class solar flares; low-frequency signals; lag analysis; Granger causality test;
ionospheric disturbances

1. Introduction
Solar flares release a large amount of X-ray radiation during their eruption, which

directly affects the D and E layers of the ionosphere, significantly increasing electron density.
These rapid changes typically occur within minutes and can lead to dramatic fluctuations
in the propagation characteristics of low-frequency signals, manifested as sudden increases
or decreases in signal strength. There is already a significant body of research on the
disturbances in the ionosphere caused by solar storms and their impact on the propagation
of low-frequency signals. Previous studies have shown that solar storms significantly
impact the ionospheric characteristics and radio wave propagation across high, middle,
and low-latitude regions. Solar storms typically affect the polar ionosphere by triggering
magnetic storms and enhancing auroral activity. Hayes et al. (2021) demonstrated that
during solar storms, the dramatic changes in electron density induced by solar radiation
cause the ionospheric response in the polar regions to be most pronounced, with strong
auroral phenomena and magnetic field disturbances [1]. In the middle-latitude regions,
the ionospheric response to solar storms is more complex, manifesting as variations in
electron density, particularly affecting high-frequency communication. Nishimoto et al.
(2021) emphasized that changes in solar flares and X-ray radiation lead to rapid ionospheric
variations in the middle latitudes, significantly influencing the propagation of both low-
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and high-frequency signals [2]. Although the impact on the ionosphere in low-latitude
regions is relatively less pronounced, it still results in fluctuations that affect global posi-
tioning systems (GPS) and satellite communication. Liu et al. (2011) noted that ionospheric
disturbances in low-latitude regions, primarily manifested as changes in Total Electron
Content (TEC), can cause short-term disruptions to satellite communications [3]. Addition-
ally, Nayak and Yiğit (2018) pointed out that ionospheric variations in low-latitude areas
can significantly degrade signal quality for high-precision navigation systems, such as GPS,
during solar storms [4]. The transmitting station (Shangqiu) and receiving station (Xi’an)
in this study are both located in the middle-latitude region. Moreover, the receiving station,
in comparison to the transmitting station, is situated in the Earth-ionosphere waveguide
separation zone, where low-frequency signals are more susceptible to electromagnetic
layer disturbances.

The central frequency of low-frequency time-code signals primarily ranges between
40 kHz and 80 kHz, which are radio signals with strong long-range propagation capabilities.
Their propagation path includes both ground waves and sky waves. Ground waves
propagate along the Earth’s surface, while sky waves rely on reflection between the Earth’s
surface and the ionosphere. As a result, these signals are highly sensitive to changes in
the ionospheric electron density and refractive index. When the ionosphere is disturbed,
such as by an increase or decrease in electron density, significant changes occur in the
propagation path, attenuation characteristics, and signal strength of low-frequency signals.
Therefore, low-frequency signals are not only an important means of communication but
also provide highly sensitive data support for studying ionospheric disturbances.

The propagation of low-frequency time-code signals is highly dependent on the
reflective properties of the ionosphere, and disturbances caused by solar flares often result
in signal offset, delay, and attenuation, thereby affecting their reliability and accuracy.
Furthermore, high-energy X-ray radiation from solar flares not only directly impacts signal
propagation but also induces precursory disturbances in propagation paths and phases
through the ionosphere’s anticipatory response. In mid- and low-latitude regions, the
ionospheric response exhibits unique dynamic characteristics that differ significantly from
those observed in polar regions [5–8]. Additionally, the variations in low-frequency time-
code signals induced by solar flares offer a novel perspective for ionospheric research. By
monitoring and analyzing changes in signal strength, it is possible to indirectly reflect
the dynamic processes of electron density in the ionosphere, thereby providing valuable
data support for understanding the characteristics of ionospheric disturbances during
solar activity.

1.1. Existing Research

Solar flares are generally categorized into different levels based on the intensity of
their X-ray flux. This study specifically focuses on C-class flares, which, despite their
lower intensity compared to M-class and X-class flares, are more frequent and can have
cumulative effects on the ionosphere. These rapid ionospheric variations directly impact
communication, navigation systems, and high-frequency radio communications in polar
regions [9–12].

López-Urias et al. (2010) demonstrated that the propagation of low-frequency time-
code sky waves is strongly dependent on the ionospheric reflection characteristics, meaning
that ionospheric disturbances caused by solar flares often lead to issues such as signal offset,
delay, and attenuation. These disturbances, in turn, affect the reliability and accuracy of
these signals in critical applications [11]. Studies have shown [7–10] that solar flares release
high-energy X-ray radiation, which not only directly impacts signal propagation following
flare events but may also induce precursor disturbances in signal propagation paths and
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phases through the ionosphere’s anticipatory response. Nayak et al. (2021) and Huang
et al. (2020) pointed out that the ionosphere at mid- and low latitudes exhibits unique
electron density variation characteristics during C-class solar flare events [4,13]. Buzás et al.
(2019) emphasized that studying how solar flares influence low-frequency time-code signals
through ionospheric interactions is crucial for understanding this complex, indirect impact
mechanism [6]. In this study, both the transmission station (Shangqiu, approximately
34.45◦ N latitude) and the reception station (Xi’an, approximately 34.34◦ N latitude) are
located in the mid-latitude region, making them typical cases for analyzing the dynamic
characteristics of the mid-latitude ionosphere.

