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Abstract: Sensible heat flux (H) plays an important role in characterizations of land surface 

water and heat balance. There are various types of H measurement methods that depend on 

observation scale, from local-area-scale eddy covariance (EC) to regional-scale large 

aperture scintillometer (LAS) and remote sensing (RS) products. However, methods of 

converting one H scale to another to validate RS products are still open for question.  

A previous area-to-area regression kriging-based scaling method performed well in 

converting EC-scale H to LAS-scale H. However, the method does not consider the  

path-weighting function in the EC- to LAS-scale kriging with the regression residue, which 

inevitably brought about a bias estimation. In this study, a weighted area-to-area regression 

kriging (WATA RK) model is proposed to convert EC-scale H to LAS-scale H. It involves 

path-weighting functions of EC and LAS source areas in both regression and area kriging 

stages. Results show that WATA RK outperforms traditional methods in most cases, 

improving estimation accuracy. The method is considered to provide an efficient validation 

of RS H flux products. 
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1. Introduction 

Sensible heat flux (H) is a significant component of land surface water and energy balance 

determinations. It not only affects the regional heat budget, but also has a profound impact on regional 

water circulation [1,2]. There are several methods for measuring surface water and heat fluxes, such as 

eddy covariance (EC) and Bowen ratio systems. However, they usually measure H at small local-area 

scales, which can only represent an area of a few square meters to several hundred square meters [3]. 

For large-scale H, remote sensing (RS)-based observations are useful [4,5]. H products can be 

determined from a range of global-coverage RS sensors including Landsat 7 (30 m spatial resolution and 

16 days temporal resolution), Moderate Resolution Imaging Spectroradiometer (MODIS, 1 km; daily), 

and Advanced Very High Resolution Radiometer (AVHRR, 1.1 km; 14 times/day) [6–8]. RS instruments 

themselves cannot directly measure H. Therefore, methods for validating RS inversion products are 

critical for using such products. The RS estimations are generally validated by EC measurements directly 

or by combing their footprint models, which involves many technical problems [9]. 

Since the 1990s, large aperture scintillometer (LAS) has been widely applied to measure sensible heat 

flux around the world, and it has also been used to validate RS estimations owing to the large scale of 

its measurements [10]. So LAS operational principles and data processing steps have been the subject 

of attention to ensure data quality [11,12]. Another method used to acquire area surface flux is the 

establishment of a multi-site observation system on a heterogeneous surface, which is done by installing 

flux instruments (e.g., EC or Bowen ratio systems) on typical surfaces of the experimental area and then 

aggregating the small local-area scale observations to estimate larger area fluxes (e.g., model grid-scale) 

using various upscaling methods. Experiments that have followed this method include  

HAPEX-MOBILHY (Hydrologic Atmospheric Pilot Experiment—Modelisation du Bilan Hydrique) [13], 

FIFE (The First ISLSCP Field Experiment) [5], NOPEX (Northern Hemisphere Climate Processes Land 

Surface Experiment) [14], EVA-GRIPS (Evaporation at Grid/Pixel Scale) [15], and BOREAS (The 

Boreal Ecosystem-Atmosphere Study) [16]. To validate RS pixel scale H-flux with LAS systems,  

LAS-scale H-flux must first be validated with EC systems. Thus, in this paper, we use the EC- to  

LAS-scale H-flux conversion as an example to investigate the scaling method. 

There are many scaling methods that can be used to incorporate observed H from EC- to LAS-scale, 

including area-weighted averaging, footprint-weighted averaging, numerical modeling, and  

kriging [17–20]. Weight average methods require ECs to be placed in homogeneous regions where H is 

very similar everywhere in each region. Numerical modeling considers the physical mechanisms of H, 

often under conditions where it is not easy to determine model parameters. In a previous study [20], we 

proposed an area-to-area regression kriging method to convert observations from an EC observation 

network to the LAS scale. The method was found to improve estimations of sensible heat flux. The daily 

spatial trend of H was extracted by a multiple regression. Then, scaling using area-to-area kriging was 

applied on the residue to interpolate the LAS-scale residue. A point scale variogram was derived from 

an area scale variogram using a deconvolution process [21–23]. However, path-weight functions of EC 
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and LAS source areas were not considered in the area-to-area kriging stage. All discretized points were 

assumed to have an equal weight, which was inconsistent with the footprint model. 

