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Abstract: In the present work, the steady-state stationary thermal convection of moist saturated air
in a lower atmosphere has been studied theoretically. Thermal convection was considered without
accounting for the Coriolis force, and with only the vertical temperature gradient. The analytical
solution of geophysical fluid dynamics equations, which generalizes the formulation of the moist
convection problem, is obtained in the two-dimensional case. The stream function is derived in
the Boussinesq approximation with velocity divergence taken as zero. It has been shown that the
stream function is asymmetrical in vertical direction contrary to the dry and moist unsaturated air
convection. It has been demonstrated that the convection in moist atmosphere strongly depends on
the vapor mass fraction gradient.

Keywords: thermal convection; Rayleigh–Benard convection; moist air; stream function;
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1. Introduction

Atmospheric convection is involved in many of the central problems in meteorology and climate
science [1,2]. Investigation and understanding of atmospheric convection is of great importance for the
development and improvement of global weather and climate prediction [3,4]. Convection interacts
with the larger-scale dynamics of planetary atmospheres in ways that remain poorly represented
in global models [5,6]. The important role in the convective instability is played by the release of
latent heat of condensation during phase transitions of water vapor in the moist saturated air [7].
Many experimental and theoretical works, reviews and textbooks have been devoted to the thermal
convection [8–12]. Even so, we currently have not a complete understanding of this phenomenon.

According to Alekseev and Gusev [13], the free convection can be of the two main types:
The Rayleigh convection conditioned by the hypercritical vertical temperature gradient, and the lateral
convection resulting from the temperature heterogeneity in horizontal plane. The interlatitude and the
monsoonal type air circulations belong to the lateral convection. As for the classic Rayleigh vertical
convection, the examples are the convection resulting in formation of the clouds distributed in space in
form of cellular structures (Benard cells). Here, the vertical convection will be studied. For the analysis
of a convective stability, the linearized system of equations describing thermal convection in a vertical
plane has been solved by Rayleigh [14]. It is valid to say that the Rayleigh theory is non-stationary
two-dimensional linear analytical model of convection. The study of nonhydrostatic models commonly
involves extensive numerical integrations. Such an approach was used by Ogura [15], who studied the
development of an axially symmetric moist convective cell toward the steady state. The numerical
studies have been further developed by many authors (as, for example, in [16,17]). Much insight into
the problem can be gained by using highly truncated models. Saltzman [18] and Lorenz [19] studied
dry convection by only taking a few spectral components of the motion and temperature fields into
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account. They have developed the Rayleigh theory by considering the system of non-linear equations.
However, they solved the obtained system of equations numerically. These studies have been followed
by many others [20–22]. When moist processes are considered, the formulation of a “low-order”
model presents some special difficulties. These are due to the complex expressions for latent heat
release and the asymmetric properties of condensation with respect to upward and downward motion.
One simplified approach of the physics of condensation has been proposed by Shirer and Dutton [23].
In their model, the condensation processes have the effect of modifying the critical Rayleigh number,
i.e., the critical vertical temperature gradient needed for the onset of convection. This model has been
developed by Huang and Källén [24] by considering the hysteretic effects. The effect of moisture
is only introduced via condensational heating in [24]. Low-order models of the atmosphere were
also used to study specific problems such as blocking [25]. Several particular solutions for inviscid
non-heat-conducting atmosphere have been analyzed in [26–28].

Currently, the numerical methods of analysis of nonstationary two- and three-dimensional
non-linear models of convection with the use of high-performance computers are widely applicable in
theoretical studies. On the other hand, because of their relative simplicity, low-order models present
considerably more qualitative insight into the problem than the complicated numerical computations.
In spite of this, it is of interest to obtain the analytical solution of stationary two-dimensional model
of convection. It will allow us to understand better the fundamental nature of the atmospheric
structures and dynamics. The obtained solution can be an effective tool at forecasting of convection
parameters. Previously we have reported on the two-dimensional analytical model of dry air thermal
convection [29]. Here we present the further development of the two-dimensional analytical convection
model which takes into account the atmospheric humidity. Hence, the purpose of this article is to
define the conditions of the moist saturated air free convection occurrence within the framework of the
two-dimensional convection model. Here we extend the classical parcel-based linear stability analysis
to the case with a finite displacement.