Although considerable progress has been made in investigating the relationship be-
tween solar flares, the ionosphere, and low-frequency signal propagation, most research has
concentrated on the effects of intense flare events, such as M-class and X-class flares [14–19].
In contrast, the impact of C-class flares, which are weaker but more frequent, on the iono-
sphere and low-frequency time-code signals has not been sufficiently explored. While the
individual effects of these weaker flares may appear small, their frequent occurrence could
lead to cumulative effects on ionospheric dynamics and long-term radio communication.
However, research on C-class solar flares has largely been confined to case studies, with
a notable lack of quantitative analysis regarding the changes in low-frequency time-code
signal strength during such events. This study, therefore, aims to offer a new perspective
on ionospheric response mechanisms by analyzing the lag time between low-frequency
signal strength fluctuations and C-class flare events. Furthermore, the research seeks to
assess the potential impact of C-class flares on low-frequency time-code signal propagation,
providing scientific evidence to improve communication system stability and enhance
resistance to interference. Additionally, by incorporating Granger causality testing, this
study further validates and quantifies the causal relationship between C-class solar flares
and changes in low-frequency signal strength, thereby offering a foundation for future
early-warning and predictive models.

1.2. Research Objectives

The primary objective of this study is to investigate the correlation between low-
frequency time-code signal strength and C-class solar flares (XRA). By analyzing lag time
and correlation, this study explores the linear and nonlinear relationships between XRA
and signal strength across different lag intervals, as well as the disturbance patterns caused
by solar flares on signal propagation paths. However, while correlation analysis reveals
statistical dependencies between variables, it does not establish causality. Therefore, this
study further incorporates Granger causality testing to determine whether changes in XRA
can predict variations in low-frequency signal strength. Granger causality testing not only
quantifies the temporal precedence of XRA events but also uncovers the deeper influence
of solar flare intensity and ionospheric conditions on signal propagation. By integrating
correlation analysis with Granger causality testing, this study aims to provide new insights
into the mechanisms by which solar flares disturb the ionosphere and offer a theoretical
reference for future research on space weather forecasting using low-frequency signals.

2. Data Processing and Analysis Procedure
2.1. Data Sources

In the study of solar storm events, selecting station data with high sensitivity and
long-term stability is crucial. For this purpose, this study utilized signal strength data from
the Xi’an monitoring station, which records low-frequency time-code signals transmitted
from the Shangqiu station. The Xi’an station has been in continuous operation for over
two years, and this study specifically selected one year of accumulated signal strength data
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following its formal commissioning. Located in the terrestrial wave interference zone of
the Shangqiu transmitting station, the Xi’an station provides signal strength data that is
particularly valuable for investigating ionospheric response characteristics.

During the daytime, the ionosphere is directly influenced by solar radiation, leading to
a significant increase in electron density and more pronounced disturbances. Consequently,
the ionosphere exerts a greater impact on the reflection and propagation of long-wave
signals during the daytime. In contrast, at night, the Earth’s rotation shields the ionospheric
region above the receiving station from direct solar radiation, resulting in a substantial
decrease in electron density and reduced ionospheric disturbances. Therefore, this study
specifically selected solar storm events that occurred during daytime periods at the re-
ceiving station to accurately evaluate the impact of solar storms on low-frequency signal
strength while minimizing interference from nocturnal ionospheric activity.

Additionally, geomagnetic activity is an important factor influencing the propagation
of low-frequency signals, particularly in mid-latitude regions. Enhanced geomagnetic activ-
ity can induce severe ionospheric disturbances, significantly altering the signal propagation
path and strength. This study utilizes XRA data obtained from NOAA’s satellite monitoring
systems [20]. Moreover, geomagnetic activity may simultaneously affect both X-ray flux
and signal strength, thereby acting as a confounding variable that could obscure the direct
impact of solar flares. To address this issue, events coinciding with significant geomagnetic
activity (Kp index > 4) were excluded from the analysis to minimize potential interference.

In general, to ensure data reliability and consistency, the following selection criteria
were applied in this study: (1) Data Integrity: Only events with complete and continuous
data for both X-ray flux and low-frequency signal strength were retained; any events with
missing or incomplete data were discarded. (2) Daytime Impact: Only events that occurred
during daytime periods at the monitoring station were included to avoid the influence of
nocturnal ionospheric activity. (3) Geomagnetic Activity: Events coinciding with significant
geomagnetic activity (Kp index > 4) were excluded to reduce the impact of geomagnetic
disturbances as a potential confounding variable.