In this paper, we introduce an improved H scaling method: weighted area-to-area regression kriging 

(WATA RK). An example is presented that upscales the observations from an EC network to a LAS 

scale; however, the method itself should also be applicable for other scales. The method was constructed 

with a geostatistical framework. 

2. Materials and Methods 

2.1. Study Area and Data Description 

The study area is in the middle reaches of the Heihe River Basin in northwestern China.  

The experiment is an important part of the Heihe Watershed Allied Telemetry Experimental Research 

(HiWATER) program (2012–2015), which was designed as a comprehensive ecohydrological program 

to capitalize on diverse interdisciplinary studies using the existing observation infrastructures in  

the Heihe River Basin [24]. The experimental area covers 30 km × 30 km, within which our kernel study 

area covers a 5.5 km × 5.5 km region. Four groups of LAS (two sets in each group) were installed in  

3 × 3 and 2 × 1 MODIS pixels. In the kernel area, 18 EC system sets were installed for the experiment, 

17 of which were used in this study (Figure 1) [25]. There are also 17 automatic weather station sets 

(including a super-station) installed in the field [24,25]. Nine observations (06/15, 06/24, 07/10, 08/02, 

08/11, 08/18, 08/27, 09/03, and 09/12) made between June and September 2012 were selected for this 

study. On these days, the sky was free of clouds and Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) products were available. Observations and footprints of the 17 EC and 

four LAS groups between 12:00 and 12:30 BST (Beijing Standard Time) were averaged to obtain a mean 

value when the atmosphere stability was under unstable conditions with high turbulent fluxes. Wind 

speed data were also collected at the same time. By considering the wind direction, the wind speeds were 

decomposed into north and east components (WS), and then weighted averages were calculated with the 

corresponding EC and LAS footprint weights. In addition to these observations, synchronous ASTER 

RS products at 12:15 BST were downloaded from the US—National Aeronautics and Space 

Administration and processed according to Zhou et al. [26] and Bastiaanssen et al. [27], including the 

Land Surface Temperature (LST) [26], Normalized Difference Vegetation Index (NDVI), and Fractional 

Vegetation Cover (FVC) [27]. A detailed description of the study area is provided in  

Ge et al. [20]. 

2.2. Weighted Area-to-Area Regression Kriging 

The complicated non-homogeneous ground surface within the research area can be categorized into 

six types of land cover. Additionally, there are several roads and shelterbelts in the region, with  

an irrigation canal (and accompanying road) running from northwest to southeast. To undertake  

a geostatistical interpolation, assumptions of stationarity in the mean and in the second-order momentum 

are required [28,29]. The stationarity in the mean assumes that the mathematical expectation of samples 

is constant and independent of location, whereas the stationarity in the second-order momentum assumes 

that covariance is invariant between any two points separated by the same distance and direction. The 
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surface H flux with complicated ground obviously does not meet the assumptions. Based on the research 

of Ge et al. [20], a modified two-stage, weighted, area-to-area, regression kriging modeling method was 

designed to improve the upscaling estimation (Figure 2). The first stage involves spatial trend extraction 

using a multiple linear regression technique. By removing the spatial trend, the residual is assumed to 

be similar to a homogeneous surface. Then, in a second stage, a WATA RK method is used to estimate 

the residual of LAS H. Finally, by combining the regression and WATA results, we can estimate the 

LAS H. 

 

Figure 1. Yingke-Daman irrigation district in the Heihe River Basin, China (modified  

from [20], footprint in 2012/6/24). 

 

Figure 2. Process flowchart of WATA RK for sensible heat fluxes. 
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2.2.1. Spatial Trend Extraction 

H is the surface turbulent heat flux depending on the air flow and the surface properties. It is a function 

of both the air flow and the surface. According to Ge et al. [20], two surface variables (FVC and NDVI) 

and two ambient meteorological variables (LST, WS) can be specially selected by a stepwise regression 

method to extract the H spatial trend. Variables from the 17 EC systems including all nine periods are 

pooled together to obtain a stable regression relationship, ܪഥ௧ = β + βଵܥܸܨതതതതതത௧ + βଶܰܫܸܦതതതതതതതത௧ + βଷܶܵܮതതതതത௧ + βସܹܵതതതതത௧ + ௧ (1)ݎ̅

where i is the index of the EC systems (݅ = 1,… ,17), and t is the index of the periods (ݐ = 1,…  ,തതതതത௧, and ܹܵതതതതത௧ are footprint model weighted average variables of the ith EC’s FVCܶܵܮ ,തതതതതതതത௧ܫܸܦܰ ,തതതതതത௧ܥܸܨ .(9,