2. Basic Equations of Moist Saturated Air Convection

Consider the ideal fluid equation of motion, in x–z plane, in Eulerian form, in inertial reference
system, neglecting the Earth rotation, in projections onto coordinates axes [30–32]:

Bu
Bt
` u

Bu
Bx
`w

Bu
Bz
“ ´

1
ρi

ˆ

Bp
Bx

˙

(1)

Bw
Bt
` u

Bw
Bx
`w

Bw
Bz
“ ´

1
ρi

ˆ

Bp
Bz

˙

´ g (2)

In equilibrium (statics):

v “ 0,
Bp
Bx
“ 0, ´

1
ρe

ˆ

Bp
Bz

˙

´ g “ 0 (3)

Here ρi is the moist air parcel density; ρe the air parcel surrounding atmosphere density; and g
the free fall acceleration. We accept the parameters of the surrounding atmosphere as an undisturbed
state. Hence, the pressure may be written as: p “ p` p1, here p1 is the pressure disturbance relative to
the statics state.

In the moist atmosphere the air density equation in the Boussinesq approximation will be [13]

ρi “ ρe p1´α∆T´β∆sq (4)

where α = 1/T0 is the air thermal expansion coefficient; T0 = 273 K; ∆T(z) = Ti(z)–Te(z); ∆T(z) the
overheat function; Ti, Te the air parcel internal and external temperatures; s the water vapor mass
fraction (also called specific humidity or moisture content); ∆s=si–se the supersaturation function;
β ”Md/Mv–1 = 0.608; Md = 29 g/mol the dry air molar mass; Mv = 18 g/mol the water vapor molar
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mass. In other words, we assume that the density depends on temperature and vapor mass fraction
and not depends on pressure [33]. Here we do not consider the water loading.

The temperature change of the surrounding atmosphere will be considered to follow the law:

Te pzq “ Tec ´ γ pz´ zcq (5)

where γ is the surrounding air temperature gradient; and Tec the surrounding air temperature at the
condensation level (zc). The moist saturated air temperature gradient is determined by [34]

γma “ ´
dTi

dz
“ γa `

L
cp

dsm

dz
(6)

where γa is the dry-adiabatic temperature gradient; L the specific heat of condensation; cp the specific
heat capacity at constant pressure; sm the saturated vapor mass fraction. The quantity dsm/dz
appearing in Equation (6) is a complicated function of temperature and pressure [34]; this is why
Equation (6) is usually analyzed numerically. To obtain an analytical solution, we should propose
an adequate parametrization for the quantity dsm/dz. We specify the saturated vapor mass fraction
change with altitude parametrically by expanding in a Taylor series:

dsm

dz
“

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

` K pz´ zcq , K “
d2sm

dz2

ˇ

ˇ

ˇ

ˇ

ˇ

z“zc

(7)

here K is some function of saturated vapor mass fraction at the condensation level (smc).
Then for the moist-adiabatic temperature gradient we have the parametrical form:

γma “ γa `
L
cp

«

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

` K pz´ zcq

ff

“ γmac ` εpz´ zcq, γmac “ γa `
L
cp

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

(8)

here γmac is the moist-adiabatic temperature gradient at the condensation level [34] (this is the known
function of temperature and pressure).

Note that Equation (8) presents a linear approximation to the lapse rate. Analyzing and
approximating the table values of the moist-adiabatic temperature gradient [34], for the quantity
εwe can get: ε = LK/cp « 3¨ 10´7 ˝C/m2.