Regarding the input data, this study utilizes a systematically organized dataset to
analyze C-class solar flare events, as depicted in Figure 1. The dataset is structured into
two primary categories: XRA Data and Signal Strength Data, with each category containing
multiple event entries. For each event, the XRA Data and Signal Strength Data are syn-
chronized to the same UTC time period, ensuring consistency and reliability in capturing
the ionospheric response to solar activity. The focus of this study is on events recorded
during the daytime by the Xi’an monitoring station between May 2023 and June 2024. After
applying rigorous selection criteria—such as excluding nighttime events, ensuring data
integrity, and filtering out events with Kp index > 4—over 150 valid events were retained
for analysis.
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2.2. Data Processing Methods

To investigate the impact of solar storms on low-frequency signal strength, this study
employs the Savitzky-Golay filter [21] to smooth raw signal strength data and extract more
accurate trends in signal variation. Compared to other commonly used smoothing methods,
such as moving average filters, the Savitzky-Golay filter applies local polynomial fitting to
achieve data smoothing. This approach not only effectively reduces high-frequency noise
but also maximally preserves the local features and critical characteristics of the signal, such
as abrupt changes and peaks. Previous studies have demonstrated that this method exhibits
significant advantages in time-series analysis, particularly in retaining data trends while
minimizing distortions to lag-dependent features [21–23]. Furthermore, empirical research
has verified that Savitzky-Golay filtering does not introduce notable distortions to the
key dynamic characteristics analyzed in lag and correlation studies [24,25]. Additionally,
this method has proven particularly effective in capturing genuine signal variation trends
in high-noise environments and has been widely applied in analyzing dynamic changes
caused by solar flares [26,27]. In this study, the filter parameters, including window size and
polynomial degree, were carefully optimized to adapt to the complex dynamic relationship
between low-frequency time-code signals and X-ray flux (XRA).

2.2.1. Data Correlation and Alignment

To examine the temporal correlation between low-frequency signal strength and XRA
(X-ray flux), a cross-correlation analysis method was applied. This approach calculates the
correlation between two time series at different time lags, helping to identify the potential
time window during which XRA influences signal strength changes. The formula for
calculating the cross-correlation function is as follows:

Rxy(τ) =

N
∑

t=1
[x(t)− x][y(t + τ)− y]√

N
∑

t=1
[x(t)− x]2

N
∑

t=1
[y(t + τ)− y]2

(1)

where x(t) and y(t) represent the signal strength data and XRA data, respectively; x and
y are the mean values of the corresponding datasets; and τ denotes the lag time, with
positive values indicating that XRA changes lead, and negative values indicating that
signal strength changes lead.

By calculating the cross-correlation function, the optimal lag time (i.e., the lag value
with the highest correlation) between signal strength and X-ray flux (XRA) can be identified.
This analysis provides critical insights into the temporal interplay between solar flares and
ionospheric dynamics, illustrating how XRA modulates ionospheric reflection properties
and subsequently influences the propagation characteristics of low-frequency signals. A
positive lag indicates that variations in XRA precede changes in signal strength, implying
that an increase in X-ray flux rapidly enhances electron density within the ionosphere. This
elevation modifies reflection characteristics, leading to alterations in signal propagation
paths and intensity. These findings align with established theories, which posit that solar
flares elicit immediate and measurable responses in the ionosphere.

Conversely, a negative lag suggests that changes in signal strength precede variations
in XRA, potentially reflecting the influence of complex ionospheric processes not exclusively
driven by XRA. Previous studies have indicated that during solar storms, high-energy
particle precipitation, such as protons from solar energetic particle (SEP) events, may
initiate precursor disturbances in the D-region ionosphere, altering electron density and
thus impacting low-frequency signal propagation before significant XRA changes are
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detected [8]. This phenomenon may be explained by the faster arrival of energetic particles
compared to X-rays, leading to early ionization effects that manifest as signal strength
variations [8,10]. As XRA intensifies, these emissions further disrupt ionospheric conditions,
potentially amplifying or reversing initial signal trends. Additionally, negative lags may
highlight cumulative or secondary effects from localized geomagnetic activity or high-
energy particle flux, which act synergistically with XRA to produce complex ionospheric
responses [11,17]. These findings underscore the importance of considering multiple
contributing factors when interpreting lag dynamics between signal strength and XRA. In
this study, the primary focus is on the relationship between XRA and low-frequency time-
code signal strength. To minimize the influence of geomagnetic activity as a confounding
factor, data from periods with significant geomagnetic disturbances (e.g., Kp > 4) were
excluded during preprocessing. Therefore, any observed negative lags are more likely
attributable to ionospheric changes driven by XRA and associated solar flare dynamics,
rather than the effects of geomagnetic activity.

By systematically analyzing these lag times, this study bridges observed temporal
patterns with the underlying physical mechanisms governing ionospheric and signal
propagation responses. This integrative approach enhances our understanding of how
solar flares, through both direct and indirect pathways, shape the behavior of low-frequency
signals, providing a robust framework for investigating space weather phenomena.