NDVI, LST, and WS in the tsh time, respectively. ܪഥ௧ and ̅ݎ௧ are the weighted average H and regression 

residue. β, βଵ, …, βସ are regression coefficients. The footprint model shows that the H of an EC (or a 

LAS) has unequal contributions from different parts of its source region. Both the shape of the source 

region and the weight of the contribution are obviously affected by meteorological conditions. Variables 

that enter into the regression model are abstracted by the footprint models as follows. ܪഥ௧ = ∑ ௧ୀଵܪݓ തതതതതത௧ܥܸܨ   = ∑ ௧ୀଵܥܸܨݓ തതതതതതതത௧ܫܸܦܰ   = ∑ ௧ୀଵܫܸܦܰݓ തതതതത௧ܶܵܮ   = ∑ ܵܮݓ ܶ௧ୀଵ   ܹܵതതതതത௧ = ∑ ܹݓ ܵ௧ୀଵ   

(2)

where ݓ	is the footprint weight of the jth discrete point, and n is the number of discrete points in the 

ith EC. Thus, the residual ̅ݎ௧ can be expressed as the following equation. ̅ݎ௧ = ഥ௧ܪ − (β + βଵܥܸܨതതതതതത௧ + βଶܶܵܮതതതതത௧ + βଷܰܫܸܦതതതതതതതത௧ + βସܹܵതതതതത௧)  	= ∑ ௧ܪൣݓ − ൫β + βଵܥܸܨ௧ + βଶܵܮ ܶ௧ + βଷܰܫܸܦ௧ + βସܹ ܵ௧൯൧ୀଵ   

=ݓݎ௧
ୀଵ  

(3)

where ݎ௧ is the residue of the ith EC’s jth discrete point in the tth period. From Equation (3), it can be 

found that the residue is also a version that is weighted by the footprint model. 

2.2.2. Weighted Area-to-Area Kriging 

Residues are assumed white noise in a classic linear regression model. However, when they are 

distributed on a geographical space in some pattern, there is spatial autocorrelation between them. Then, 

near points have similar residues. It can be used to estimate an unknown location’s regression residue. 

Exploration data analysis of the H regression model showed that there are rather strong spatial 

autocorrelations in the regression residues. It would be helpful to improve the estimation accuracy of H 

by adding back the interpolated residue. After removing the spatial trend, the residue can be treated as a 

random spatial field and assumed to meet the stationarity in the second-order momentum. For  
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a selected LAS, the true H residue (denoted as ݎ) over the entire area at a specific period can be  

given by: ݎ = lim→ஶ(∑ ୀଵݎݓ )  (4)

where m is the number of LAS L0 for the discretized points; ݓ and ݎ are the ith point’s footprint 

weight and residue, respectively. When nearby EC systems are available and there is a strong  

spatial autocorrelation in the random field, the ݎ  can be estimated by nearby EC systems with  

proper weights: ̂ݎ = ∑ λݎேୀଵ   (5)

where ̂ݎ is an estimation of ݎ, N is the number of ECs, and λ and ݎ are the weight and residue of 

the ith EC, respectively. 

A good geostatistical estimation should be unbiased and with a minimum estimation variance, i.e., min ൫σ̂ైబଶ = E[(̂ݎ − )ଶ]൯ݎ , subject to E[̂ݎ] =   (6)ݎ

where E(·)  is the mathematical expectation. Assuming a first-order stationary state, i.e., E[ݎ] =Eൣݎ൧ = (ݎ̂)from E ,ݐ݊ܽݐݏ݊ܿ = ∑  we can getݎ λேୀଵ = 1. This means that the weights of all ECs 

should be summed to one. The left part of Equation (6) can then be written as σ̂ైబଶ = E[(̂ݎ − = [)ଶݎ C(̂ݎ, (ݎ̂ − 2C(̂ݎ, (ݎ + C(ݎ, )  (7)ݎ

where C(·,·) is the covariance operator. All three items in the equation are area-to-area covariances. They 

cannot be calculated directly, but should be viable point scale covariances. The three items can then be 

further expanded separately as follows. 