Then we have that the temperature of the adiabatically rising moist saturated air parcel follows
the law:

Ti pzq “ Tic ´ γmac pz´ zcq ´
ε

2
pz´ zcq

2 (9)

where Tic is the rising air parcel temperature at the condensation level. The function Ti(z) graph
presents the ’state curve’; the family of such curves is displayed on aerological diagrams. The table
values of air temperature obtained from the state curve demonstrates the satisfactory agreement with
the values calculated by Equation (9) within the convection layer of interest zw – zc ď 5 km. Here zw is
the convection level. Taking into account Equations (5) and (9) the overheat function will be:

∆T pzq “ ∆cT` ∆γmac pz´ zcq ´
ε

2
pz´ zcq

2 (10)

where ∆cT is the overheat function at the condensation level; ∆γmac = γ – γmac is the difference of the
ambient air temperature gradient and the rising air parcel temperature gradient at the condensation
level. The quantity ∆γmac determines the angle between the state curve and the stratification curve at
the condensation level on the aerological diagram.
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For the adiabatically rising air parcel the saturated vapor mass fraction follows the law:

sm pzq “ smc `
dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

pz´ zcq `
K
2
pz´ zcq

2 (11)

Assume that the vapor mass fraction decreases linearly with altitude in the surrounding atmosphere:

se pzq “ sec ´ b pz´ zcq (12)

where sec is the water vapor mass fraction in the surrounding atmosphere at the condensation level;
b the vapor mass fraction gradient. Then for the supersaturation function we get

∆s pzq “ ∆cs`

˜

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

` b

¸

pz´ zcq `
K
2
pz´ zcq

2 (13)

where ∆cs = smc – sec is the supersaturation at the condensation level.
Taking into account Equations (10) and (13), Equation (4) for the air parcel density will be

written as:
ρi “ ρe

”

1´α0 ´α1 pz´ zcq `α2 pz´ zcq
2
ı

(14)

where

α0 “ α∆cT`β∆cs, α1 “ α∆γmac `β

˜

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

` b

¸

, α2 “
1
2
pαε´βKq (15)

From here the level of equalization of the densities of the rising air parcel and surrounding air can
be found:

zρ ´ zc “
α1 `

b

α2
1 ` 2 pαε´βKq pα∆cT`β∆csq

αε´βK
. (16)

The level of equalization of the temperatures (the level of neutral buoyancy) is determined by

zt ´ zc “
∆γmac `

b

p∆γmacq
2
` 2ε∆cT

ε
. (17)

The steady motion of air parcel is described by the set of equations of the moist saturated
air convection:

u
Bu
Bx
`w

Bu
Bz
“ ´

1
ρe

Bp1

Bx
(18)

u
Bw
Bx
`w

Bw
Bz
“ g pα∆T`β∆sq (19)

∆T pzq “ ∆cT` ∆γmac pz´ zcq ´
ε

2
pz´ zcq

2 (20)

∆s pzq “ ∆cs`

˜

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

` b

¸

pz´ zcq `
K
2
pz´ zcq

2 (21)

Bu
Bx
`
Bw
Bz
“ 0 (22)

In Equation (19) the following assumption has been made:

ˇ

ˇ

ˇ

ˇ

´
1
ρe

Bp1

Bz

ˇ

ˇ

ˇ

ˇ

! |g pα∆T`β∆sq| (23)
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To satisfy Equation (23), in the present study we seek the analytical solution for the pressure
disturbance in the form:

p11 pxq “ p1 px, zq
ˇ

ˇ

z“z (24)

where z is some level determined below.
Substituting Equations (20) and (21) into Equation (19), we finally get the set of equations of moist

saturated air free convection in the form:

u
Bu
Bx
`w

Bu
Bz
“ ´

1
ρe

Bp1

Bx
(25)

u
Bw
Bx
`w

Bw
Bz
“ g

”

α0 `α1 pz´ zcq ´α2 pz´ zcq
2
ı

(26)

Bu
Bx
`
Bw
Bz
“ 0 (27)

Further we will find the solution of the obtained system of equations.