2.2.2. Correlation Analysis Between Long-Wave Signals and XRA Data

When investigating the relationship between low-frequency signal strength and X-ray
flux (XRA) during solar storms, correlation analysis is a crucial method for uncovering
the inherent connection between the two variables. Given that solar storms can cause
diverse ionospheric disturbances, which may manifest as signal patterns ranging from
linear to nonlinear relationships, the application of multiple correlation metrics is essential
for obtaining a comprehensive understanding of the dynamic interactions between long-
wave signal strength and XRA. In this study, three correlation indicators were used for a
thorough analysis:

(1) Pearson Correlation Coefficient

The Pearson correlation coefficient is the most widely used metric for quantifying the
linear relationship between two variables and is defined as follows:

r =

N
∑

i=1
(xi − x)(yi − y)√

N
∑

i=1
(xi − x)2

√
N
∑

i=1
(yi − y)2

(2)

where xi and yi represent the values of long-wave signal strength and X-ray flux, respec-
tively, x and y are their mean values. The Pearson correlation coefficient r ranges from
[−1, 1], where a value of 1 indicates a perfect positive correlation, −1 indicates a perfect
negative correlation, and 0 indicates no linear relationship. In the context of this study, the
Pearson coefficient quantifies the degree of linear dependence between X-ray flux (XRA)
and low-frequency signal strength. A strong positive or negative r suggests that changes
in XRA have a direct and proportional impact on ionospheric electron density, which
subsequently alters signal propagation characteristics. This makes Pearson correlation
particularly valuable for identifying clear, linear relationships during solar flare events.

(2) Spearman Rank Correlation Coefficient
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The Spearman rank correlation is used to assess the monotonic relationship between
two variables and is defined as follows:

rs = 1 −
6∑ d2

i
n(n2 − 1)

(3)

where di represents the difference in rankings between the two variables, and n is the
number of data points. The Spearman correlation is particularly suitable for analyzing non-
linear but monotonic relationships. During solar storms, the relationship between XRA and
long-wave signal strength often deviates from linearity, particularly during low-intensity
events. As a rank-based metric, the Spearman correlation is well-suited for capturing these
intricate nonlinear associations, offering robust insights into ionospheric response patterns
under conditions dominated by weak disturbances or elevated noise levels. Its ability to
detect subtle yet consistent trends make it particularly advantageous for analyzing complex
datasets where linear correlation methods may fail to reveal underlying relationships.

(3) Kendall Tau Correlation Coefficient

The Kendall Tau coefficient is used to assess the degree of concordance between two
variables, and it is defined as follows:

τ =
(Nc − Nd)
1
2 n(n − 1)

(4)

where Nc represents the number of concordant pairs and Nd denotes the number of dis-
cordant pairs. The Kendall Tau correlation coefficient is a robust and stable measure of
association, particularly suited for scenarios involving small sample sizes or datasets with
significant variability. Unlike the Pearson correlation coefficient, which primarily assesses
linear relationships, Kendall Tau focuses on the consistency of trend changes between vari-
ables rather than their absolute values. Additionally, compared to the Spearman correlation
coefficient, Kendall Tau provides a more accurate reflection of trend alignment in smaller
datasets and is especially effective for analyzing high-noise or dynamically fluctuating
data. In this study, the relationship between X-ray flux (XRA) and low-frequency signal
strength does not always exhibit linear or instantaneous characteristics but often manifests
as cumulative trends that reflect the impact of solar flares on ionospheric disturbances. The
rank-based methodology of Kendall Tau is well-suited for capturing these trend consisten-
cies, particularly in identifying the alignment of long-term and short-term trends across
different lag intervals. This capability offers a supplementary perspective for understand-
ing the trend-based variations in ionospheric dynamics and low-frequency time-code signal
propagation caused by solar flares, addressing the limitations of Pearson and Spearman
correlation analyses in capturing complex trends.

In summary, based on the objectives of the study and the characteristics of the data, we
consider Spearman’s rank correlation coefficient and Kendall’s Tau correlation coefficient
to be more appropriate statistical methods. This is due to the potential nonlinearity and
irregular distribution of the data, which these methods are better equipped to capture. The
Pearson correlation coefficient is employed as a supplementary reference, particularly in
cases where the data exhibits a linear relationship.

2.2.3. Granger Causality Test

To further investigate the causal drivers of changes in low-frequency signal strength
during XRA events, this study introduces the Granger causality test. The Granger causality
test is a statistical method used to determine the presence of a causal relationship between
time series. In the context of studying the relationship between X-ray flux (XRA) and
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low-frequency signal strength during solar storms, this test helps us determine whether
changes in XRA can statistically predict variations in long-wave signal strength. This is
crucial for understanding the disturbance mechanisms in the ionosphere and the impact of
solar storms on low-frequency signal propagation characteristics.