൞C(̂ݎ, (ݎ̂ = ∑ ∑ λλC(ݎ, )ேୀଵேୀଵݎ = ∑ ∑ λλൣ∑ ∑ ,ݎC൫ݓݓ ,ݎ̂)మୀଵభୀଵேୀଵேୀଵCݎ (ݎ = ∑ λC(ݎ, )ேୀଵݎ = ∑ λൣ∑ ∑ ,ݎC൫ݓݓ ൯ୀଵୀଵݎ ൧ேୀଵC(ݎ, (ݎ = ∑ ∑ ,ݎC൫ݓݓ ൯ୀଵୀଵݎ , (8)

where C൫ݎ, ൯ݎ  is the covariance between the ith EC’s kth discretized point and jth EC’s lth 

discretized point at some period, while ݓ  and ݓ  are footprint weights of the two points, 

respectively. ݓ is the footprint weight of the jth discretized point of target LAS L0. C൫ݎ,  ൯ isݎ

the covariance between the ith EC’s kth discretized point and the jth discretized point of L0. C൫ݎ,  ൯ݎ
is the covariance between the ith and jth points of L0. In these equations, λ	(݅ = 1,… ,ܰ) are unknowns 

to be solved. Point-scale covariance can be calculated only after a point-scale variogram is deconvolved 

from the area-scale variogram, as shown in Section 2.2.3. 

Similar to ordinary kriging, Equation (6) is a typical linear optimization problem that can be solved 

by the Lagrange multiplier method. Then, we can define the following linear equation, ܮ = σ̂ైబଶ + 2μ(∑ λேୀଵ − 1)  (9)

where μ  is the introduced Lagrange multiplier. To minimize Equation (9), we compute the partial 

derivatives of ܮ  with respect to the ܰ  weights λ	(݅ = 1, … , ܰ)  and the Lagrange multiplier μ , and 

equate each of them to 0, i.e., 
பப = 0 and 

பபஜ = 0. By rearranging the derived N+1 terms, we obtained 

the following linear WATA kriging system. 
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ቊ∑ λൣ∑ ∑ ,ݎC൫ݓݓ ൯మୀଵభୀଵݎ ൧ேୀଵ + μ = ∑ ∑ ,ݎC൫ݓݓ ∑൯ୀଵభୀଵݎ λேୀଵ = 1,where ݅ = 1,… ,ܰ,   (10)

where ݊ଵ, ݊ଶ are discretized points corresponding to the ith and jth EC, respectively. This is a linear 

system with N+1 unknowns and N+1 equations. The unknowns can be easily solved by a basic matrix 

inversion or Gaussian elimination method. Then, the LAS L0 residue can be estimated from Equation (5), 

and the estimation variance can be calculated from Equations (7) and (8). 

There is a simplified form of estimation variance that can avoid the ܰଶ × ݉ଶ terms in the quadruple 

summation. By multiplying each of the first ܰ equations in Equation (10) by λ, then summing these ܰ 

equations together and rearranging, we obtain the following result [29]: ∑ ∑ λλൣ∑ ∑ ,ݎC൫ݓݓ ൯మୀଵభୀଵݎ ൧ேୀଵேୀଵ =∑ λ[∑ ∑ ,ݎC൫ݓݓ ൯ୀଵభୀଵݎ ]ேୀଵ − μ  
(11)

Substituting this into Equations (7) and (8) allows us to express the minimized variance as σ̂ైబଶ = ∑ ∑ ,ݎC൫ݓݓ ൯ୀଵୀଵݎ − ൣ∑ λൣ∑ ∑ ,ݎC൫ݓݓ ൯ୀଵୀଵݎ ൧ேୀଵ + μ൧ (12)

Note that the estimation variance is mainly determined by point-scale variance within LAS L0 and 

point scale variance between L0 and nearby ECs. 