3. Solution of the Moist Saturated Air Convection Equations

It follows from the continuity Equation (27) that for the shallow convection condition the stream
function ψmay be introduced [30–32]:

u “ ´
Bψ

Bz
, w “

Bψ

Bx
(28)

Substituting Equation (28) into Equations (25) and (26), we get:

Bψ

Bz
B2ψ

BxBz
´
Bψ

Bx
B2ψ

Bz2 “ ´
1
ρe

Bp1

Bx
(29)

´
Bψ

Bz
B2ψ

Bx2 `
Bψ

Bx
B2ψ

BzBx
“ g

”

α0 `α1 pz´ zcq ´α2 pz´ zcq
2
ı

(30)

Equation (30) can be written as

´
Bψ

Bz
B2ψ

Bx2 `
Bψ

Bx
B2ψ

BzBx
“ rN2

mac

”

rz` pz´ zcq ´ k1 pz´ zcq
2
ı

(31)

where

rN2
mac “ g

«

α∆γmac `β

˜

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

` b

¸ff

(32)

is the square of the Brunt–Väisälä frequency for the moist saturated air;

rz “
α∆cT`β∆cs

α∆γmac `β

˜

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

` b

¸ , k1 “
αε´βK

2

«

α∆γmac `β

˜

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

` b

¸ff (33)

We seek solution of the resulting equations set in the following form:

ψ px, zq “ X pxqZ pzq (34)

Substituting Equation (34) into Equation (29), we get:

XX1
´

Z12 ´ ZZ2

¯

“ ´
1
ρe

Bp1

Bx
(35)
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Substituting Equation (34) into Equation (31), we obtain:

ZZ1
´

X12 ´ XX2

¯

“ rN2
mac

´

rz` pz´ zcq ´ k1 pz´ zcq
2
¯

(36)

From Equation (36), separating the variables, it follows that:

ZZ1 “ k2
rN2

mac

´

rz` pz´ zcq ´ k1 pz´ zcq
2
¯

(37)

X12 ´ XX2 “
1
k2 (38)

where k is the constant requiring determination. The Equation (37) solution has the form:

Z “ k rNmac

d

2 pz´ zcq

„

rz`
pz´ zcq

2
´

k1

3
pz´ zcq

2


(39)

It follows from here:

Z1 “ k rNmac
rz` pz´ zcq ´ k1 pz´ zcq

2
d

2 pz´ zcq

„

rz`
pz´ zcq

2
´

k1

3
pz´ zcq

2


(40)

We seek the Equation (38) solution with the following form:

X “
1
k2 cos kx (41)

Substituting Equation (41) directly into Equation (38), we see that the solution is valid. Hence, for
the stream function, we have the expression:

ψ “ ZX “
rNmac

k

d

2 pz´ zcq

„

rz`
pz´ zcq

2
´

k1

3
pz´ zcq

2


cos kx (42)

Figure 1 shows this function graph. As is seen, the stream function is symmetrical in horizontal
direction and asymmetrical in vertical direction. The level of maximal vertical velocities is in the upper
part of the convective cell contrary to the dry and moist unsaturated air convection [29].
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Figure 1. Stream function at b = 10´6 m´1, ∆cT = 0.5 ˝C, ∆cs = 0, ∆γmac = 5 ˆ 10´4 ˝C/m,
ε = 3 ˆ 10´7 ˝C/m2, k = 10´3 m´1, dsm{dz|z“zc

“ ´1.6ˆ 10´6 m´ 1 .
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From Equations (28) the velocity projections can be written:

u “ ´Z1X “ ´
rNmac

k
rz` pz´ zcq ´ k1 pz´ zcq

2
d

2 pz´ zcq

„

rz`
pz´ zcq

2
´

k1

3
pz´ zcq

2


cos kx (43)

w “ ZX1 “ rNmac

d

2 pz´ zcq

„

rz`
pz´ zcq

2
´

k1

3
pz´ zcq

2


¨ sin kx (44)