The basic model for the Granger causality test is as follows:

Yi = α0 +
P

∑
i=1

αiYt−i +
q

∑
j=1

β jXt−j + εi (5)

In this model, Yt represents the long-wave signal strength, Xt is the X-ray flux (XRA),
and εt is the residual. The Granger causality test determines whether X Granger-causes Y by
comparing the goodness-of-fit of two models. One model includes only the autoregressive
terms of Y, while the other model incorporates lagged values of X. If the inclusion of lagged
X significantly improves the model’s fit to Y, then X is considered to Granger-cause Y.

In the context of this study, the Granger causality test is used to evaluate whether
changes in XRA can significantly explain and predict fluctuations in long-wave signal
strength. This approach not only quantifies the time-dependent relationship between the
two variables but also reveals potential causal chains. For instance, in the case of a positive
lag (i.e., when changes in XRA precede changes in signal strength), a significant test result
would suggest that the enhancement of X-ray flux might directly alter the ionospheric
electron density, thereby affecting the propagation path of low-frequency signals. The
temporal precedence in this relationship is crucial for predicting the effects and response
mechanisms of ionospheric disturbances.

On the other hand, if the test shows a significant result in the case of a negative lag
(i.e., when signal strength changes precede changes in XRA), it may suggest the existence of
a complex ionospheric feedback mechanism. For example, the early arrival of high-energy
particle flows may have already disturbed the ionosphere, and changes in XRA could later
amplify this effect. This phenomenon implies that XRA is not the sole causal factor but
rather an important yet complex variable in the ionospheric disturbance process. In brief,
the Granger causality test adds a temporal dimension to our analysis, providing crucial
statistical support, particularly in exploring the dynamic influence between solar flares and
signal strength.

3. Results and Discussion of Data Analysis
3.1. Case Study of a Single Event

Taking the C2.1-class solar flare event that occurred on 3 May 2023 (local time:
11:39–11:53) as a case study, we performed a qualitative analysis to explore the relationship
between low-frequency signal field strength and XRA data. As shown in Figure 2, the
variations in field strength and XRA data during this period are presented. In the field
strength variation graph (Figure 2, top), the blue curve represents the raw field strength
data, while the red curve corresponds to the smoothed data. It is evident that the field
strength exhibited a significant upward trend during the solar flare, which likely reflects
ionospheric disturbances induced by the flare, leading to enhanced signal propagation
strength. Concurrently, the XRA data variation graph (Figure 2, bottom) shows dynamic
changes in X-ray flux intensity, displaying a characteristic dip followed by a rise. This
pattern aligns with the typical temporal evolution of C-class solar flare events. Based on
observations of over 150 similar cases, we hypothesize that variations in XRA data may
correlate with trends in field strength.
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Figure 2. Comparison of Field Strength and XRA Data During a C2.1-Class Event.

As depicted in Figure 3, the cross-spectral density (CSD) between field strength and
XRA data is shown as a function of frequency. The results indicate that the two datasets
exhibit strong correlations in the low-frequency range (<0.1 Hz), as evidenced by high
cross-spectral density values. However, as the frequency increases, the cross-spectral
density decreases, suggesting weaker correlations at higher frequencies. The high-density
region in the low-frequency range is likely associated with ionospheric electron density
changes induced by solar flares. The high-energy X-rays released by solar flares rapidly
affect the ionosphere, causing a systemic change in signal propagation paths. Such changes
are typically gradual and sustained, predominantly reflected in the low-frequency range.
In contrast, the lower density observed in the high-frequency range may be attributed to
rapid, localized disturbances, such as instrumental noise or environmental interference.
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Overall, the time-domain signal observations and cross-spectral analysis collectively
reveal a potential correlation between field strength and XRA data. Detailed quantitative
results and further statistical analysis are presented in Sections 3.2 and 3.3.

3.2. Correlation Analysis Results

Figure 4 presents the statistical histogram of the time lag corresponding to the max-
imum correlation between the signal strength data and XRA data, based on a sample
space of 152 cases. To evaluate the significance of the lag distribution, descriptive statisti-
cal metrics were calculated, including the mean lag time (−147.90 s), standard deviation
(316.64 s), and skewness (0.50), indicating a slightly right-skewed distribution. Additionally,
a Kolmogorov-Smirnov (K-S) test was conducted, comparing the observed lag distribution
with a random noise baseline generated using a Gaussian distribution (mean = 0, standard
deviation = 5). The choice of 5 s as the standard deviation is supported by studies such
as Grubor et al. (2005) and Thomson et al. (2011) [9,10] which identified this range as
representative of typical background noise variations in low-frequency signal propagation.
The test results (K-S statistic = 0.72, p-value = 7.15 × 10−76, p < 0.01) confirm that the lag
distribution is significantly different from random noise, supporting the hypothesis that it
is driven by ionospheric dynamics rather than stochastic fluctuations.
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From the figure, it is evident that the most probable time lag occurs within the interval
of −5 to 0 min, where the signal strength changes precede the C-class XRA changes. This
finding aligns with the ionospheric pre-disturbance phenomenon reported in previous
studies. For example, Kumar et al. (2017) pointed out that in weaker solar flare events,
background disturbances in the ionosphere can cause fluctuations in signal strength several
minutes before the onset of the flare event [7]. This may be due to early signals from
high-energy particle flows or solar radiation fluctuations, which, although not directly
observed, have already begun to influence the propagation path of low-frequency signals.