2.2.3. Point-to-Point Variogram Reconstruction 

Because the source regions of all 17 EC systems are at the area scale, a point-scale variogram of H 

residue cannot be directly calculated from them. According to ATA kriging, we have derived  

point-scale covariance values for the H residue by a deconvolution method (Figure 3). First, an empirical 

area scale variogram is calculated by pooling the residue data from all nine periods. At this step, each 

EC is treated as a single point by its centroid. A theoretical area variogram is fitted with a Matérn model, 

which is the “true” area variogram model referred to by later regularized variograms. Then, a point-scale 

variogram model is initialized with empirical parameters. Based on this point variogram model, a 

regularized area variogram can be obtained as follows: C൫ݎ, ൯ݎ = ∑ ∑ ,ݎC൫ݓݓ ൯మୀଵభୀଵݎ   (13)

The regularized area variogram can be compared with the theoretical area variogram. The point 

variogram model is then modified to decrease the difference. The process is iterated to minimize  

the difference between a regularized area variogram model and the corresponding theoretical area 

variogram model. The model parameters can also be solved by maximum likelihood estimation [30]. 

3. Results and Discussion 

After abstracting FVC, NDVI, LST, and WS with the footprint models, nine regression models were 

built for each of the periods based on the proposed multiple linear regression model. The four independent 

variables were also abstracted for the four LAS footprints. By comparing regression results with the 

observed LAS H, spatial trends in LAS H could be captured well, especially for LAS1 (Figure 3a). The 

black line in Figure 3 is the 1:1 line. The red dashed line is the regression line between the observations 
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and estimations, with no intercept, which means that it is the regression line in force that passes  

the origin (0,0). 

 

(a) 

 

(b) 

Figure 3. Comparison of estimations and observations for LAS H. (a) Estimated by 

regression; (b) estimated by WATA regression kriging. 
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H is over-estimated for LAS2 and LAS4, whereas it is under-estimated for LAS3. The residual part 

of LAS H is then estimated from the 17 EC H residuals by the above WATA kriging model. The final 

estimated result is obtained by adding the regression and interpolation parts. A comparison with observed 

values is shown in Figure 3b. There are obvious improvements compared with the regression. For both 

LAS1 and LAS2, the red dashed lines are almost coincident with the black lines. The slope value of 

LAS4 is 1.056 (i.e., very close to 1). From Figure 3a, it can be found that the overestimation is mainly 

caused by the regression part in the two-step modeling. After applying the WATA kriging to  

the regression residue and adding the result to the regression result, the overestimation is decreased at 

both LAS2 and LAS4. However, the under-estimation phenomenon still exists in LAS3, even though 

the slope is increased from 0.776 to 0.805. The most important reason for this may be a systematic bias 

between the LAS and EC values owing to the large number of buildings in the LAS source area [20]. 

The high H resulting from buildings can be captured by the LAS, but it is not captured by EC because 

almost all EC systems are located within corn fields. 

Area- and footprint-weighted models are two other H upscaling methods often used for aggregating 

EC- to LAS-scale H [17,18]. Our H estimations have also been compared with the results of the  

two models undertaken by Liang [31]. Unlike a WATA regression kriging model, for which the EC 

weight is determined by solving a linear system to guarantee a best unbiased estimation, for  

area- and footprint-weighted models, the research area has to be partitioned into small homogeneous 

strata where the H are considered to be the same everywhere. Additionally, there is at least one EC 

system in each stratum. The LAS source areas are partitioned into strata in the same way. Then, the LAS 

H is the weighted sum of H for all strata. For area-weighted models, the weights are the area ratios of 

each stratum in the LAS source area. For footprint-weighted models, the weights are the footprints of 

each stratum. Sometimes, it can be difficult for a complex research area to be partitioned into 

homogeneous H strata. However, the proposed method does not require such strata, which makes it more 

appropriate for use in complex areas. Liang [31] compared area- and footprint-weighted models to ATA 

RK using the same input data (Table 1). The slopes between observations and estimations are all less 

than 1, which suggests that they are more likely to underestimate the LAS H in this research area. 

Multiple linear regression and ATA RK perform better than the other two methods. However, in general, 

WATA RK outperforms all of them, except in the LAS4 because its slope is slightly greater than that of 

ATA RK. The root-mean-square-error (RMSE) and mean-bias-error (MBE) are also calculated and 

compared in Table 1. Generally, area-weighted and footprint-weighted models have larger RMSE than 

the other three models. When four LAS’s results are considered together, there is no obvious different 

RMSE for the multiple linear regression, ATA RK, and WATA RK models. If two models of the three 

are selected, each model has two RMSE values smaller than the other one, while at the same time it also 

has two RMSE values larger than the other one. However, WATA RK has a slightly smaller MBE than 

multiple linear regression and ATA RK. 