From here, using the condition w = 0, we get the expression for the vertical size of convection cell
(or cloud size):

zw ´ zc “
3

4k1

˜

1`

c

1`
16
3

k1rz

¸

(45)

Figure 2 shows the dependence of the convection cell vertical size on the water vapor mass
fraction gradient. As is seen, the convection cell vertical size rises monotonically with the vapor mass
fraction gradient.
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Figure 2. Convection cell vertical size vs. water vapor mass fraction gradient. The atmospheric
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4. Analysis and Discussion of the Obtained Solution

We find the maximal velocities level from the condition: Bw/Bz = 0. Taking the derivative of
Equation (44) with respect to z, we get:

zmax ´ zc “
1`

a

1` 4k1rz
2k1

(46)

If rz “ 0 (the overheat ∆cT and the oversaturation ∆cs are equal to zero at the condensation level),
then for the convection level and for the maximal velocities level we have

zw ´ zc “
3

2k1
“ 3

α∆γmac `β

˜

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

` b

¸

αε´βK
(47)
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zmax ´ zc “
1
k1
“

2

«

α∆γmac `β

˜

dsm

dz

ˇ

ˇ

ˇ

ˇ

z“zc

` b

¸ff

αε´βK
(48)

From here one can see that the maximal velocities level is not in the center of the convective cell
as it has been for the dry air convection. The maximal velocities level for the moist saturated air is at
2/3 of the vertical size of convection cell.

Substituting the expression for zmax – zc into Equation (44), we get for the ascending moist
saturated air maximal velocity the equation:

wmax “
rNmac

k1

g

f

f

e

´

1`
a

1` 4k1rz
¯

«

k1rz`
1`

a

1` 4k1rz
4

´
1
12

´

1`
a

1` 4k1rz
¯2
ff

¨ sin kx. (49)

If rz “ 0, then we have

wmax “
rNmac
?

3k1
¨ sin kx (50)

Let us find the pressure spatial distribution. For this, integrating Equation (35), we get:

p1 px, zq “ ´
1
2
ρeX2

´

Z12 ´ ZZ2

¯

` const (51)

The constant of integration can be found from the condition that at the maximal velocities level
the pressure disturbance is equal to zero at the points meeting the condition cos2kx = 1. From here
we have

const “
ρe

rN2
mac

2k2 (52)

Here we take into account that if rz “ 0, then

Z2 “ ´
1
3

kk1 rNmac
2´ k1 pz´ zcq

„

1´
2
3

k1 pz´ zcq

3{2
, zmax ´ zc “

1
k1

(53)

From here, taking into account Equation (24) and assuming z “ zmax, for the pressure disturbance
we get

p11 pxq “ p1 px, zmaxq “
ρe

rN2
mac

2k2 sin2kx (54)

It should be noted that the analytical solution Equation (42) is obtained by integrating only

one Equation (36); in so doing we neglected the term ´
1
ρe
Bp1{B z in accordance with the condition

Equation (23). In such an approach to the problem, Equation (18) plays a role of auxiliary equation
for the pressure disturbance determination. To make Equations (18) and (19) agree with condition
Equation (23) we were compelled to consider Equation (18) at the point z “ zmax of maximal velocities
where the pressure disturbance is equal to zero.

5. Conclusions

Hence, we have obtained the new solution of the equations of moist saturated air convection
in the atmospheric cloud layer. The solution is obtained within the framework of the stationary 2D
analytical model. It has been shown that the convection parameters in moist atmosphere strongly
depend on the water vapor mass fraction gradient. The expression for the convective cell vertical size
is obtained.

The obtained solutions can be valuable in the convection parameters forecasting practice. As it
can be seen from obtained equations, the important convection parameters, such as convection level,
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level of neutral buoyancy, maximal velocities level, and maximal velocity itself, are determined
by the characteristics which can be calculated from aerological diagrams using radiosounding
data. These characteristics are the angle between the state curve and the stratification curve at
the condensation level and the water vapor mass fraction gradient.
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