The next most probable time lag occurs between 0 and 5 min, indicating that the signal
strength was further disturbed after the XRA event began. This is consistent with the
findings of Grubor et al. (2005), who observed that C-class solar flare events significantly
increased the electron density in the ionospheric D-layer within minutes, thereby altering
the propagation path of low-frequency signals [9].

A relatively earlier negative time lag (from −10 to −5 min) accounted for 21.48% of
occurrences, suggesting that significant changes in signal strength might have already been
triggered by precursor disturbances before the C-class XRA event. These disturbances are
likely associated with the instability of the ionosphere in the polar regions or the early
stages of high-energy solar particle activity. Such early responses were also noted in the
study by Clilverd et al. (2001), which indicated that even low-level solar flare events
could affect the propagation of low-frequency time-code signals in the polar regions due to
precursor disturbances [8].
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The significance of time lags longer than 5 to 10 min, or beyond, shows a notable
decline. This phenomenon is consistent with the findings of Thomson et al. (2011), who
noted that the impact of C-class events on the ionosphere is typically short-lived, usually
recovering within a few minutes [10].

3.3. Correlation Coefficient Analysis and Its Relationship with Low-Frequency Signal Response

In calculating the correlation coefficients, this study first aligns the low-frequency
signal strength with the XRA data based on the lag time obtained from the analysis in
Section 2.2, ensuring optimal correlation alignment. The Pearson, Spearman, and Kendall
Tau correlation coefficients are then computed. This approach ensures that the correlation
coefficients accurately reflect the relationship between the XRA and signal strength varia-
tions after correcting for lag time. Lag time alignment not only removes the interference
caused by temporal misalignment between the signals but also enhances the accuracy of
the correlation analysis. This method is widely used in the literature to address the issue of
underestimating correlation in dynamic systems due to signal delays. For instance, Clilverd
et al. (2001) demonstrated that lag alignment improves the capture of the relationship
between VLF signals in polar regions and solar activity [8], while Kumar et al. (2017)
highlighted that lag correction aids in more accurately quantifying the impact of solar flares
on ionospheric disturbances [7].

Figure 5 shows the distribution of lag times and the three correlation coefficients for
each sample, while Table 1 provides the statistical results of the three correlation coefficients
across different time intervals. The selection of a 5-min interval for lag segmentation is
based primarily on the time-scale characteristics of ionospheric disturbances caused by solar
flares and the anomaly detection features of signal receiving terminals. Grubor et al. (2005)
pointed out that C-class solar flares typically induce significant changes in ionospheric
electron density within a few minutes [9]. Thomson et al. (2011) further emphasized that a 5-
min interval effectively captures dynamic changes within this time scale while maintaining
a balance between analytical precision and interpretability, avoiding the amplification of
random noise from overly small segments or the loss of subtle variations with excessively
large segments [10]. Additionally, Mitra (1974) noted that significant fluctuations within a 5-
min period are often regarded as anomalous signals from the perspective of signal receiving
terminals, potentially reflecting rapid disturbances caused by solar activity [12]. From the
figure, it is evident that in the lag intervals (−5, 0) and (0, 5), the average Pearson correlation
coefficient is significantly positive, indicating a strong linear relationship between XRA and
signal strength during these periods. In contrast, negative correlations are observed in the
earlier negative lag intervals. For example, for a sample with a lag of −144 s (approximately
−2.4 min), the Pearson correlation coefficient is 0.75, which lies within the high positive
correlation range (−5, 0), demonstrating that near the peak of the flare, XRA is strongly
linearly associated with changes in signal strength. However, it is important to note that
this is just one sample case, and such a high correlation may not be representative of the
overall trend. These results suggest that the most significant positive correlation between
XRA and signal strength occurs within the lag intervals (−5, 0) and (0, 5). This indicates that
during C-class flare events, an increase in XRA directly causes changes in the ionospheric
electron density, which in turn alters the propagation characteristics of low-frequency
skywave signals. The high linear correlation observed during this period underscores the
significant direct impact of C-class flares on low-frequency signals.
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Table 1. Comparison of the Distribution of the Three Correlation Coefficients Across Different
Lag Intervals.