EC measurement is thought to be accurate for heat flux. It is usually used to validate larger scale 

measurements and products. Zeweldi et al. [32] installed two EC systems and a set of LAS systems in a 

homogeneous dry semi-arid region. The linear correlation coefficients between the measured sensible 

heat flux from LAS and the measured values from the two ECs were 0.79 and 0.89, respectively.  

Xu et al. [25] compared both LAS and EC measurements. Measurements from various ECs agreed very 

well, along with measurements from various LASs. On a relatively homogenous surface, they found that 
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the regression slope between LAS and EC had average measurements of 0.92 with R2 of 0.89. The 

discrepancy is considered to be caused mainly by the heterogeneity of the surface. An improved aggregation 

method might enable higher correlation and R2 coefficients. The discrepancies in measurements of LAS 

and EC are more obvious for heterogeneous surfaces. This might be the result of an energy imbalance 

phenomenon in response to the different source areas of the LAS and EC measurements [3]. The energy 

imbalance of EC was found in almost all the experiments around the world, and the reasons leading to the 

imbalance were still under-debated [33]. Previous studies usually considered H from EC was correct in 

the energy budget when compared with models [34]. The energy balance closures at ASTER passing 

time were around 0.8 in our study area. 

Table 1. Estimated results comparison between different models. 

Model 
LAS 1 LAS 2 LAS 3 LAS 4 

Slope RMSE MBE Slope RMSE MBE Slope RMSE MBE Slope RMSE MBE 

Area-weighted [31] 0.965 23.7 −13.3 0.923 27.0 −18.5 0.704 59.7 −56.6 0.910 25.5 −13.5 

Footprint-weighted [31] 0.996 30.0 −12.2 0.924 27.9 −18.6 0.726 54.4 −51.6 0.917 26.6 −13.5 

Multiple linear regression 0.991 17.5 −7.7 1.097 23.6 −4.6 0.776 43.0 −33.4 1.110 25.7 8.0 

ATA RK [20] 0.961 17.6 −11.2 1.006 23.5 −6.3 0.784 48.0 −40.4 1.040 20.7 1.6 

WATA RK 1.001 21.0 −6.8 1.004 21.1 −6.4 0.805 44.5 −30.6 1.056 23.4 4.4 

The footprint model can quantitatively define the contribution of different source areas.  

The usefulness of the models might not be obvious when surfaces are homogeneous. However, this 

research shows that on a heterogeneous surface, because different types of sources have different water 

and heat conditions, weighted averages become more important in estimating upscaled heat flux. 

Compared with the above upscaling methods, the proposed regression kriging considered  

three important aspects of important information at the same time: (1) footprint weights of EC and LAS 

are considered in the aggregation of both H-fluxes and related independent variables; (2) a multiple 

linear model is used to capture daily large-scale spatial trends and patterns; (3) spatial autocorrelation is 

found between the local scale residues, and it is used to interpolate the corresponding LAS-scale residue. 

4. Conclusions 

Sensible heat flux has attracted great attention in RS because of its importance in quantifications of 

land surface water and heat balance. Different scales of observation are possible when measuring H. EC 

and LAS are two of the most popular measurements. RS provides numerous products [4,5,35]; however, 

the validation of large-scale observations and products is a necessary first step in their application to 

different domains. Although many scaling methods are available for aggregating EC-scale H to  

LAS-scale H (e.g., area-weighted, footprint-weighted, and ATA kriging), we propose a WATA RK 

model for H aggregation, which was found to improve the accuracy of H estimations. The object of the 

model is to upscale EC-scale H to LAS-scale H but not for mapping the spatial distribution of H flux. 

The method includes three main steps: first, the spatial trend of H should be extracted using a weighted 

regression model; then, the residual of LAS H can be estimated with a WATA kriging; finally, the LAS 

H can be estimated by combining the two parts. We suggest that this method is applicable for other 

scales of H aggregations and validations of RS products. In particular, it is suitable for complicated and 



Atmosphere 2015, 6 1042 

 

 

irregular surfaces where the component source areas have different water and heat conditions. We will 

further validate and test different scale RS products based on the proposed method. 
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