Lag Bin (Minutes) Pearson Avg Spearman Avg Kendall Tau Avg

(−20, −15) −0.15 −0.12 −0.08
(−15, −10) −0.20 −0.19 −0.12
(−10, −5) 0.18 0.23 0.15

(−5, 0) 0.45 0.52 0.38
(0, 5) 0.38 0.42 0.31
(5, 10) 0.20 0.19 0.14

(10, 15) −0.05 −0.02 −0.01
(15, 20) −0.12 −0.11 −0.06

The Spearman correlation coefficient reaches its peak value in the lag interval (−5, 0),
highlighting a highly significant monotonic relationship between signal strength and XRA.
For example, for a sample with a lag of −174 s (approximately −2.9 min), the Spearman
correlation coefficient is 0.86, indicating a high degree of monotonic consistency between
signal strength and XRA changes just before the flare peak. The Spearman results further
reinforce the rapid response of the ionosphere to XRA, especially in the lag interval (−5, 0).
This strong monotonicity suggests that even in the presence of strong noise or nonlinear
effects, signal strength remains a reliable indicator of XRA’s changing trend. The Kendall
Tau coefficient reaches a significant positive value in the lag interval (−5, 0), with a slightly
lower value in the (0, 5) interval, suggesting that the trend of signal strength changes aligns
closely with XRA. Moreover, in earlier negative lag intervals (e.g., −15, −10), the trend
changes in signal strength may serve as a precursor to an upcoming flare event.

In summary, the combined results of the three correlation coefficients indicate that,
within the key lag intervals of (−5, 0) and (0, 5), the high positive correlation between XRA
and signal strength reveals a direct and rapid impact of C-class solar flares on ionospheric
reflection characteristics. This correlation supports the hypothesis that solar storms cause
ionospheric disturbances, with the positive correlation persisting even after the event (5
to 10 min). This suggests that the high-energy radiation from the flare has a lasting effect
on the ionosphere, resulting in continuous changes in signal propagation paths and signal
strength. The early negative correlation observed in the lag interval (−20, −10) suggests
that C-class flares may act as a warning signal for ionospheric disturbances, with signal
strength being affected even before the flare reaches C-class intensity.

Furthermore, from the perspective of the three correlation coefficients and their relation
to the geomagnetic storm levels, as illustrated in Figure 6, the Pearson Correlation shows a
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significant increase from 0.38 for C1–C3 to 0.58 for C7–C9. This indicates that as the flare
intensity increases, the linear correlation between XRA and signal strength strengthens.
This suggests that more intense solar flares likely have a more pronounced direct impact
on ionospheric disturbances and the propagation of low-frequency signals. The Spearman
Correlation (monotonic relationship) rises from 0.33 to 0.64, signifying that during stronger
flare events, even nonlinear trends exhibit greater consistency. Similarly, the Kendall Tau
Correlation increases from 0.27 to 0.53, further confirming that as the flare level intensifies,
the stability of the relative relationships between data points improves.
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3.4. Granger Causality Test Analysis

In Section 3.2, the correlation analysis revealed both linear and nonlinear relationships
between C-class XRA events and low-frequency signal strength. However, correlation
does not imply causality. To further investigate whether XRA events are the causal drivers
of changes in low-frequency signal strength, we applied the Granger causality test. The
Granger causality test is a statistical method based on the predictive capability of time
series data, used to assess whether the historical values of one variable can significantly
predict the future values of another [7]. In this study, this approach allows us to assess
whether changes in XRA are causally related to fluctuations in signal strength over time.

The results of the Granger causality test are expressed in terms of p-values. Smaller
p-values indicate a stronger statistical significance of the causal relationship. Typically, a p-
value of less than 0.05 is considered to indicate a significant Granger causal relationship. For
example, in the data used in this study, a sample with a lag of 50 s corresponds to a Granger
p-value of 0.0007, suggesting that even with a relatively short lag time, the influence
of XRA on signal strength remains statistically significant. This study investigates the
causality between signal strength and XRA data in 5-min intervals, specifically analyzing
the differences in causality before and after solar storm events. The average percentage of
p-values below 0.05 for each time interval was calculated as a measure of significance, used
to evaluate the strength of the causal relationship in each period.

The results of the significance evaluation show that the p-values in the lag intervals
of (−5, 0) and (0, 5) minutes are notably lower, indicating the strongest Granger causality
between XRA and signal strength during these periods, as shown in Figure 7. In the
negative lag intervals (−20 to 0 min), the significance level increases from 13.33% to 60%,
suggesting that when changes in low-frequency signal strength precede changes in X-ray
flux, the Granger causality gradually intensifies. This phenomenon supports the hypothesis
that the ionospheric response to low-frequency signals may occur before changes in X-ray
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flux. In the intervals of [−10, −5) and [−5, 0), the significance levels are 41.25% and 60%,
respectively. These elevated significance values suggest that variations in low-frequency
signal strength could represent an early response to an impending XRA event. These
findings support the earlier argument regarding the sensitivity of low-frequency signal
strength to early ionospheric disturbances. Even before the solar storm reaches C-class
levels, changes in signal strength can already detect ionospheric ionization effects induced
by X-ray radiation. However, while the significance levels of 41.25% and 60% suggest
some degree of correlation, they are not exceptionally strong. It is crucial to emphasize
that Granger causality identifies statistical causality but does not confirm physical causality.
This distinction highlights that while these results point to a potential relationship, they
should not be interpreted as conclusive evidence of a direct physical link. Therefore, these
findings should be viewed as a basis for further exploration, rather than definitive proof.
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For the positive lag intervals (0 to 20 min), the significance in the intervals of [0, 5) and
[5, 10) is 66.67% and 70%, respectively, marking the periods with the highest significance.
This indicates a strong Granger causal relationship between the increase in X-rays and
the subsequent changes in low-frequency signal strength. After 10 min, the significance
starts to decline, but the correlation remains relatively high (e.g., 53.33% in the interval [10,
15)). This suggests that the impact of XRA events can still be observed for a period after
their occurrence.

By restricting the analysis to events with Kp < 4, the influence of geomagnetic activity
as a confounding variable is minimized, ensuring that the observed relationships between
signal strength changes and XRA are predominantly driven by ionospheric dynamics. In
the negative lag intervals, early changes in signal strength are observed as an ionospheric
pre-response to the impending XRA disturbance, demonstrating the predictive potential of
these signal strength variations. In the positive lag intervals, the significant influence of
XRA on low-frequency signal strength is concentrated in the 0–10 min period following
the event, demonstrating the immediate impact of the X-ray event on the ionosphere. This
analysis confirms that C-class XRA events have a considerable effect on low-frequency
signals, with this effect exhibiting both a time delay and predictive potential.
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4. Conclusions
This study explores the impact of C-class solar flares (XRA) on the ionosphere and

low-frequency signal propagation by analyzing the lag time, correlation coefficients, and
Granger causality between low-frequency signal strength and XRA data. The main conclu-
sions are as follows:

(1) Correlation Analysis: The results indicate that within the lag intervals of (−5, 0) and (0,
5) minutes, the low-frequency signal strength and XRA show the highest correlation,
suggesting a rapid ionospheric response to XRA disturbances. Significant changes
in signal strength are observed even before the peak of the flare. The negative lag
intervals (−10, −5) and earlier periods support the theory of ionospheric pre-response,
indicating that changes in signal strength may precede XRA events, which serves as
an early warning of impending solar flares. In the positive lag interval (0, 10), the
signal strength closely follows the increase in XRA, reflecting the sustained impact of
XRA on the ionosphere.

(2) Correlation Coefficient Analysis: As the intensity of C-class solar flares increases
(from C1–C3 to C7–C9), the Pearson correlation coefficient increases from 0.38 to 0.58,
demonstrating a stronger linear effect of higher intensity flares on signal propagation.
Both the Spearman and Kendall Tau coefficients also rise with increasing flare intensity,
indicating a stronger relationship between signal strength and XRA in terms of non-
linear trends and consistency. These findings highlight that low-frequency signal
strength is highly sensitive to XRA disturbances, supporting the hypothesis that
C-class solar flares have a direct impact on the ionosphere.

(3) Granger Causality Test: The Granger causality test further confirms the causal rela-
tionship between signal strength and XRA data. The significance levels in the lag
intervals (−5, 0) and (0, 5) are the highest, reaching 60% and 66.67%, respectively,
indicating that XRA has the most significant causal impact on signal strength during
these periods. In the negative lag interval (−10, −5), the significance level is 41.25%,
supporting the idea that low-frequency signal strength responds predictively to im-
pending XRA events. In the positive lag interval (0, 10), the significance reaches 70%,
indicating that the impact of XRA on signal strength persists for several minutes after
the flare.

Through a multi-faceted analysis of lag time, correlation coefficients, and Granger
causality, this study confirms the significant influence of C-class solar flare events on low-
frequency signal propagation in the ionosphere and the Earth-ionosphere wave interference
region. This impact is not only characterized by the ionosphere’s rapid response to XRA
events and its early warning capabilities but also by the lasting disturbance effects following
the event. Despite the relatively low energy of C-class solar flares, their impact on the
ionosphere and low-frequency signals is immediate, sustained, and predictive. These
findings reveal the correlation between C-class solar flares and low-frequency time-code
signal strength, providing theoretical support for the application of low-frequency signals in
space weather monitoring and early warning systems. However, it is crucial to emphasize
that these results do not establish a strong causal relationship between variations in low-
frequency signal strength and C-class solar flare events, as statistical causality, such as that
identified through Granger causality, does not confirm the underlying physical causality.
The practical application of these results requires further validation in real-world scenarios,
including the incorporation of long-term observational data from additional fixed stations
to enhance the predictive accuracy and applicability of the proposed methods. Building
on this foundation, future work can proceed in three directions: first, by integrating
monitoring data from more fixed stations to further refine the statistical analysis; second, by
extending the study to include M-class and X-class solar flares; and third, by incorporating
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additional statistical methods to provide a more comprehensive comparison and strengthen
the robustness of the findings. This would allow for an exploration of the relationship
between flare intensity and ionospheric dynamics, as well as the propagation characteristics
of low-frequency signals, thereby verifying the applicability of the observed patterns under
higher-intensity flares.
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